Development and Comparison of 3D Seismic Geology and Shear-wave Velocity Models of Metro Vancouver
DOI:
https://doi.org/10.26443/seismica.v3i2.1339Keywords:
seismic velocity change, Three-Dimensional Structure, Modeling, site characterization, Metro Vancouver, 3D Geology model, Shear-wave Velocity ModelsAbstract
This study presents a 3D regional modeling of seismic geology and shear wave velocity (Vs) in Metro Vancouver for seismic microzonation and hazard prediction. Leveraging an extensive geodatabase compiled from invasive and non-invasive in situ data, including lithological logs and seismic field data, we delineated four major geological units: Holocene post-glacial and Pleistocene inter/glacial sediments, and Tertiary sedimentary and Pre-Tertiary Coast Mountain plutonic rocks.
Seismic geology model integrates the four primary geological formations, leveraging significant impedance-based surfaces derived from meticulously analyzed borehole stratigraphic logs and Vs depth profiles sourced from 2333 georecords, enhancing its depth and accuracy. Through a meticulous comparison with established interpreted geological cross-sections, we have reaffirmed the robustness and reliability of our seismic geology modeling approach. A numerical 3D “geotechnical layer” Vs model with 11 isovelocity surfaces was developed using 688 Vs depth profiles. Comparison with microtremor amplification spectra confirms our 3D models' reliable use in predicting site amplification. We find that the combination of local geology (thicknesses) and Vs information outperforms prediction in fundamental peak frequency compared to using only local geology combined with regional Vs information. Our study contributes to advancing understanding of seismic hazards in Metro Vancouver, highlighting the importance of incorporating localized seismic site conditions for precise regional seismic hazard assessments.
References
Adhikari, S. R. (2024). Development of a regional geodatabase and 3D models of Metro Vancouver and their use and impact to regional seismic hazard mapping., University of Western Ontario, PhD Thesis (Geophysics. In Electronic Thesis and Dissertation Repository (p. 220). https://ir.lib.uwo.ca/etd/9949
Adhikari, S. R., Molnar, S., & Wang, J. (2016). Significance of geodatabase development for seismic microzonation in Metropolitan Vancouver, Canada. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/298718
Adhikari, S. R., Molnar, S., & Wang, J. (2021). Significance of geodatabase development for seismic microzonation in Metropolitan Vancouver, Canada. 17th World Conference on Earthquake Engineering, 3622, 1–12. https://doi.org/10.4095/298718
Adhikari, S. R., Monahan, P., Salsabili, M., Bilson Darko, A., & Molnar, S. (2024). Quaternary Geology, Metro Vancouver seismic microzonation mapping project (MVSMMP), Map 01, SMM Level 1-2, Scale 1:50,000, 1 Map Sheet with accompanying Data Layers. Using ArcGIS Pro, 3(3). https://doi.org/10.5683/SP3/BOIPW4
Agterberg, F P, & Chung, C. F. (1975). A computer program for polynomial tred-surface analysis. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/102582
Agterberg, Frits P. (1984). Trend Surface Analysis. In Spatial Statistics and Models (pp. 147–171). Springer Netherlands. https://doi.org/10.1007/978-94-017-3048-8_8
Alcaraz, S., Lane, R., & Spragg, K. (2011). 3D geological modelling using new Leapfrog Geothermal software. 36th Workshop on Geothermal Reservoir Engineering (p. 191, 1-6). Stanford University. http://es.stanford.edu/ERE/pdf/IGAstandard/SGW/2011/alcaraz.pdf
Armstrong, J. E. (1984). Environmental and engineering applications of the Surficial geology of the Fraser Lowland, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/119727
Armstrong, J. E., & Hicock, S. R. (1979). Surficial geology, Vancouver, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/108876
Armstrong, J. E., & Hicock, S. R. (1980). Surficial geology, New Westminster, West of Sixth Meridian, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/108874
Assaf, J., Molnar, S., El Naggar, M. H., & Sirohey, A. (2022). Seismic site characterization in Fraser River Delta in Metropolitan Vancouver. Soil Dynamics and Earthquake Engineering, 161, 107384. https://doi.org/10.1016/j.soildyn.2022.107384
Bard, P.-Y., & Gariel, J.-C. (1986). The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients. Bulletin of the Seismological Society of America, 76(2), 343–366. https://doi.org/10.1785/bssa0760020343
Belanger, J. R., & Harrison, J. E. (1976). Vancouver subsurface information data bank. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/129471
Berg, R. C., Mathers, S. J., Kessler, H., & Keefer, D. (2011). Synopsis of current three-dimensional geological mapping and modeling in Geological Survey organizations. In K. E. MacCormack, R. C. Berg, H. Kessler, H. A. J. Russell, & L. H. Thorleifson (Eds.), Illinois State Geological Survey Circular (Vol. 578, p. 104).
Biancolini, M. E. (2017). Radial Basis Functions BT - Fast Radial Basis Functions for Engineering Applications. In Fast Radial Basis Functions for Engineering Applications (pp. 9–33). Springer International Publishing. https://doi.org/10.1007/978-3-319-75011-8_2
Boucher, C. (2022). Approaches to model non-uniqueness and site complexity for non-invasive shear-wave depth profiling, University of Western Ontario, MSc Thesis (Geophysics. Electronic Thesis and Dissertation Repository, 9005. https://ir.lib.uwo.ca/etd/9005
Britton, J. R., Harris, J. B., Hunter, J. A., & Luternauer, J. L. (1995). The bedrock surface beneath the Fraser River delta in British Columbia based on seismic measurements. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/205191
Card, C. D., Delaney, G., & Bosman, S. A. (2010). Modelling the 3D Architecture of Rocks and Structures of the Athabasca Basin: How Saskatchewan is Tackling the Challenge from Down Under, GeoCanada 2010 Extended Abstracts (pp. 1–4).
Carter, T. R., Brunton, F. R., Clark, J. K., Fortner, L., Freckelton, C., Logan, C. E., Russell, H. A. J., Somers, M., Sutherland, L., & Yeung, K. H. (2019). A three-dimensional geological model of the Paleozoic bedrock of southern Ontario. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/315045
Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., & Sausse, J. (2009). Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences, 41(8), 927–945. https://doi.org/10.1007/s11004-009-9244-2
Christian, H. A., Monahan, P. A., & Barrie, J. V. (1994). Deep hole geotechnical investigation adjacent to the BC Hydro Canoe Pass submarine cable terminal, Fraser River Delta, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/194142
Clague, J. J., Luternauer, J. L., Monahan, P. A., Edwardson, K. A., Dallimore, S. R., & Hunter, J. A. (1998). Quaternary stratigraphy and evolution of the Fraser delta. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/210037
Cowan, E. J., Beatson, R. K., & Ross. (2003). Practical implicit geological modelling. In S. Dominy (Ed.), 5th International Mining Geology Conference (November), The Australasian Institute of Mining and Metallurgy. https://doi.org/https://www.researchgate.net/publication/281685127_Practical_Implicit_Geological_Modelling
Culshaw, M. G. (2005). From concept towards reality: developing the attributed 3D geological model of the shallow subsurface. Quarterly Journal of Engineering Geology and Hydrogeology, 38(3), 231–284. https://doi.org/10.1144/1470-9236/04-072
Dallimore, S. R., Edwardson, K. A., Hunter, J. A., Clague, J. J., & Luternauer, J. L. (1995). Composite geotechnical logs for two deep boreholes in the Fraser River delta, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/203617
de Kemp, E. A., & Schetselaar, E. M. (2015). Structural and depth contours of the Lower-Middle Aldridge Contact, east Kootenay region, southeastern British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/297429
de Kemp, E. A., Schetselaar, E. M., Hillier, M. J., Lydon, J. W., & Ransom, P. W. (2016). Assessing the workflow for regional-scale 3D geologic modeling: An example from the Sullivan time horizon, Purcell Anticlinorium East Kootenay region, southeastern British Columbia. Interpretation, 4(3), SM33–SM50. https://doi.org/10.1190/int-2015-0191.1
E.S.R.I. (1999). Understanding GIS—The ARC/INFO method (p. 602 978-1-879102-01–09). Environmental System Research Institute, Inc.
Foulon, T., Saeidi, A., Chesnaux, R., Nastev, M., & Rouleau, A. (2017). Spatial distribution of soil shear-wave velocity and the fundamental period of vibration – a case study of the Saguenay region, Canada. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1), 74–86. https://doi.org/10.1080/17499518.2017.1376253
Ghofrani, H., Adhikari, S., Ojo, A., Salsabili, M., Sirohey, A., & Molnar, S. (2023). Physics-Based Seismic Hazard Simulations and 3D Velocity Structure Models for southwest British Columbia. Canadian - Pacific Conference on Earthquake Engineering, June 25-30 2023, 257, 12.
Gordy, P. (1988). Evaluation of the Hydrocarbon Potential of the Georgia Depression. British Columbia Ministry of Energy, Mines and Petroleum Resources, 80.
Götzl, G., Poltnig, W., Domberger, G., & Lipiarski, P. (2007). TRANSTHERMAL - Geothermie der Ostalpen – Erfassung und zusammenfassende Darstellung des geothermischen Potenzials in Datenbanken. In in einem Geothermieatlas und in GIS –basierten Kartenwerken im Bereich von Kärnten, Steiermark und Slowenien: Geological Survey of Austria Project Report (p. 156).
Guo, J., Wang, X., Wang, J., Dai, X., Wu, L., Li, C., Li, F., Liu, S., & Jessell, M. W. (2021). Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Engineering Geology, 284, 106047. https://doi.org/10.1016/j.enggeo.2021.106047
Hannigan, P. K., Dietrich, J. R., Lee, P. J., & Osadetz, K. G. (1998). Petroleum resource potential of sedimentary Basins on the Pacific margin of Canada. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/209925
Hunter, J. A. M., Burns, R. A., Good, R. L., & Pelletier, C. F. (2016). A compilation of shear wave velocities and borehole geophysics logs in unconsolidated sediments of the Fraser River Delta, British Columbia. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/298718
Kosuwan, S., Hinthong, C., & Charusiri, P. (1999). The preliminary use of MapInfo programme to earthquake hazard assessment in Thailand and mainland SE Asia. Journal of Geology, Series B, (13-14, 174–178.
Ladak, S. (2020). Earthquake site characterization of rock sites in Eastern Canada and stiff ground sites in Vancouver, BC, University of Western Ontario, MSc Thesis (Geophysics. Electronic Thesis and Dissertation Repository, 6972. https://ir.lib.uwo.ca/etd/6972
Lemon, A. M., & Jones, N. L. (2003). Building solid models from boreholes and user-defined cross-sections. Computers and Geosciences, 29(5), 547–555. https://doi.org/10.1016/s0098-3004(03)00051-7
Logan, C., Russell, H. A. J., Sharpe, D. R., & Kenny, F. M. (2006). The role of GIS and expert knowledge in 3-D modelling, Oak Ridges Moraine, southern Ontario. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/214575
Luternauer, J. L., Barrie, J. V., Christian, H. A., Clague, J. J., Evoy, R. W., Hart, B. S., Hunter, J. A., Killeen, P. G., Kostaschuk, R. A., Mathewes, R. W., Monahan, P. A., Moslow, T. F., Mwenifumbo, C. J., Olynyk, H. W., Patterson, R. T., Pullan, S. E., Roberts, M. C., Robertson, P. K., Tarbotton, M. R., & Woeller, D. J. (1994). Fraser River delta: geology, geohazards and human impact. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/203251
Luternauer, J. L., & Hunter, J. A. (1996). Mapping Pleistocene deposits beneath the Fraser River delta: preliminary geological and geophysical results. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/207872
MacCormack, K., & Banks, C. (2013). Producing A 3-Dimensional Geological Model of Alberta: The Good, The Bad, And The Ugly! Three-Dimensional Geological Mapping: Workshop Extended Abstracts; Geological Society of America Annual Meeting, 84.
MacCormack, K. E., Berg, R. C., Kessler, H., Russell, H. A. J., & Thorleifson, L. H. (2019). In Synopsis of Current Three-Dimensional Geological Mapping and Modelling in Geological Survey Organizations. In Alberta Energy Regulator / Alberta Geological Survey, AER/AGS Special Report 112. https://doi.org/https://ags.aer.ca/publications/SPE_112.html#summary
Mallet, J. L. (1992). GOCAD: A Computer Aided Design Program for Geological Applications. In Three-Dimensional Modeling with Geoscientific Information Systems (pp. 123–141). Springer Netherlands. https://doi.org/10.1007/978-94-011-2556-7_11
Marich, A. S., Priebe, E. H., Bajc, A. F., Rainsford, D. R. B., & Zwiers, W. G. (2011). A geological and hydrogeological investigation of the Dundas buried bedrock valley, southern Ontario. Ontario Geological Survey, Groundwater Resources Study, 12.
Mathers, S. J., Terrington, R. L., Waters, C. N., & Leslie, A. G. (2014). GB 3D – a framework for the bedrock geology of Great Britain. Geoscience Data Journal, 1(1), 30–42. https://doi.org/10.1002/gdj3.9
Matile, G. L. D., Keller, G. R., & Thorleifson, L. H. (2011). Three-dimensional geological mapping in Manitoba: overview and products. In Report of Activities 2011, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey (pp. 171–176).
Maxelon, M., Renard, P., Courrioux, G., Brändli, M., & Mancktelow, N. (2009). A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Computers & Geosciences, 35(3), 644–658. https://doi.org/10.1016/j.cageo.2008.06.005
Miller, B. M. (1993). Object-oriented expert systems and their applications to sedimentary basin analysis. USGPO; US Geological Survey, USGS Map Distribution.
Molnar, S., Cassidy, J. F., Olsen, K. B., Dosso, S. E., & He, J. (2014). Earthquake Ground Motion and 3D Georgia Basin Amplification in Southwest British Columbia: Shallow Blind-Thrust Scenario Earthquakes. Bulletin of the Seismological Society of America, 104(1), 321–335. https://doi.org/10.1785/0120130116
Molnar, S., Darko, A. B., Ghofrani, H., Adhikari, S., & Salsabili, M. (2023). The Metro Vancouver Seismic Microzonation Mapping Project: Overview and Multi-Method Approach to Regional Geodatabase Development. CCEE-PCEE. Paper, 258, 8.
Molnar, S., Sirohey, A., Assaf, J., Bard, P.-Y., Castellaro, S., Cornou, C., Cox, B., Guillier, B., Hassani, B., Kawase, H., Matsushima, S., Sánchez-Sesma, F. J., & Yong, A. (2022). A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. Journal of Seismology, 26(4), 653–685. https://doi.org/10.1007/s10950-021-10062-9
Molnar, Sheri, Assaf, J., Sirohey, A., & Adhikari, S. R. (2020). Overview of local site effects and seismic microzonation mapping in Metropolitan Vancouver, British Columbia, Canada. Engineering Geology, 270, 105568. https://doi.org/10.1016/j.enggeo.2020.105568
Mustard, P. S., & Roddick, J. A. (1992). Vancouver Subsurface Information Data Bank for the period 1913 to 1972. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/133403
Nastev, M., Parent, M., Benoit, N., Ross, M., & Howlett, D. (2016). Regional VS30model for the St. Lawrence Lowlands, Eastern Canada. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 10(3), 200–212. https://doi.org/10.1080/17499518.2016.1149869
Nastev, M., Parent, M., Ross, M., Howlett, D., & Benoit, N. (2016). Geospatial modelling of shear-wave velocity and fundamental site period of Quaternary marine and glacial sediments in the Ottawa and St. Lawrence Valleys, Canada. Soil Dynamics and Earthquake Engineering, 85, 103–116. https://doi.org/10.1016/j.soildyn.2016.03.006
Panzera, F., Alber, J., Imperatori, W., Bergamo, P., & Fäh, D. (2022). Reconstructing a 3D model from geophysical data for local amplification modelling: The study case of the upper Rhone valley, Switzerland. Soil Dynamics and Earthquake Engineering, 155, 107163. https://doi.org/10.1016/j.soildyn.2022.107163
Parent, M., Ross, M., Howlett, D., & Bédard, K. (2021). 3D model of the Quaternary sediments in the St. Lawrence valley and adjacent regions, southern Quebec and eastern Ontario. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/329082
Ringrose, P., & Bentley, M. (2015). Reservoir Model Design: A Practitioner’s Guide. Springer Netherlands. https://doi.org/10.1007/978-94-007-5497-3
Rogers, G. C., Cassidy, J. F., & Weichert, D. H. (1998). Variation in earthquake ground motion on the Fraser delta from strong-motion seismograph records. Natural Resources Canada/CMSS/Information Management. https://doi.org/10.4095/210043
Rosset, P., & Chouinard, L. E. (2008). Characterization of site effects in Montreal, Canada. Natural Hazards, 48(2), 295–308. https://doi.org/10.1007/s11069-008-9263-1
Rosset, Philippe, Takahashi, A., & Chouinard, L. (2023). Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences, 13(9), 256. https://doi.org/10.3390/geosciences13090256
Russell, H. A., Kemp, E. A., & MacCormack, K. E. (2019). Overview of geological survey organizations contributions on modelling approaches. Chapter 3 in 2019 Synopsis of Current Three-Dimensional Geological Mapping and Modelling in Geological Survey Organizations, K.E. MacCormack, R.C. Berg, H. Kessler, H.A.J. Russell, and L.H. Thorleifson (ed.), Alberta Energy Regulator / Alberta Geological Survey, AER/AGS Special Report 112, p. 7–18 (pp. 7–18).
Salsabili, M., Saeidi, A., & Rouleau, A. (2020). Probabilistic 3D Modeling of Layered Soil Deposits: Application in Seismic Risk Assessment. Canadian Geotechnical Society GeoVirtual Meeting, Sept, 14–16, 8.
Salsabili, Mohammad, Saeidi, A., Rouleau, A., & Nastev, M. (2021). 3D Probabilistic Modelling and Uncertainty Analysis of Glacial and Post-Glacial Deposits of the City of Saguenay, Canada. Geosciences, 11(5), 204. https://doi.org/10.3390/geosciences11050204
Sandersen, P. B. E., Vangkilde-Pedersen, T., Jørgensen, F., Thomsen, R., Tulstrup, J., & Fredericia, J. (2016). Towards a national 3D geological model of Denmark. Geological Survey of Denmark and Greenland Bulletin, 35, 27–30. https://doi.org/10.34194/geusb.v35.4900
Scharling, P. B., Rasmussen, E. S., Sonnenborg, T. O., Engesgaard, P., & Hinsby, K. (2009). Three-dimensional regional-scale hydrostratigraphic modeling based on sequence stratigraphic methods: a case study of the Miocene succession in Denmark. Hydrogeology Journal, 17(8), 1913–1933. https://doi.org/10.1007/s10040-009-0475-6
Schetselaar, E. M. (2013). Mapping the 3D lithofacies architecture of a VMS ore system on a curvilinear-faulted grid: A case study from the Flin Flon mining camp, Canada. Ore Geology Reviews, 53, 261–275. https://doi.org/10.1016/j.oregeorev.2013.01.012
Seequent. (2019). The spheroidal family of variograms explained. https://www.seequent.com/the-spheroidal-family-of-variograms-explained/
Sirohey, A. A. (2022). Soil Amplification and Peak Frequencies from Thousands of Passive Seismic Measurements Across Metro Vancouver , British Columbia, University of Western Ontario, MSc Thesis (Geophysics. Electronic Thesis and Dissertation Repository, 8810. https://doi.org/https://ir.lib.uwo.ca/etd/8810
Stafleu, J., Maljers, D., Busschers, F. S., Schokker, J., Gunnink, J. L., & Dambrink, R. M. (2021). Models Created as 3-D Cellular Voxel Arrays. In Applied Multidimensional Geological Modeling (pp. 247–271). Wiley. https://doi.org/10.1002/9781119163091.ch11
Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360
Yazdi, M., Motamed, R., & Anderson, J. G. (2022). A New Set of Automated Methodologies for Estimating Site Fundamental Frequency and Its Uncertainty Using Horizontal-to-Vertical Spectral Ratio Curves. Seismological Research Letters, 93(3), 1721–1736. https://doi.org/10.1785/0220210078
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sujan Adhikari, Sheri Molnar
This work is licensed under a Creative Commons Attribution 4.0 International License.