B3AM: A beamforming toolbox for three-component ambient seismic noise analysis

Authors

  • Katrin Löer Delft University of Technology
  • Claudia Finger Fraunhofer IEG, Fraunhofer Institution for Energy Infrastructures and Geothermal Systems, Bochum, Germany https://orcid.org/0000-0003-2151-5460

DOI:

https://doi.org/10.26443/seismica.v3i2.1343

Keywords:

data processing, Ambient seismic noise, beamforming, Matlab, Python, seismic anisotropy, surface wave dispersion

Abstract

We introduce the MATLAB toolbox B3AM for beamforming of three-component ambient noise array data. We explain the theory behind three-component beamforming and polarisation analysis in particular, provide an overview of the workflow, and discuss the output using a worked example. The strength of the presented code package is the analysis of multiple beam response maps from multiple time windows. Hence, it provides statistical information about the ambient noise wavefield recorded over a period of time, such as the ratio of surface to body waves, average dispersion velocities, or dominant propagation direction. It can be used to validate assumptions made about the ambient noise wavefield in a particular location, helping to interpret results from other techniques, such as the analysis of horizontal-to-vertical spectral ratios or ambient noise interferometry, and enabling more precise monitoring of specific wavefield components. While designed initially with seismic networks in mind, B3AM is applicable over a wide range of frequencies and array sizes and can thus be adapted also for laboratory settings or civil engineering applications.

Author Biography

Claudia Finger, Fraunhofer IEG, Fraunhofer Institution for Energy Infrastructures and Geothermal Systems, Bochum, Germany

Researcher in the section Reservoir Geophysics

References

Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530

Boaga, J., Cassiani, G., Strobbia, C. L., & Vignoli, G. (2013). Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure. Geophysics, 78(4), EN17–EN28. https://doi.org/10.1190/geo2012-0194.1. DOI: https://doi.org/10.1190/geo2012-0194.1

Boué, P., Denolle, M., Hirata, N., Nakagawa, S., & Beroza, G. C. (2016). Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field. Geophysical Journal International, 206(2), 1261–1272. https://doi.org/10.1093/gji/ggw205 DOI: https://doi.org/10.1093/gji/ggw205

Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418. https://doi.org/10.1109/PROC.1969.7278 DOI: https://doi.org/10.1109/PROC.1969.7278

Crameri, F. (2018). Scientific colour maps. Zenodo, 10. https://doi.org/10.5281/zenodo.1243862

Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K. (2006). Seismic interferometry—turning noise into signal. The Leading Edge, 25(9), 1082–1092. https://doi.org/10.1190/1.2349814 DOI: https://doi.org/10.1190/1.2349814

Ermert, L., Igel, J., Sager, K., Stutzmann, E., Nissen-Meyer, T., & Fichtner, A. (2020). noisi: A Python tool for ambient noise cross-correlation modeling and noise source inversion. Solid Earth Discussions, 2020, 1–27. https://doi.org/10.5194/se-11-1597-2020 DOI: https://doi.org/10.5194/se-2020-57

Esmersoy, C., Cormier, V., Toksoz, M., & Kerr, A. (1985). Three-component array processing. The VELA Program. A Twenty-Five Year Review of Basic Research, 78(5), 1725–1743.

Finger, C., & Löer, K. (2024). Depth of sudden velocity changes derived from multi-mode Rayleigh waves. Journal of Geophysical Research: Solid Earth, 129(3), e2023JB028322. https://doi.org/10.1029/2023JB028322 DOI: https://doi.org/10.1029/2023JB028322

Gal, M., Reading, A., Ellingsen, S., Koper, K., & Burlacu, R. (2017). Full wavefield decomposition of high-frequency secondary microseisms reveals distinct arrival azimuths for Rayleigh and Love waves. Journal of Geophysical Research: Solid Earth, 122(6), 4660–4675. https://doi.org/10.1002/2017JB014141 DOI: https://doi.org/10.1002/2017JB014141

Gal, M., Reading, A. M., Ellingsen, S. P., Koper, K. D., Burlacu, R., & Gibbons, S. J. (2016). Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms. Geophysical Journal International, 206(1), 345–359. https://doi.org/10.1093/gji/ggw150 DOI: https://doi.org/10.1093/gji/ggw150

Galetti, E., & Curtis, A. (2012). Generalised receiver functions and seismic interferometry. Tectonophysics, 532, 1–26. https://doi.org/10.1016/j.tecto.2011.12.004 DOI: https://doi.org/10.1016/j.tecto.2011.12.004

Goldstein, P., Dodge, D., Firpo, M., & Minner, L. (2003). 85.5 - SAC2000: Signal Processing and Analysis Tools for Seismologists and Engineers. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology, Part B (Vol. 81, pp. 1613–1614). Academic Press. https://doi.org/10.1016/S0074-6142(03)80284-X DOI: https://doi.org/10.1016/S0074-6142(03)80284-X

Jiang, C., & Denolle, M. A. (2020). NoisePy: A new high-performance python tool for ambient-noise seismology. Seismological Research Letters, 91(3), 1853–1866. https://doi.org/10.1785/0220190364 DOI: https://doi.org/10.1785/0220190364

Kennedy, H, Finger, C., Löer, K., & Gilligan, A. (2024). Surface Wave Anisotropy in Fractured Media: Insights from Wavefield Modelling and Applications for Geothermal Exploration. 85th EAGE Annual Conference & Exhibition (Including the Workshop Programme), 2024(1), 1–5. https://doi.org/10.3997/2214-4609.2024101344 DOI: https://doi.org/10.3997/2214-4609.2024101344

Kennedy, Heather, Löer, K., & Gilligan, A. (2022). Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise. Solid Earth, 13(12), 1843–1858. https://doi.org/10.5194/se-13-1843-2022 DOI: https://doi.org/10.5194/se-13-1843-2022

Lacoss, R. T., Kelly, E. J., & Toksöz, M. N. (1969). Estimation of seismic noise structure using arrays. Geophysics, 34(1), 21–38. https://doi.org/10.1190/1.1439995 DOI: https://doi.org/10.1190/1.1439995

Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise. Seismological Research Letters, 85(3), 715–726. https://doi.org/10.1785/0220130073 DOI: https://doi.org/10.1785/0220130073

Liu, Q., Koper, K. D., Burlacu, R., Ni, S., Wang, F., Zou, C., Wei, Y., Gal, M., & Reading, A. M. (2016). Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China. Earth and Planetary Science Letters, 449, 39–47. https://doi.org/10.1016/j.epsl.2016.05.035 DOI: https://doi.org/10.1016/j.epsl.2016.05.035

Löer, K., Riahi, N., & Saenger, E. H. (2018). Three-component ambient noise beamforming in the Parkfield area. Geophysical Journal International, 213(3), 1478–1491. https://doi.org/10.1093/gji/ggy058 DOI: https://doi.org/10.1093/gji/ggy058

Maranò, S., Reller, C., Loeliger, H.-A., & Fäh, D. (2012). Seismic Waves Estimation and Wavefield Decomposition: Application to Ambient Vibrations. Geophys. J. Int., 191(1), 175–188. https://doi.org/10.1111/j.1365-246X.2012.05593.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05593.x

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310

Minio, V., Zuccarello, L., De Angelis, S., Di Grazia, G., & Saccorotti, G. (2023). MISARA: Matlab Interface for Seismo-Acoustic aRray Analysis. Seismological Society of America, 94(3), 1689–1702. https://doi.org/10.1785/0220220267 DOI: https://doi.org/10.1785/0220220267

Nicolson, H., Curtis, A., Baptie, B., & Galetti, E. (2012). Seismic interferometry and ambient noise tomography in the British Isles. Proceedings of the Geologists’ Association, 123(1), 74–86. https://doi.org/10.1016/j.pgeola.2011.04.002 DOI: https://doi.org/10.1016/j.pgeola.2011.04.002

Obermann, A., Kraft, T., Larose, E., & Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). Journal of Geophysical Research: Solid Earth, 120(6), 4301–4316. https://doi.org/10.1002/2014JB011817 DOI: https://doi.org/10.1002/2014JB011817

Obiri, E., Löer, K., & Finger, C. (2023). Wavefield composition analysis from three-component beamforming improves thickness estimates of sedimentary layers. 84th EAGE Annual Conference & Exhibition, 2023(1), 1–5. https://doi.org/10.3997/2214-4609.2023101004 DOI: https://doi.org/10.3997/2214-4609.2023101004

Poggi, V., Fäh, D., Burjanek, J., & Giardini, D. (2012). The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophysical Journal International, 188(3), 1154–1172. https://doi.org/10.1111/j.1365-246X.2011.05305.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05305.x

Qin, T., & Lu, L. (2024). Improved beamforming schemes for estimation of multimode surface wave dispersion curves from seismic noise with reducing effect of the irregular array geometry and/or anisotropic source distribution. Geophysical Journal International, 237(1), 250–270. https://doi.org/10.1093/gji/ggae038 DOI: https://doi.org/10.1093/gji/ggae038

Riahi, N., Bokelmann, G., Sala, P., & Saenger, E. H. (2013). Time-lapse analysis of ambient surface wave anisotropy: A three-component array study above an underground gas storage. Journal of Geophysical Research: Solid Earth, 118(10), 5339–5351. https://doi.org/10.1002/jgrb.50375 DOI: https://doi.org/10.1002/jgrb.50375

Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Reviews of Geophysics, 40(3), 2–1. https://doi.org/10.1029/2000RG000100 DOI: https://doi.org/10.1029/2000RG000100

Salvermoser, J., Hadziioannou, C., & Stähler, S. C. (2015). Structural monitoring of a highway bridge using passive noise recordings from street traffic. The Journal of the Acoustical Society of America, 138(6), 3864–3872. https://doi.org/10.1121/1.4937765 DOI: https://doi.org/10.1121/1.4937765

Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280. https://doi.org/10.1109/TAP.1986.1143830 DOI: https://doi.org/10.1109/TAP.1986.1143830

Sollberger, D., Heimann, S., Bernauer, F., Eibl, E. P., Donner, S., Hadziioannou, C., Igel, H., Yuan, S., & Wassermann, J. (2023). TwistPy: An open-source Python toolbox for wavefield inertial sensing techniques. EGU General Assembly Conference Abstracts, EGU-7563. https://doi.org/10.5194/egusphere-egu23-7563 DOI: https://doi.org/10.5194/egusphere-egu23-7563

Thurber, C., & Roecker, S. (2000). Parkfield Passive Seismic Array [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XN_2000

Tokimatsu, K. (1997). Geotechnical site characterization using surface waves. Earthquake Geotechnical Engineering: Proceedings of IS-Tokyo’95, The First International Conference on Earthquake Geotechnical Engineering, Rotterdam, 1333–136.

Van Ginkel, J., Ruigrok, E., Stafleu, J., & Herber, R. (2022). Development of a seismic site-response zonation map for the Netherlands. Natural Hazards and Earth System Sciences, 22(1), 41–63. https://doi.org/10.5194/nhess-22-41-2022 DOI: https://doi.org/10.5194/nhess-22-41-2022

Wagner, G. S. (1996). Resolving diversely polarized, superimposed signals in three-component seismic array data. Geophysical Research Letters, 23(14), 1837–1840. https://doi.org/10.1029/96GL01599 DOI: https://doi.org/10.1029/96GL01599

Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. Geophysics, 71(4), SI33–SI46. https://doi.org/10.1190/1.2213955 DOI: https://doi.org/10.1190/1.2213955

Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360 DOI: https://doi.org/10.1785/0220190360

Wathelet, M., Jongmans, D., Ohrnberger, M., & Bonnefoy-Claudet, S. (2008). Array performances for ambient vibrations on a shallow structure and consequences over V s inversion. Journal of Seismology, 12, 1–19. https://doi.org/10.1007/s10950-007-9067-x DOI: https://doi.org/10.1007/s10950-007-9067-x

Yamaya, L., Mochizuki, K., Akuhara, T., & Nishida, K. (2021). Sedimentary structure derived from multi-mode ambient noise tomography with dense OBS network at the Japan trench. Journal of Geophysical Research: Solid Earth, 126(6), e2021JB021789. https://doi.org/10.1029/2021JB021789 DOI: https://doi.org/10.1029/2021JB021789

Additional Files

Published

2024-11-15

How to Cite

Löer, K., & Finger, C. (2024). B3AM: A beamforming toolbox for three-component ambient seismic noise analysis. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1343

Issue

Section

Reports (excl. Fast Reports)