Scaled seismotectonic models of megathrust seismic cycles through the lens of dynamical system theory
DOI:
https://doi.org/10.26443/seismica.v4i1.1340Keywords:
analog modelling, dynamical systems theoryAbstract
We investigate the physics of laboratory earthquakes in scaled seismotectonic models of megathrust seismic cycles. We study models of different sizes, materials, deformation rates, and frictional configurations. We use nonlinear time-series analysis tools to characterize the dynamics of the models. Observations are described, on average, by a low-dimension (<5), similar to slow slip episodes in nature and friction experiments performed with quartz powder. Results seem insensitive to the along-strike frictional segmentation of the megathrust. Using displacement as an input variable, the instantaneous dimension and the instantaneous extremal index vary through the seismic cycles. We notice the highest values of the instantaneous dimension associated with slip phases. Under specific circumstances, clear drops of the instantaneous extremal index can serve as an early indicator of slip episodes. Prediction horizons in the order of slip duration mirror similar predictability as for slow slip episodes in nature. We conclude that seismotectonic models are effective tools to study frictional physics despite their different spatio-temporal scales.
References
Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. https://doi.org/10.1146/annurev-earth-060614-105302
Bak, P. (1996). The Discovery of Self-Organized Criticality. In How Nature Works (pp. 33–48). Springer New York. https://doi.org/10.1007/978-1-4757-5426-1_2
Barbot, S. (2019). Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics, 768, 228171. https://doi.org/10.1016/j.tecto.2019.228171
Becker, T. W. (2000). Deterministic chaos in two state-variable friction sliders and the effect of elastic interactions. In Geocomplexity and the Physics of Earthquakes (pp. 5–26). American Geophysical Union. https://doi.org/10.1029/gm120p0005
Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565
Boffetta, G., Cencini, M., Falcioni, M., & Vulpiani, A. (2002). Predictability: a way to characterize complexity. Physics Reports, 356(6), 367–474. https://doi.org/10.1016/s0370-1573(01)00025-4
Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2015). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 8(2), 83–83. https://doi.org/10.1038/ngeo1770
Brizzi, S., van Zelst, I., Funiciello, F., Corbi, F., & van Dinther, Y. (2020). How Sediment Thickness Influences Subduction Dynamics and Seismicity. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2019jb018964
Bürgmann, R. (2023). Reliable earthquake precursors? Science, 381(6655), 266–267. https://doi.org/10.1126/science.adi8032
Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50. https://doi.org/10.1016/s0167-2789(97)00118-8
Colombelli, S., Festa, G., & Zollo, A. (2020). Early rupture signals predict the final earthquake size. Geophysical Journal International, 223(1), 692–706. https://doi.org/10.1093/gji/ggaa343
Corbi, F., Funiciello, F., Moroni, M., van Dinther, Y., Mai, P. M., Dalguer, L. A., & Faccenna, C. (2013). The seismic cycle at subduction thrusts: 1. Insights from laboratory models. Journal of Geophysical Research: Solid Earth, 118(4), 1483–1501. https://doi.org/10.1029/2012jb009481
Corbi, F., Mastella, G., Tinti, E., Rosenau, M., Sandri, L., Pardo, S., & Funiciello, F. (2024). Asperity Size and Neighboring Segments Can Change the Frictional Response and Fault Slip Behavior: Insights From Laboratory Experiments and Numerical Simulations. Journal of Geophysical Research: Solid Earth, 129(1). https://doi.org/10.1029/2023jb026594
Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). Machine Learning Can Predict the Timing and Size of Analog Earthquakes. Geophysical Research Letters, 46(3), 1303–1311. https://doi.org/10.1029/2018gl081251
Corbi, Fabio, Bedford, J., Poli, P., Funiciello, F., & Deng, Z. (2021). Particle image velocimetry data from an analog seismo-tectonic model addressing the interaction between neighbor asperities. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.038
Corbi, Fabio, Funiciello, F., Brizzi, S., Lallemand, S., & Rosenau, M. (2017). Control of asperities size and spacing on seismic behavior of subduction megathrusts. Geophysical Research Letters, 44(16), 8227–8235. https://doi.org/10.1002/2017gl074182
Corbi, Fabio, Mastella, G., & Funiciello, F. (2024). Displacement time series from Foamquake and Gelquake in single- and double asperity configurations: Supplementary material to “Scaled seismotectonic models of megathrust seismic cycles through the lens of dynamical system theory.” Zenodo. https://doi.org/10.5281/ZENODO.13683309
Datseris, G., Kottlarz, I., Braun, A. P., & Parlitz, U. (2023). Estimating fractal dimensions: A comparative review and open source implementations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(10). https://doi.org/10.1063/5.0160394
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161
Dong. (2024). Revisiting the predictability of dynamical systems: a new local data-driven approach. ArXiV. https://doi.org/10.48550/arXiv.2409.14865
Eckmann, J.-P., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors (pp. 273–312). Springer New York. https://doi.org/10.1007/978-0-387-21830-4_17
Faranda, D., Messori, G., & Yiou, P. (2017). Dynamical proxies of North Atlantic predictability and extremes. Scientific Reports, 7(1). https://doi.org/10.1038/srep41278
Faranda, D., & Vaienti, S. (2018). Correlation dimension and phase space contraction via extreme value theory. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4). https://doi.org/10.1063/1.5027386
Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical Review Letters, 59(8), 845–848. https://doi.org/10.1103/physrevlett.59.845
Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134–1140. https://doi.org/10.1103/physreva.33.1134
Funiciello, F., & Corbi, F. (2021). Analog Models for Earth Sciences. In Encyclopedia of Geology (pp. 856–867). Elsevier. https://doi.org/10.1016/b978-0-08-102908-4.00078-3
Gualandi, A., Avouac, J.-P., Michel, S., & Faranda, D. (2020). The predictable chaos of slow earthquakes. Science Advances, 6(27). https://doi.org/10.1126/sciadv.aaz5548
Gualandi, A., Dal Zilio, L., Faranda, D., & Mengaldo, G. (2024). Similarities and Differences Between Natural and Simulated Slow Earthquakes. Geophysical Research Letters, 51(14). https://doi.org/10.1029/2024gl109845
Gualandi, A., Faranda, D., Marone, C., Cocco, M., & Mengaldo, G. (2023). Deterministic and stochastic chaos characterize laboratory earthquakes. Earth and Planetary Science Letters, 604, 117995. https://doi.org/10.1016/j.epsl.2023.117995
Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., & Faccenna, C. (2011). Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophysics, Geosystems, 12(1). https://doi.org/10.1029/2010gc003230
Huang, J., & Turcotte, D. L. (1990). Are earthquakes an example of deterministic chaos? Geophysical Research Letters, 17(3), 223–226. https://doi.org/10.1029/gl017i003p00223
Hubbert, M. K. (1937). Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48(10), 1459–1520. https://doi.org/10.1130/gsab-48-1459
Huke, J. P. (2006). Embedding Nonlinear Dynamical Systems: A Guide to Takens’ Theorem.
Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w
Lorenz, E. N. (1969). Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of the Atmospheric Sciences, 26(4), 636–646. https://doi.org/10.1175/1520-0469(1969)26<636:aparbn>2.0.co;2
Lorenz, E. N. (1991). Dimension of weather and climate attractors. Nature, 353(6341), 241–244. https://doi.org/10.1038/353241a0
Main, I. G., & Naylor, M. (2008). Maximum entropy production and earthquake dynamics. Geophysical Research Letters, 35(19). https://doi.org/10.1029/2008gl035590
Mastella, G., Corbi, F., Bedford, J., Funiciello, F., & Rosenau, M. (2022). Forecasting Surface Velocity Fields Associated With Laboratory Seismic Cycles Using Deep Learning. Geophysical Research Letters, 49(15). https://doi.org/10.1029/2022gl099632
Mastella, G., Corbi, F., Funiciello, F., & Rosenau, M. (2022). Foamquake: A Novel Analog Model Mimicking Megathrust Seismic Cycles. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb022789
Mastella, Giacomo, Corbi, F., Funiciello, F., & Matthias, R. (2021). Particle image correlation data from Foamquake: a novel seismotectonic analog model mimicking the megathrust seismic cycle. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.046
Matthews, M. V. (2002). A Brownian Model for Recurrent Earthquakes. Bulletin of the Seismological Society of America, 92(6), 2233–2250. https://doi.org/10.1785/0120010267
Mavrommatis, A. P., Segall, P., & Johnson, K. M. (2014). A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophysical Research Letters, 41(8), 2671–2672. https://doi.org/10.1002/2014GL060139
megathrust earthquakes. (n.d.). megathrust earthquakes. Science, 357, 1277–1281.
Meier, M.-A., Ampuero, J. P., & Heaton, T. H. (2017). The hidden simplicity of subduction megathrust earthquakes. Science, 357(6357), 1277–1281. https://doi.org/10.1126/science.aan5643
Melgar, D., & Hayes, G. P. (2019). Characterizing large earthquakes before rupture is complete. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav2032
Michel, S., Gualandi, A., & Avouac, J.-P. (2018). Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure and Applied Geophysics, 176(9), 3867–3891. https://doi.org/10.1007/s00024-018-1991-x
Moreno, M., Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198–202. https://doi.org/10.1038/nature09349
Pathak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters, 120(2). https://doi.org/10.1103/physrevlett.120.024102
Pluijm, B. A., & Marshak, S. (2004). Earth Structure: An Introduction. W. W. Norton & Company.
Rice, J. R., & Ruina, A. L. (1983). Stability of Steady Frictional Slipping. Journal of Applied Mechanics, 50(2), 343–349. https://doi.org/10.1115/1.3167042
Rice, James R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. https://doi.org/https://doi.org/10.1029/93JB00191
Rosenau, M., Corbi, F., & Dominguez, S. (2016). Analogue earthquakes and seismic cycles: Experimental modelling across timescales. https://doi.org/10.5194/se-2016-165
Rosenau, M., Horenko, I., Corbi, F., Rudolf, M., Kornhuber, R., & Oncken, O. (2019). Synchronization of Great Subduction Megathrust Earthquakes: Insights From Scale Model Analysis. Journal of Geophysical Research: Solid Earth, 124(4), 3646–3661. https://doi.org/https://doi.org/10.1029/2018JB016597
Sauer, T., Yorke, J. A., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3–4), 579–616. https://doi.org/10.1007/bf01053745
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097
Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S., & Vilotte, J.-P. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514), 299–302. https://doi.org/10.1038/nature13681
Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., & Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nature Geoscience, 9(9), 695–700. https://doi.org/10.1038/ngeo2775
Strogatz, S. H. (2024). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Chapman. https://doi.org/10.1201/9780429398490
Sveen, J. K. (2004). An introduction to matpiv v.1.6.1 Eprint [ISSN 0809-4403.]. Department of Mathematics, University of Oslo. http://urn.nb.no/URN:NBN:no-27806
Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (pp. 366–381). Springer Berlin Heidelberg. https://doi.org/10.1007/bfb0091924
Theiler, J. (1990). Estimating fractal dimension. Journal of the Optical Society of America A, 7(6), 1055. https://doi.org/10.1364/josaa.7.001055
Truttmann, S., Poulet, T., Wallace, L., Herwegh, M., & Veveakis, M. (2024). Slow Slip Events in New Zealand: Irregular, yet Predictable? Geophysical Research Letters, 51(6). https://doi.org/10.1029/2023gl107741
Wales, D. J. (1991). Calculating the rate of loss of information from chaotic time series by forecasting. Nature, 350(6318), 485–488. https://doi.org/10.1038/350485a0
Xia, K., Rosakis, A. J., & Kanamori, H. (2004). Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition. Science, 303(5665), 1859–1861. https://doi.org/10.1126/science.1094022
Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534(7607), 374–377. https://doi.org/10.1038/nature17632
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fabio Corbi, Adriano Gualandi, Giacomo Mastella, Francesca Funiciello

This work is licensed under a Creative Commons Attribution 4.0 International License.