Inelastic deformation accrued over multiple seismic cycles: Insights from an elastic-plastic slider-and-springboard model
DOI:
https://doi.org/10.26443/seismica.v3i2.1345Abstract
We study a toy model designed to build physical insight into the problem of slow accumulation of non-recoverable strain in fault blocks over multiple earthquake cycles. The model consists of a thin, horizontal elastic-plastic plate (springboard) in frictional contact with a vertical, rigid wall moving downward at a steady speed. Our model produces stick-slip cycles consisting of interseismic plate downwarping and coseismic plate upwarping as long as the moment of the frictional force at the contact does not exceed the maximum (purely plastic) bending moment the plate can sustain. We show that the duration of individual earthquake cycles and the spatial pattern of interseismic deflection are controlled by two stress ratios involving the peak yield stress of the plate, the frictional strength of the fault and the coseismic stress drop. We show that non-recoverable plate deflection accumulates over successive earthquake cycles if the plate’s yield strength decreases through time, causing a progressive decrease of the aforementioned stress ratios. We derive scaling relations between the rate of accumulation of inelastic deformation, the relative tectonic plate velocity, and the rate of lithospheric weakening. Our results are consistent with observations of long-term permanent deformation of natural fault regions.
References
Allison, K. L., & Dunham, E. M. (2018). Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics, 733, 232–256. https://doi.org/10.1016/j.tecto.2017.10.021 DOI: https://doi.org/10.1016/j.tecto.2017.10.021
Allison, K. L., & Dunham, E. M. (2021). Influence of Shear Heating and Thermomechanical Coupling on Earthquake Sequences and the Brittle‐Ductile Transition. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2020jb021394 DOI: https://doi.org/10.1029/2020JB021394
Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research: Solid Earth, 89(B6), 4077–4114. https://doi.org/10.1029/jb089ib06p04077 DOI: https://doi.org/10.1029/JB089iB06p04077
Avouac, J.-P. (2003). MOUNTAIN BUILDING, EROSION, AND THE SEISMIC CYCLE IN THE NEPAL HIMALAYA. In Advances in Geophysics (pp. 1–80). Elsevier. https://doi.org/10.1016/s0065-2687(03)46001-9 DOI: https://doi.org/10.1016/S0065-2687(03)46001-9
Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. https://doi.org/10.1146/annurev-earth-060614-105302 DOI: https://doi.org/10.1146/annurev-earth-060614-105302
Baden, C. W., Shuster, D. L., Aron, F., Fosdick, J. C., Bürgmann, R., & Hilley, G. E. (2022). Bridging earthquakes and mountain building in the Santa Cruz Mountains, CA. Science Advances, 8(8). https://doi.org/10.1126/sciadv.abi6031 DOI: https://doi.org/10.1126/sciadv.abi6031
Baker, A., Allmendinger, R. W., Owen, L. A., & Rech, J. A. (2013). Permanent deformation caused by subduction earthquakes in northern Chile. Nature Geoscience, 6(6), 492–496. https://doi.org/10.1038/ngeo1789 DOI: https://doi.org/10.1038/ngeo1789
Barbot, S. (2018). Asthenosphere flow modulated by megathrust earthquake cycles. https://doi.org/10.31223/osf.io/g8ahe DOI: https://doi.org/10.31223/OSF.IO/G8AHE
Bhat, H. S., Rosakis, A. J., & Sammis, C. G. (2012). A Micromechanics Based Constitutive Model for Brittle Failure at High Strain Rates. Journal of Applied Mechanics, 79(3). https://doi.org/10.1115/1.4005897 DOI: https://doi.org/10.1115/1.4005897
Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252. https://doi.org/10.1029/jb085ib11p06248 DOI: https://doi.org/10.1029/JB085iB11p06248
Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43. https://doi.org/10.1016/j.jsg.2013.03.007 DOI: https://doi.org/10.1016/j.jsg.2013.03.007
Buck, W. R. (1988). flexural rotation of normal faults. Tectonics, 7(5), 959–973. https://doi.org/10.1029/tc007i005p00959 DOI: https://doi.org/10.1029/TC007i005p00959
Burgette, R. J., Weldon, R. J., & Schmidt, D. A. (2009). Interseismic uplift rates for western Oregon and along‐strike variation in locking on the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005679 DOI: https://doi.org/10.1029/2008JB005679
Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E. (2005). Interseismic coupling and asperity distribution along the Kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, 110(B7). https://doi.org/10.1029/2005jb003648 DOI: https://doi.org/10.1029/2005JB003648
Burridge, R., & Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341–371. https://doi.org/10.1785/bssa0570030341 DOI: https://doi.org/10.1785/BSSA0570030341
Carlson, J. M., Langer, J. S., & Shaw, B. E. (1994). Dynamics of earthquake faults. Reviews of Modern Physics, 66(2), 657–670. https://doi.org/10.1103/revmodphys.66.657 DOI: https://doi.org/10.1103/RevModPhys.66.657
Cattin, R., & Avouac, J. P. (2000). Modeling mountain building and the seismic cycle in the Himalaya of Nepal. Journal of Geophysical Research: Solid Earth, 105(B6), 13389–13407. https://doi.org/10.1029/2000jb900032 DOI: https://doi.org/10.1029/2000JB900032
Cerfontaine, B., & Collin, F. (2017). Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mechanics and Rock Engineering, 51(2), 391–414. https://doi.org/10.1007/s00603-017-1337-5 DOI: https://doi.org/10.1007/s00603-017-1337-5
Chang, S.-H., Wang, W.-H., & Lee, J.-C. (2009). Modelling temporal variation of surface creep on the Chihshang fault in eastern Taiwan with velocity-strengthening friction. Geophysical Journal International, 176(2), 601–613. https://doi.org/10.1111/j.1365-246x.2008.03995.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03995.x
Dal Zilio, L., Hetényi, G., Hubbard, J., & Bollinger, L. (2021). Building the Himalaya from tectonic to earthquake scales. Nature Reviews Earth & Environment, 2(4), 251–268. https://doi.org/10.1038/s43017-021-00143-1 DOI: https://doi.org/10.1038/s43017-021-00143-1
Dal Zilio, L., Lapusta, N., Avouac, J.-P., & Gerya, T. (2021). Subduction earthquake sequences in a non-linear visco-elasto-plastic megathrust. Geophysical Journal International, 229(2), 1098–1121. https://doi.org/10.1093/gji/ggab521 DOI: https://doi.org/10.1093/gji/ggab521
Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2), 1153–1172. https://doi.org/10.1029/jb088ib02p01153 DOI: https://doi.org/10.1029/JB088iB02p01153
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838 DOI: https://doi.org/10.1038/nature09838
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161 DOI: https://doi.org/10.1029/JB084iB05p02161
Erickson, B. A., Dunham, E. M., & Khosravifar, A. (2017). A finite difference method for off-fault plasticity throughout the earthquake cycle. Journal of the Mechanics and Physics of Solids, 109, 50–77. https://doi.org/10.1016/j.jmps.2017.08.002 DOI: https://doi.org/10.1016/j.jmps.2017.08.002
Fehlberg, E. (1969). Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems.
Fletcher, H. J., Beavan, J., Freymueller, J., & Gilbert, L. (2001). High interseismic coupling of the Alaska Subduction Zone SW of Kodiak Island inferred from GPS data. Geophysical Research Letters, 28(3), 443–446. https://doi.org/10.1029/2000gl012258 DOI: https://doi.org/10.1029/2000GL012258
Helmstetter, A., & Shaw, B. E. (2009). Afterslip and aftershocks in the rate‐and‐state friction law. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2007jb005077 DOI: https://doi.org/10.1029/2007JB005077
Jolivet, R., Simons, M., Duputel, Z., Olive, J. ‐A., Bhat, H. S., & Bletery, Q. (2020). Interseismic Loading of Subduction Megathrust Drives Long‐Term Uplift in Northern Chile. Geophysical Research Letters, 47(8). https://doi.org/10.1029/2019gl085377 DOI: https://doi.org/10.1029/2019GL085377
Kanagawa, K., Cox, S. F., & Zhang, S. (2000). Effects of dissolution‐precipitation processes on the strength and mechanical behavior of quartz gouge at high‐temperature hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 105(B5), 11115–11126. https://doi.org/10.1029/2000jb900038 DOI: https://doi.org/10.1029/2000JB900038
King, G. C. P., Stein, R. S., & Rundle, J. B. (1988). The Growth of Geological Structures by Repeated Earthquakes 1. Conceptual Framework. Journal of Geophysical Research: Solid Earth, 93(B11), 13307–13318. https://doi.org/10.1029/jb093ib11p13307 DOI: https://doi.org/10.1029/JB093iB11p13307
Kirby, S. H. (1984). Introduction and digest to the Special Issue on Chemical Effects of Water on the Deformation and Strengths of Rocks. Journal of Geophysical Research: Solid Earth, 89(B6), 3991–3995. https://doi.org/10.1029/jb089ib06p03991 DOI: https://doi.org/10.1029/JB089iB06p03991
Klein, E., Fleitout, L., Vigny, C., & Garaud, J. D. (2016). Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010Mw8.8 Maule earthquake (Chile). Geophysical Journal International, 205(3), 1455–1472. https://doi.org/10.1093/gji/ggw086 DOI: https://doi.org/10.1093/gji/ggw086
Lambert, V., & Barbot, S. (2016). Contribution of viscoelastic flow in earthquake cycles within the lithosphere‐asthenosphere system. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070345 DOI: https://doi.org/10.1002/2016GL070345
Lapusta, N., Rice, J. R., Ben‐Zion, Y., & Zheng, G. (2000). Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate‐ and state‐dependent friction. Journal of Geophysical Research: Solid Earth, 105(B10), 23765–23789. https://doi.org/10.1029/2000jb900250 DOI: https://doi.org/10.1029/2000JB900250
Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth, 106(B11), 26561–26591. https://doi.org/10.1029/2001jb000359 DOI: https://doi.org/10.1029/2001JB000359
Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409, 133–146. https://doi.org/10.1016/j.epsl.2014.10.047 DOI: https://doi.org/10.1016/j.epsl.2014.10.047
Loveless, J. P., & Meade, B. J. (2016). Two decades of spatiotemporal variations in subduction zone coupling offshore Japan. Earth and Planetary Science Letters, 436, 19–30. https://doi.org/10.1016/j.epsl.2015.12.033 DOI: https://doi.org/10.1016/j.epsl.2015.12.033
Madella, A., & Ehlers, T. A. (2021). Contribution of background seismicity to forearc uplift. Nature Geoscience, 14(8), 620–625. https://doi.org/10.1038/s41561-021-00779-0 DOI: https://doi.org/10.1038/s41561-021-00779-0
Malatesta, L., Bruhat, L., Finnegan, N., & Olive, J.-A. (2021). Co-location of the downdip end of seismic coupling and the continental shelf break. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020JB019589 DOI: https://doi.org/10.1029/2020JB019589
Mallick, R., Burgmann, R., Johnson, K. M., & Hubbard, J. (2021). A unified framework for earthquake sequences and the growth of geological structure in fold-thrust belts. https://doi.org/10.1002/essoar.10506463.1 DOI: https://doi.org/10.1002/essoar.10506463.1
Marone, C. (1998a). The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature, 391(6662), 69–72. https://doi.org/10.1038/34157 DOI: https://doi.org/10.1038/34157
Marone, C. (1998b). LABORATORY-DERIVED FRICTION LAWS AND THEIR APPLICATION TO SEISMIC FAULTING. Annual Review of Earth and Planetary Sciences, 26(1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643 DOI: https://doi.org/10.1146/annurev.earth.26.1.643
Meade, B. J. (2010). The signature of an unbalanced earthquake cycle in Himalayan topography? Geology, 38(11), 987–990. https://doi.org/10.1130/g31439.1 DOI: https://doi.org/10.1130/G31439.1
Melnick, D. (2016). Rise of the central Andean coast by earthquakes straddling the Moho. Nature Geoscience, 9(5), 401–407. https://doi.org/10.1038/ngeo2683 DOI: https://doi.org/10.1038/ngeo2683
Menant, A., Angiboust, S., Gerya, T., Lacassin, R., Simoes, M., & Grandin, R. (2020). Transient stripping of subducting slabs controls periodic forearc uplift. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15580-7 DOI: https://doi.org/10.1038/s41467-020-15580-7
Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008736 DOI: https://doi.org/10.1029/2011JB008736
Mia, M. S., Abdelmeguid, M., & Elbanna, A. (2022). Spatio-temporal clustering of seismicity enabled by off-fault plasticity. https://doi.org/10.31223/x50p8b DOI: https://doi.org/10.31223/X50P8B
Mia, M. S., Abdelmeguid, M., & Elbanna, A. E. (2023). The spectrum of fault slip in elastoplastic fault zones. Earth and Planetary Science Letters, 619, 118310. https://doi.org/10.1016/j.epsl.2023.118310 DOI: https://doi.org/10.1016/j.epsl.2023.118310
Mouslopoulou, V., Oncken, O., Hainzl, S., & Nicol, A. (2016). Uplift rate transients at subduction margins due to earthquake clustering. Tectonics, 35(10), 2370–2384. https://doi.org/10.1002/2016tc004248 DOI: https://doi.org/10.1002/2016TC004248
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135 DOI: https://doi.org/10.1785/BSSA0750041135
Okubo, K., Bhat, H. S., Rougier, E., Marty, S., Schubnel, A., Lei, Z., Knight, E. E., & Klinger, Y. (2019). Dynamics, Radiation, and Overall Energy Budget of Earthquake Rupture With Coseismic Off‐Fault Damage. Journal of Geophysical Research: Solid Earth, 124(11), 11771–11801. https://doi.org/10.1029/2019jb017304 DOI: https://doi.org/10.1029/2019JB017304
Oryan, B., Olive, J.-A., Jolivet, R., Malatesta, L. C., Gailleton, B., & Bruhat, L. (2024). Megathrust locking encoded in subduction landscapes. Science Advances, 10(17). https://doi.org/10.1126/sciadv.adl4286 DOI: https://doi.org/10.1126/sciadv.adl4286
Ozawa, T., Tabei, T., & Miyazaki, S. (1999). Interplate coupling along the Nankai Trough off southwest Japan derived from GPS measurements. Geophysical Research Letters, 26(7), 927–930. https://doi.org/10.1029/1999gl900145 DOI: https://doi.org/10.1029/1999GL900145
Periollat, A., Radiguet, M., Weiss, J., Twardzik, C., Amitrano, D., Cotte, N., Marill, L., & Socquet, A. (2022). Transient Brittle Creep Mechanism Explains Early Postseismic Phase of the 2011 Tohoku‐Oki Megathrust Earthquake: Observations by High‐Rate GPS Solutions. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024005 DOI: https://doi.org/10.1029/2022JB024005
Pierre, D., & Olive, J.-A. (2023). Elastic-Plastic Rate-and-State Slider-and-Springboard Model. Zenodo. https://doi.org/10.5281/ZENODO.7858864
Prawirodirdjo, L., McCaffrey, R., Chadwell, C. D., Bock, Y., & Subarya, C. (2010). Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation. Journal of Geophysical Research: Solid Earth, 115(B3). https://doi.org/10.1029/2008jb006139 DOI: https://doi.org/10.1029/2008JB006139
Reid, H. (1910). Elastic rebound theory. Univ Calif Publ. Bull Dept Geol Sci, 6, 413–433.
Rice, J. R. (1993). Spatio‐temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6), 9885–9907. https://doi.org/10.1029/93jb00191 DOI: https://doi.org/10.1029/93JB00191
Rice, J. R., & Tse, S. T. (1986). Dynamic motion of a single degree of freedom system following a rate and state dependent friction law. Journal of Geophysical Research: Solid Earth, 91(B1), 521–530. https://doi.org/10.1029/jb091ib01p00521 DOI: https://doi.org/10.1029/JB091iB01p00521
Rodriguez Padilla, A. M., Oskin, M. E., Milliner, C. W. D., & Plesch, A. (2022). Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes. Nature Geoscience, 15(3), 222–226. https://doi.org/10.1038/s41561-021-00888-w DOI: https://doi.org/10.1038/s41561-021-00888-w
Rolandone, F. (2022). The Seismic Cycle: From Observation to Modeling. John Wiley & Sons.
Ruh, J. B., & Vergés, J. (2018). Effects of reactivated extensional basement faults on structural evolution of fold-and-thrust belts: Insights from numerical modelling applied to the Kopet Dagh Mountains. Tectonophysics, 746, 493–511. https://doi.org/10.1016/j.tecto.2017.05.020 DOI: https://doi.org/10.1016/j.tecto.2017.05.020
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/jb088ib12p10359 DOI: https://doi.org/10.1029/JB088iB12p10359
Sagiya, T., & Meneses-Gutierrez, A. (2022). Geodetic and Geological Deformation of the Island Arc in Northeast Japan Revealed by the 2011 Tohoku Earthquake. Annual Review of Earth and Planetary Sciences, 50(1), 345–368. https://doi.org/10.1146/annurev-earth-032320-074429 DOI: https://doi.org/10.1146/annurev-earth-032320-074429
Saillard, M., Audin, L., Rousset, B., Avouac, J.-P., Chlieh, M., Hall, S. R., Husson, L., & Farber, D. L. (2017). From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust: Interseismic Coupling/Coastal Morphology. Tectonics, 36(2), 241–256. https://doi.org/10.1002/2016tc004156 DOI: https://doi.org/10.1002/2016TC004156
Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. https://doi.org/10.1029/jb088ib06p04984 DOI: https://doi.org/10.1029/JB088iB06p04984
Scholz, C. H. (1972). Static fatigue of quartz. Journal of Geophysical Research, 77(11), 2104–2114. https://doi.org/10.1029/jb077i011p02104 DOI: https://doi.org/10.1029/JB077i011p02104
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/cbo9780511818516 DOI: https://doi.org/10.1017/CBO9780511818516
Simpson, G. (2015). Accumulation of permanent deformation during earthquake cycles on reverse faults. Journal of Geophysical Research: Solid Earth, 120(3), 1958–1974. https://doi.org/10.1002/2014jb011442 DOI: https://doi.org/10.1002/2014JB011442
Simpson, G. (2023). Emergence and growth of faults during earthquakes: Insights from a dynamic elasto-plastic continuum model. Tectonophysics, 868, 230089. https://doi.org/10.1016/j.tecto.2023.230089 DOI: https://doi.org/10.1016/j.tecto.2023.230089
Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters, 42(14), 5828–5837. https://doi.org/10.1002/2015gl064845 DOI: https://doi.org/10.1002/2015GL064845
Tenthorey, E., Cox, S. F., & Todd, H. F. (2003). Evolution of strength recovery and permeability during fluid–rock reaction in experimental fault zones. Earth and Planetary Science Letters, 206(1–2), 161–172. https://doi.org/10.1016/s0012-821x(02)01082-8 DOI: https://doi.org/10.1016/S0012-821X(02)01082-8
Thomas, M. Y., Avouac, J., & Lapusta, N. (2017). Rate‐and‐state friction properties of the Longitudinal Valley Fault from kinematic and dynamic modeling of seismic and aseismic slip. Journal of Geophysical Research: Solid Earth, 122(4), 3115–3137. https://doi.org/10.1002/2016jb013615 DOI: https://doi.org/10.1002/2016JB013615
Thomas, M. Y., & Bhat, H. S. (2018). Dynamic evolution of off-fault medium during an earthquake: a micromechanics based model. Geophysical Journal International, 214(2), 1267–1280. https://doi.org/10.1093/gji/ggy129 DOI: https://doi.org/10.1093/gji/ggy129
Turcotte, D. L., & Schubert, G. (2002). Geodynamics. Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511807442
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Mai, P. M., Morra, G., & Giardini, D. (2013). The seismic cycle at subduction thrusts: Insights from seismo‐thermo‐mechanical models. Journal of Geophysical Research: Solid Earth, 118(12), 6183–6202. https://doi.org/10.1002/2013jb010380 DOI: https://doi.org/10.1002/2013JB010380
Voisin, C., Renard, F., & Grasso, J. (2007). Long term friction: From stick‐slip to stable sliding. Geophysical Research Letters, 34(13). https://doi.org/10.1029/2007gl029715 DOI: https://doi.org/10.1029/2007GL029715
Wang, K. (2007). 17. Elastic and Viscoelastic Models of Crustal Deformation in Subduction Earthquake Cycles. In The Seismogenic Zone of Subduction Thrust Faults (pp. 540–575). Columbia University Press. https://doi.org/10.7312/dixo13866-017 DOI: https://doi.org/10.7312/dixo13866-017
Wang, K., Hu, Y., & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484(7394), 327–332. https://doi.org/10.1038/nature11032 DOI: https://doi.org/10.1038/nature11032
Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D., & Sagiya, T. (2003). A revised dislocation model of interseismic deformation of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 108(B1). https://doi.org/10.1029/2001jb001227 DOI: https://doi.org/10.1029/2001JB001227
Watanabe, S., Ishikawa, T., Nakamura, Y., & Yokota, Y. (2021). Co- and postseismic slip behaviors extracted from decadal seafloor geodesy after the 2011 Tohoku-oki earthquake. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-021-01487-0 DOI: https://doi.org/10.1186/s40623-021-01487-0
Zhao, B., Bürgmann, R., Wang, D., Zhang, J., Yu, J., & Li, Q. (2022). Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30883-7 DOI: https://doi.org/10.1038/s41467-022-30883-7
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pierre Dublanchet, Jean-Arthur Olive
This work is licensed under a Creative Commons Attribution 4.0 International License.