Scaled seismotectonic models of megathrust seismic cycles through the lens of dynamical system theory

Authors

  • Fabio Corbi Istituto di Geologia Ambientale e Geoingegneria - CNR c/o Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy https://orcid.org/0000-0003-2662-3065
  • Adriano Gualandi Bullard Laboratories, Department of Earth Science, University of Cambridge, UK; Osservatorio Nazionale Terremoti, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy https://orcid.org/0000-0002-3100-8932
  • Giacomo Mastella Sapienza University of Rome, Earth Sciences, Rome, Italy https://orcid.org/0000-0002-9052-4873
  • Francesca Funiciello Dipartimento di Scienze, Laboratory of Experimental Tectonics, Università Roma Tre, Roma, Italy

DOI:

https://doi.org/10.26443/seismica.v4i1.1340

Keywords:

analog modelling, dynamical systems theory

Abstract

We investigate the physics of laboratory earthquakes in scaled seismotectonic models of megathrust seismic cycles. We study models of different sizes, materials, deformation rates, and frictional configurations. We use nonlinear time-series analysis tools to characterize the dynamics of the models. Observations are described, on average, by a low-dimension (<5), similar to slow slip episodes in nature and friction experiments performed with quartz powder. Results seem insensitive to the along-strike frictional segmentation of the megathrust. Using displacement as an input variable, the instantaneous dimension and the instantaneous extremal index vary through the seismic cycles. We notice the highest values of the instantaneous dimension associated with slip phases. Under specific circumstances, clear drops of the instantaneous extremal index can serve as an early indicator of slip episodes. Prediction horizons in the order of slip duration mirror similar predictability as for slow slip episodes in nature. We conclude that seismotectonic models are effective tools to study frictional physics despite their different spatio-temporal scales.

References

Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. https://doi.org/10.1146/annurev-earth-060614-105302

Bak, P. (1996). The Discovery of Self-Organized Criticality. In How Nature Works (pp. 33–48). Springer New York. https://doi.org/10.1007/978-1-4757-5426-1_2

Barbot, S. (2019). Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics, 768, 228171. https://doi.org/10.1016/j.tecto.2019.228171

Becker, T. W. (2000). Deterministic chaos in two state-variable friction sliders and the effect of elastic interactions. In Geocomplexity and the Physics of Earthquakes (pp. 5–26). American Geophysical Union. https://doi.org/10.1029/gm120p0005

Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565

Boffetta, G., Cencini, M., Falcioni, M., & Vulpiani, A. (2002). Predictability: a way to characterize complexity. Physics Reports, 356(6), 367–474. https://doi.org/10.1016/s0370-1573(01)00025-4

Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2015). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 8(2), 83–83. https://doi.org/10.1038/ngeo1770

Brizzi, S., van Zelst, I., Funiciello, F., Corbi, F., & van Dinther, Y. (2020). How Sediment Thickness Influences Subduction Dynamics and Seismicity. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2019jb018964

Bürgmann, R. (2023). Reliable earthquake precursors? Science, 381(6655), 266–267. https://doi.org/10.1126/science.adi8032

Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50. https://doi.org/10.1016/s0167-2789(97)00118-8

Colombelli, S., Festa, G., & Zollo, A. (2020). Early rupture signals predict the final earthquake size. Geophysical Journal International, 223(1), 692–706. https://doi.org/10.1093/gji/ggaa343

Corbi, F., Funiciello, F., Moroni, M., van Dinther, Y., Mai, P. M., Dalguer, L. A., & Faccenna, C. (2013). The seismic cycle at subduction thrusts: 1. Insights from laboratory models. Journal of Geophysical Research: Solid Earth, 118(4), 1483–1501. https://doi.org/10.1029/2012jb009481

Corbi, F., Mastella, G., Tinti, E., Rosenau, M., Sandri, L., Pardo, S., & Funiciello, F. (2024). Asperity Size and Neighboring Segments Can Change the Frictional Response and Fault Slip Behavior: Insights From Laboratory Experiments and Numerical Simulations. Journal of Geophysical Research: Solid Earth, 129(1). https://doi.org/10.1029/2023jb026594

Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). Machine Learning Can Predict the Timing and Size of Analog Earthquakes. Geophysical Research Letters, 46(3), 1303–1311. https://doi.org/10.1029/2018gl081251

Corbi, Fabio, Bedford, J., Poli, P., Funiciello, F., & Deng, Z. (2021). Particle image velocimetry data from an analog seismo-tectonic model addressing the interaction between neighbor asperities. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.038

Corbi, Fabio, Funiciello, F., Brizzi, S., Lallemand, S., & Rosenau, M. (2017). Control of asperities size and spacing on seismic behavior of subduction megathrusts. Geophysical Research Letters, 44(16), 8227–8235. https://doi.org/10.1002/2017gl074182

Corbi, Fabio, Mastella, G., & Funiciello, F. (2024). Displacement time series from Foamquake and Gelquake in single- and double asperity configurations: Supplementary material to “Scaled seismotectonic models of megathrust seismic cycles through the lens of dynamical system theory.” Zenodo. https://doi.org/10.5281/ZENODO.13683309

Datseris, G., Kottlarz, I., Braun, A. P., & Parlitz, U. (2023). Estimating fractal dimensions: A comparative review and open source implementations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(10). https://doi.org/10.1063/5.0160394

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161

Dong. (2024). Revisiting the predictability of dynamical systems: a new local data-driven approach. ArXiV. https://doi.org/10.48550/arXiv.2409.14865

Eckmann, J.-P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors (pp. 273–312). Springer New York. https://doi.org/10.1007/978-0-387-21830-4_17

Faranda, D., Messori, G., & Yiou, P. (2017). Dynamical proxies of North Atlantic predictability and extremes. Scientific Reports, 7(1). https://doi.org/10.1038/srep41278

Faranda, D., & Vaienti, S. (2018). Correlation dimension and phase space contraction via extreme value theory. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4). https://doi.org/10.1063/1.5027386

Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical Review Letters, 59(8), 845–848. https://doi.org/10.1103/physrevlett.59.845

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134–1140. https://doi.org/10.1103/physreva.33.1134

Funiciello, F., & Corbi, F. (2021). Analog Models for Earth Sciences. In Encyclopedia of Geology (pp. 856–867). Elsevier. https://doi.org/10.1016/b978-0-08-102908-4.00078-3

Gualandi, A., Avouac, J.-P., Michel, S., & Faranda, D. (2020). The predictable chaos of slow earthquakes. Science Advances, 6(27). https://doi.org/10.1126/sciadv.aaz5548

Gualandi, A., Dal Zilio, L., Faranda, D., & Mengaldo, G. (2024). Similarities and Differences Between Natural and Simulated Slow Earthquakes. Geophysical Research Letters, 51(14). https://doi.org/10.1029/2024gl109845

Gualandi, A., Faranda, D., Marone, C., Cocco, M., & Mengaldo, G. (2023). Deterministic and stochastic chaos characterize laboratory earthquakes. Earth and Planetary Science Letters, 604, 117995. https://doi.org/10.1016/j.epsl.2023.117995

Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., & Faccenna, C. (2011). Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophysics, Geosystems, 12(1). https://doi.org/10.1029/2010gc003230

Huang, J., & Turcotte, D. L. (1990). Are earthquakes an example of deterministic chaos? Geophysical Research Letters, 17(3), 223–226. https://doi.org/10.1029/gl017i003p00223

Hubbert, M. K. (1937). Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48(10), 1459–1520. https://doi.org/10.1130/gsab-48-1459

Huke, J. P. (2006). Embedding Nonlinear Dynamical Systems: A Guide to Takens’ Theorem.

Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w

Lorenz, E. N. (1969). Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of the Atmospheric Sciences, 26(4), 636–646. https://doi.org/10.1175/1520-0469(1969)26<636:aparbn>2.0.co;2

Lorenz, E. N. (1991). Dimension of weather and climate attractors. Nature, 353(6341), 241–244. https://doi.org/10.1038/353241a0

Main, I. G., & Naylor, M. (2008). Maximum entropy production and earthquake dynamics. Geophysical Research Letters, 35(19). https://doi.org/10.1029/2008gl035590

Mastella, G., Corbi, F., Bedford, J., Funiciello, F., & Rosenau, M. (2022). Forecasting Surface Velocity Fields Associated With Laboratory Seismic Cycles Using Deep Learning. Geophysical Research Letters, 49(15). https://doi.org/10.1029/2022gl099632

Mastella, G., Corbi, F., Funiciello, F., & Rosenau, M. (2022). Foamquake: A Novel Analog Model Mimicking Megathrust Seismic Cycles. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb022789

Mastella, Giacomo, Corbi, F., Funiciello, F., & Matthias, R. (2021). Particle image correlation data from Foamquake: a novel seismotectonic analog model mimicking the megathrust seismic cycle. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.046

Matthews, M. V. (2002). A Brownian Model for Recurrent Earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233–2250. https://doi.org/10.1785/0120010267

Mavrommatis, A. P., Segall, P., & Johnson, K. M. (2014). A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophysical Research Letters, 41(8), 2671–2672. https://doi.org/10.1002/2014GL060139

megathrust earthquakes. (n.d.). megathrust earthquakes. Science, 357, 1277–1281.

Meier, M.-A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277–1281. https://doi.org/10.1126/science.aan5643

Melgar, D., & Hayes, G. P. (2019). Characterizing large earthquakes before rupture is complete. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav2032

Michel, S., Gualandi, A., & Avouac, J.-P. (2018). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. https://doi.org/10.1007/s00024-018-1991-x

Moreno, M., Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198–202. https://doi.org/10.1038/nature09349

Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters, 120(2). https://doi.org/10.1103/physrevlett.120.024102

Pluijm, B. A., & Marshak, S. (2004). Earth Structure: An Introduction. W. W. Norton & Company.

Rice, J. R., & Ruina, A. L. (1983). Stability of Steady Frictional Slipping. Journal of Applied Mechanics, 50(2), 343–349. https://doi.org/10.1115/1.3167042

Rice, James R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. https://doi.org/https://doi.org/10.1029/93JB00191

Rosenau, M., Corbi, F., & Dominguez, S. (2016). Analogue earthquakes and seismic cycles: Experimental modelling across timescales. https://doi.org/10.5194/se-2016-165

Rosenau, M., Horenko, I., Corbi, F., Rudolf, M., Kornhuber, R., & Oncken, O. (2019). Synchronization of Great Subduction Megathrust Earthquakes: Insights From Scale Model Analysis. Journal of Geophysical Research: Solid Earth, 124(4), 3646–3661. https://doi.org/https://doi.org/10.1029/2018JB016597

Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3–4), 579–616. https://doi.org/10.1007/bf01053745

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097

Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S., & Vilotte, J.-P. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514), 299–302. https://doi.org/10.1038/nature13681

Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., & Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nature Geoscience, 9(9), 695–700. https://doi.org/10.1038/ngeo2775

Strogatz, S. H. (2024). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Chapman. https://doi.org/10.1201/9780429398490

Sveen, J. K. (2004). An introduction to matpiv v.1.6.1 Eprint [ISSN 0809-4403.]. Department of Mathematics, University of Oslo. http://urn.nb.no/URN:NBN:no-27806

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (pp. 366–381). Springer Berlin Heidelberg. https://doi.org/10.1007/bfb0091924

Theiler, J. (1990). Estimating fractal dimension. Journal of the Optical Society of America A, 7(6), 1055. https://doi.org/10.1364/josaa.7.001055

Truttmann, S., Poulet, T., Wallace, L., Herwegh, M., & Veveakis, M. (2024). Slow Slip Events in New Zealand: Irregular, yet Predictable? Geophysical Research Letters, 51(6). https://doi.org/10.1029/2023gl107741

Wales, D. J. (1991). Calculating the rate of loss of information from chaotic time series by forecasting. Nature, 350(6318), 485–488. https://doi.org/10.1038/350485a0

Xia, K., Rosakis, A. J., & Kanamori, H. (2004). Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition. Science, 303(5665), 1859–1861. https://doi.org/10.1126/science.1094022

Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534(7607), 374–377. https://doi.org/10.1038/nature17632

Downloads

Additional Files

Published

2025-02-25

How to Cite

Corbi, F., Gualandi, A., Mastella, G., & Funiciello, F. (2025). Scaled seismotectonic models of megathrust seismic cycles through the lens of dynamical system theory. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1340

Issue

Section

Articles