An Open Source Hydroacoustic Benchmarking Framework for Geophonic Signal Detection
DOI:
https://doi.org/10.26443/seismica.v3i2.1344Abstract
Passive hydroacoustic studies have underscored the efficiency and relevance of deploying autonomous hydrophones for the surveillance of underwater geophony. In particular, monitoring networks have been deployed for detecting SOFAR-propagating hydroacoustic waves generated by seismic events and locating their sources. The technique has been extended to study other hydroacoustic signals, such as P-waves from teleseismic events or impulsive waves generated by sea water-lava interactions. A significant challenge in this endeavor lies in the time required for the manual detection and annotation of these signals in long-term records. To address this issue, we tested the feasibility of implementing automated algorithms based on machine learning to detect and identify these various signals, and obtained satisfying classification and time picking accuracies. We incorporated those models in a benchmarking framework, proposing a training dataset, two evaluation datasets, two tasks to solve and the evaluations of the mentionned models on them. The goal of this framework is to foster the development of new models in the community, as it gives a clear way to evaluate them.
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Bazin, S., Royer, J.-Y., Dubost, F., Paquet, F., Loubrieu, B., Lavayssière, A., Deplus, C., Feuillet, N., Jacques, É., Rinnert, E., & others. (2022). Initial results from a hydroacoustic network to monitor submarine lava flows near Mayotte Island. Comptes Rendus. Géoscience, 354(S2), 1–17. https://doi.org/10.5802/crgeos.119
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-Parameter Optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 24). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
Bergstra, J., Yamins, D., & Cox, D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In S. Dasgupta & D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning (Vol. 28, pp. 115–123). PMLR. https://proceedings.mlr.press/v28/bergstra13.html
Bermant, P. C., Brickson, L., & Titus, A. J. (2022). Bioacoustic Event Detection with Self-Supervised Contrastive Learning. BioRxiv, 2022–10. https://doi.org/10.1101/2022.10.12.511740
Bouffaut, L., Dréo, R., Labat, V., Boudraa, A.-O., & Barruol, G. (2018). Passive stochastic matched filter for Antarctic blue whale call detection. The Journal of the Acoustical Society of America, 144(2), 955–965. https://doi.org/10.1121/1.5050520
de Melo, G. W., Parnell-Turner, R., Dziak, R. P., Smith, D. K., Maia, M., Do Nascimento, A. F., & Royer, J.-Y. (2021). Uppermost mantle velocity beneath the Mid-Atlantic Ridge and transform faults in the Equatorial Atlantic Ocean. Bulletin of the Seismological Society of America, 111(2), 1067–1079. https://doi.org/10.1785/0120200248
Dubus, G., Adam, O., Duc, P. N. H., Torterotot, M., & Cazau, D. (2023). Leveraging citizen science in manual annotation for deep learning in underwater passive acoustic studies. 2023 Signal Processing Symposium (SPSympo), 1–5. https://doi.org/10.23919/SPSympo57300.2023.10302716
Dubus, G., Torterotot, M., Duc, P. N. H., Beesau, J., Cazau, D., & Adam, O. (2023). Better quantifying inter-annotator variability: A step towards citizen science in underwater passive acoustics. OCEANS 2023-Limerick, 1–8. https://doi.org/10.1109/OCEANSLimerick52467.2023.10244502
Duc, P. N. H., Torterotot, M., Samaran, F., White, P. R., Gérard, O., Adam, O., & Cazau, D. (2021). Assessing inter-annotator agreement from collaborative annotation campaign in marine bioacoustics. Ecological Informatics, 61, 101185. https://doi.org/10.1016/j.ecoinf.2020.101185
Dziak, R., Bohnenstiehl, D., Matsumoto, H., Fox, C., Smith, D., Tolstoy, M., Lau, T., Haxel, J., & Fowler, M. (2004). P-and T-wave detection thresholds, Pn velocity estimate, and detection of lower mantle and core P-waves on ocean sound-channel hydrophones at the Mid-Atlantic Ridge. Bulletin of the Seismological Society of America, 94(2), 665–677. https://doi.org/10.1785/0120030156
Fox, C. G., Matsumoto, H., & Lau, T.-K. A. (2001). Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. Journal of Geophysical Research: Solid Earth, 106(B3), 4183–4206. https://doi.org/10.1029/2000JB900404
Fox, C. G., Radford, W. E., Dziak, R. P., Lau, T.-K., Matsumoto, H., & Schreiner, A. E. (1995). Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays. Geophysical Research Letters, 22(2), 131–134. https://doi.org/10.1029/94GL02059
Giusti, M. (2019). Apport des données hydroacoustiques pour l’étude de la sismicité de la dorsale médio-Atlantique nord [Theses, Université de Bretagne occidentale - Brest]. https://theses.hal.science/tel-02292753
Giusti, M., Perrot, J., Dziak, R. P., Sukhovich, A., & Maia, M. (2018). The August 2010 earthquake swarm at North FAMOUS–FAMOUS segments, Mid-Atlantic Ridge: geophysical evidence of dike intrusion. Geophysical Journal International, 215(1), 181–195. https://doi.org/10.1093/gji/ggy239
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90
Ibrahim, A. K., Zhuang, H., Chérubin, L. M., Schärer-Umpierre, M. T., & Erdol, N. (2018). Automatic classification of grouper species by their sounds using deep neural networks. The Journal of the Acoustical Society of America, 144(3), EL196–EL202. https://doi.org/10.1121/1.5054911
Ingale, V. V., Bazin, S., Olive, J.-A., Briais, A., & Royer, J.-Y. (2023). Hydroacoustic Study of a Seismic Swarm in 2016–2017 near the Melville Transform Fault on the Southwest Indian Ridge. Bulletin of the Seismological Society of America, 113(4), 1523–1541. https://doi.org/10.1785/0120220213
Ingale, V. V., Bazin, S., & Royer, J.-Y. (2021). Hydroacoustic observations of two contrasted seismic swarms along the Southwest Indian ridge in 2018. Geosciences, 11(6), 225. https://doi.org/10.3390/geosciences11060225
Kapoor, D. C. (1981). General bathymetric chart of the oceans (GEBCO). Marine Geodesy, 5(1), 73–80. https://doi.org/10.1080/15210608109379408
Keribin, E., Morin, E., & Vovard, R. (2024). APLOSE: a scalable web-based annotation tool for marine bioacoustics - public repository (1.6.4) [Computer software]. https://doi.org/10.5281/zenodo.10468000
Kong, Q., Sobieraj, I., Wang, W., & Plumbley, M. (2016). Deep Neural Network Baseline for DCASE Challenge 2016. In Proceedings of DCASE 2016.
Leroy, E. C., Royer, J.-Y., Bonnel, J., & Samaran, F. (2018). Long-term and seasonal changes of large whale call frequency in the southern Indian Ocean. Journal of Geophysical Research: Oceans, 123(11), 8568–8580. https://doi.org/10.1029/2018JC014352
Leroy, E. C., Thomisch, K., Royer, J.-Y., Boebel, O., & Van Opzeeland, I. (2018). On the reliability of acoustic annotations and automatic detections of Antarctic blue whale calls under different acoustic conditions. The Journal of the Acoustical Society of America, 144(2), 740–754. https://doi.org/10.1121/1.5049803
Luo, W., Yang, W., & Zhang, Y. (2019). Convolutional neural network for detecting odontocete echolocation clicks. The Journal of the Acoustical Society of America, 145(1), EL7–EL12. https://doi.org/10.1121/1.5085647
Matsumoto, H., Dziak, R., Mellinger, D., Fowler, M., Haxel, J., Lau, A., Meinig, C., Bumgardner, J., & Hannah, W. (2006). Autonomous hydrophones at NOAA/OSU and a new seafloor sentry system for real-time detection of acoustic events. OCEANS 2006, 1–4. https://doi.org/10.1109/OCEANS.2006.307041
Mesaros, A., Heittola, T., & Virtanen, T. (2018). A multi-device dataset for urban acoustic scene classification. Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), 9–13. https://dcase.community/documents/workshop2018/proceedings/DCASE2018Workshop%5C_Mesaros%5C_8.pdf
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer - an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 3952. https://doi.org/10.1038/s41467-020-17591-w
Okal, E. A. (2008). The generation of T waves by earthquakes. Advances in Geophysics, 49, 1–65. https://doi.org/10.1016/S0065-2687(07)49001-X
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Perrot, J. (2010). HYDROMOMAR, Hydroacoustic observatory of the Mid-Atlantic Ridge (MOMAR area) [Techreport]. University of Brest, Brest, France. https://doi.org/10.18142/263
Rasmussen, J. H., & Širović, A. (2021). Automatic detection and classification of baleen whale social calls using convolutional neural networks. The Journal of the Acoustical Society of America, 149(5), 3635–3644. https://doi.org/10.1121/10.0005047
Raumer, P.-Y. (n.d.). A public benchmarking hydroacoustic dataset for geophonic signals detection task: code. https://doi.org/10.5281/zenodo.10458857
Raumer, P.-Y., Bazin, S., Cazau, D., Ingale, V. V., & Royer, J.-Y. (2024). Donnees hydro-acoustiques passives 240 Hz annotees en ocean Atlantique 2013 et ocean Indien Sud 2018 et 2020. https://doi.org/10.12770/b618b24e-82f9-4b3b-9753-048e1f043ca6
Retailleau, L., Saurel, J.-M., Zhu, W., Satriano, C., Beroza, G. C., Issartel, S., Boissier, P., Team, O., Team, O., & others. (2022). A Wrapper to Use a Machine-Learning-Based Algorithm for Earthquake Monitoring. Seismological Research Letters, 93(3), 1673–1682. https://doi.org/10.1785/0220210279
Royer, J. (2009). OHASISBIO-Hydroacoustic observatory for the seismicity and biodiversity in the Indian Ocean [Techreport]. University of Brest, Brest, France. https://doi.org/10.18142/229
Royer, J.-Y., Chateau, R., Dziak, R., & Bohnenstiehl, D. (2015). Seafloor seismicity, Antarctic ice-sounds, cetacean vocalizations and long-term ambient sound in the Indian Ocean basin. Geophysical Journal International, 202(2), 748–762. https://doi.org/10.1093/gji/ggv178
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
Saurel, J.-M., Retailleau, L., Deplus, C., Loubrieu, B., Pierre, D., Frangieh, M., Khelifi, N., Bonnet, R., Ferrazzini, V., Bazin, S., & others. (2022). Combining hydro-acoustic sources and bathymetric differences to track the vent evolution of the Mayotte eruption, Mozambique Channel. Frontiers in Earth Science, 10, 983051. https://doi.org/10.3389/feart.2022.983051
Simons, F. J., Nolet, G., Georgief, P., Babcock, J. M., Regier, L. A., & Davis, R. E. (2009). On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans. Journal of Geophysical Research: Solid Earth, 114(B5). https://doi.org/10.1029/2008JB006088
Sukhovich, A., Irisson, J.-O., Perrot, J., & Nolet, G. (2014). Automatic recognition of T and teleseismic P waves by statistical analysis of their spectra: An application to continuous records of moored hydrophones. Journal of Geophysical Research: Solid Earth, 119(8), 6469–6485. https://doi.org/10.1002/2013JB010936
Sukhovich, A., Irisson, J.-O., Simons, F. J., Ogé, A., Hello, Y., Deschamps, A., & Nolet, G. (2011). Automatic discrimination of underwater acoustic signals generated by teleseismic P-waves: A probabilistic approach. Geophysical Research Letters, 38(18). https://doi.org/10.1029/2011GL048474
Tepp, G., & Dziak, R. P. (2021). The Seismo-Acoustics of Submarine Volcanic Eruptions. J Geophys Res Solid Earth, 126(4). https://doi.org/10.1029/2020JB020912
Tolstoy, I., & Ewing, M. (1950). The T phase of shallow-focus earthquakes. Bulletin of the Seismological Society of America, 40(1), 25–51. https://doi.org/10.1785/BSSA0400010025
Williams, C. M., Stephen, R. A., & Smith, D. K. (2006). Hydroacoustic events located at the intersection of the Atlantis (30 circ N) and Kane (23 circ 40’N) Transform Faults with the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 7(6). https://doi.org/10.1029/2005GC001127
Zhong, M., Castellote, M., Dodhia, R., Lavista Ferres, J., Keogh, M., & Brewer, A. (2020). Beluga whale acoustic signal classification using deep learning neural network models. The Journal of the Acoustical Society of America, 147(3), 1834–1841. https://doi.org/10.1121/10.0000921
Zhong, M., Torterotot, M., Branch, T. A., Stafford, K. M., Royer, J.-Y., Dodhia, R., & Lavista Ferres, J. (2021). Detecting, classifying, and counting blue whale calls with Siamese neural networks. The Journal of the Acoustical Society of America, 149(5), 3086–3094. https://doi.org/10.1121/10.0004828
Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423
Zhu, W., Biondi, E., Li, J., Yin, J., Ross, Z. E., & Zhan, Z. (2023). Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning. Nature Communications, 14(1), 8192. https://doi.org/10.1038/s41467-023-43355-3
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pierre-Yves Raumer, Sara Bazin, Dorian Cazau, Vaibhav Vijay Ingale, Jean-Yves Royer, Aude Lavayssière

This work is licensed under a Creative Commons Attribution 4.0 International License.