P-Wave Arrival-Time Tomography of the Middle East Using ISC-EHB and Waveform Data

Authors

  • Ebru Bozdağ Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, CO, USA, & Department of Geophysics, Colorado School of Mines, Golden, CO, USA https://orcid.org/0000-0002-4269-3533
  • Susini Desilva Department of Geophysics, Colorado School of Mines, Golden, CO, USA, & Columbus State Community College, Columbus, OH, USA
  • Guust Nolet Université Côte d’Azur/CNRS/OCA/IRD, Géoazur, Sophia Antipolis, France, & Department of Geosciences, Princeton University, Princeton, NJ, USA https://orcid.org/0000-0002-2709-1518
  • Ridvan Orsvuran Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, CO, USA https://orcid.org/0000-0002-5098-7515
  • Rengin Gok Lawrence Livermore National Laboratory, Livermore, CA, USA
  • Yahya M. Tarabulsi Saudi Geological Survey, National Program for Earthquakes and Volcanos, Jeddah, Saudi Arabia
  • Ahmed Hosny Saudi Geological Survey, National Program for Earthquakes and Volcanos, Jeddah, Saudi Arabia
  • Khalid Yousef Saudi Geological Survey, National Program for Earthquakes and Volcanos, Jeddah, Saudi Arabia
  • Abdullah Mousa Saudi Geological Survey, National Program for Earthquakes and Volcanos, Jeddah, Saudi Arabia

DOI:

https://doi.org/10.26443/seismica.v4i1.1349

Keywords:

seismic tomography, P wave traveltimes, inversion, mantle, Middle East

Abstract

High-resolution seismic images are essential to gain insights into tectonic and geodynamical processes and assess seismic hazards. We constructed a P-wave model, MEPT (Middle East P-wave Travel-time), of the upper mantle beneath the Middle East and the surrounding region, which has a complex tectonic and geological history embodying various plate boundaries such as spreading ridges, subduction, suture zones, and strike-slip faults causing destructive earthquakes, specifically in Iran, Caucasus and Anatolia, and active volcanism. We use data from the ISC-EHB bulletin and onset-time readings of first-arrival P waves from waveforms recorded in the Arabian Peninsula. The additional onset-time readings from the regional waveform data significantly improve the resolution of the structure underneath the Arabian Peninsula, clearly indicating the boundary between the Arabian platform and the Arabian shield down to about 300 km depth, highlighted by slow and fast wavespeed perturbations in the upper mantle. Consistent with previous studies, we observe the Arabian-Eurasian collision, the Red Sea rifting, the Hellenic Arc, and low-velocity anomalies beneath the lithosphere of the Red Sea and the west of the Arabian shield. Our model supports the connection of the slow wavespeed anomalies in the lithosphere along the Red Sea to the Afar plume and shows evidence for smaller mantle upwellings underneath the Arabian plate and Jordan.

References

Abgarmi, B., Delph, J. R., Ozacar, A. A., Beck, S. L., Zandt, G., Sandvol, E., Turkelli, N., & Biryol, C. B. (2017). Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics. Geosphere, 13(6), 1774–1787. https://doi.org/10.1130/GES01509.1

Adams, A., Brazier, R., Nyblade, A., Rodgers, A., & Al-Amri, A. (2009). Source parameters for moderate earthquakes in the Zagros Mountains with implications for the depth extent of seismicity. bssa, 99(3), 2044–2049. https://doi.org/10.1785/0120080314

Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3), 401–419. https://doi.org/10.1007/s00531-005-0481-4

Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S., & Savasçin, Y. (2007). The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. Geological Society of America, Special Paper, 418, 1–15. https://doi.org/10.1130/2007.2418(01)

Al-Damegh, K., Sandvol, E., Al-Lazki, A., & Barazang, M. (2004). Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions. gji, 157(2), 775–795. https://doi.org/10.1111/j.1365-246X.2004.02246.x

Al-Lazki, A. I., Sandvol, E., Buland, D., Seber, Barazangi, M., Turkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates . Geophys. J. Int., 158, 1024–1040. https://doi.org/10.1111/j.1365-246X.2004.02355.x

Allmann, B. P., Shearer, P. M., & Hauksson, E. (2008). Spectral discrimination between quarry blasts and earthquakes in southern California. bssa, 98(4), 2073–2079. https://doi.org/10.1785/0120070215

Almalki, K. A., Betts, P. G., & Ailleres, L. (2015). The Red Sea – 50yearsof geological and geophysical research. Earth-Sci. Rev., 147, 109–140. https://doi.org/10.1016/j.earscirev.2015.05.002

Artemieva, I. M., Yang, H., & Thybo, H. (2022). Incipient Ocean spreading beneath the Arabian shield. Earth-Sci. Rev., 226, 103955. https://doi.org/10.1016/j.earscirev.2022.103955

Augustin, N., van der Zwan, F. M., Devey, C. W., & Brandsdóttir, B. (2021). 13 million years of seafloor spreading throughout the Red Sea Basin. Nat. Commun., 12, 2427. https://doi.org/10.1038/s41467-021-22586-2

Ball, P. W., Roberts, G. G., Mark, D. F., Barfod, D. N., White, N. J., Lodhia, B. H., Nahdi, M. M., & Garni, S. (2023). Geochemical and geochronological analysis of Harrat Rahat, Saudi Arabia: An example of plume related intraplate magmatism. Lithos, 446–447, 107112. https://doi.org/10.1016/j.lithos.2023.107112

Bassin, C., Laske, G., & Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. EOS, 81.

Bijwaard, H., & Spakman, W. (2000). Non-linear global P-wave tomography by iterated linearized inversion. Geophysical Journal International, 141, 71–82. https://doi.org/10.1046/j.1365-246x.2000.00053.x

Bijwaard, Harmen, Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth, 103(B12), 30055–30078. https://doi.org/10.1029/98JB02467

Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252

Biryol, C., Beck, S. L., Zandt, G., & Ozacar, A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P‐wave tomography. Geophys. J. Int., 184, 1037–1057. https://doi.org/doi: 10.1111/j.1365-246X.2010.04910.x

Bonatti, E. (1985). Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature, 316, 33–37. https://doi.org/10.1038/316033a0

Boyce, A., Bastow, I. D., Cottaar, S., Kounoudis, R., Guilloud De Courbeville, J., Caunt, E., & Desai, S. (2021). New P-wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2020gc009302

Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2016). Global adjoint tomography: first-generation model. Geophys. J. Int., 207(3), 1736–1766. https://doi.org/10.1093/gji/ggw356

Bozdağ, Ebru, & Trampert, J. (2008). On Crustal Corrections in Surface Wave Tomography. Geophysical Journal International, 172(3), 1066–1082. https://doi.org/10.1111/j.1365-246X.2007.03690.x

Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14(1–3), 3–30. https://doi.org/10.1080/09853111.2001.11432432

Braunmiller, J., Kradolfer, U., Baer, M., & Giardini, D. (2002). Regional moment tensor determination in the European–Mediterranean area—initial results. Tectonophysics, 356(1–3), 5–22. https://doi.org/10.1016/S0040-1951(02)00374-8

Braunmiller, J., & Nábělek, J. (1996). Geometry of continental normal faults: seismological constraints. Journal of Geophysical Research: Solid Earth, 101(B2), 3045–3052. https://doi.org/10.1029/95JB02882

Burchfiel, B. C., Royden, L. H., Papanikolaou, D., & Pearce, F. D. (2018). Crustal development within a retreating subduction system: The Hellenides. Geosphere, 14(3), 1119--1130. https://doi.org/10.1130/ges01573.1

Camp, V.E., & Roobol, M. J. (2006). Upwelling asthenosphere beneath Western Arabia and its regional implications. J. Geophys. Res., 97, 15255–15271. https://doi.org/10.1029/92JB00943

Camp, Victor E, Hooper, P. R., Roobol, M. J., & White, D. (1987). The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bulletin of Volcanology, 49(2), 489–508. https://doi.org/10.1007/BF01245475

Cawood, P., Kroner, A., Collins, W. J., Kusky, & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318, 1--36. https://doi.org/10.1144/sp318.1

Celli, N. L., Lebedev, S., Schaeffer, A. J., & Gaina, C. (2020). African cratonic lithosphere carved by mantle plumes. Nat. Commun., 11, 92. https://doi.org/10.1038/s41467-019-13871-2

Chang, S.-J., & Van der Lee, S. V. (2011). Mantle plumes and associated flow beneath Arabia and East Africa. Earth and Planetary Science Letters, 302(3), 448–454. https://doi.org/10.1016/j.epsl.2010.12.050

Chang, Sung-Joon, Van der Lee, S., & Flanagan, M. P. (2012). A new P-velocity model for the Tethyan margin from a scaled S-velocity model and the inversion of P- and PKP-delay times. Physics of the Earth and Planetary Interiors, 210–211, 1–7. https://doi.org/10.1016/j.pepi.2012.08.005

Charlety, J., Voronin, S., Nolet, G., Loris, I., Simons, F. J., Sigloch, K., & Daubechies, I. C. (2013). Global seismic tomography with sparsity constraints: Comparison with smoothing and damping regularization. Journal of Geophysical Research: Solid Earth, 118(9), 4887–4899. https://doi.org/10.1002/jgrb.50326, 2013

Chiang, A., Gök, R., Tarabulsi, Y. M., El-Hadidy, S. Y., Wael W. Raddadi, W. W., & Mousa, A. D. (2021). Seismic source characterization of the Arabian Peninsula and Zagros Mountains from regional moment tensor and coda envelopes. Arabian Journal of Geosciences, 14(9). https://doi.org/10.1007/s12517-020-06266-x

Christova, C., & Nikolova, S. B. (1993). The Aegean region: deep structures and seismological properties. Geophys. J. Int., 115, 635–653. https://doi.org/10.1111/j.1365-246x.1993.tb01485.x

Civilini, F., Mooney, W. D., Savage, M. K., Townend, J., & Zahran, H. (2019). Crustal imaging of northern Harrat Rahat, Saudi Arabia, from ambient noise tomography. gji, 219(3), 1532–1549. https://doi.org/10.1093/gji/ggz380

Coleman, R. G., & McGuire, A. V. (1988). Magma systems related to theRed Sea opening. Tectonophysics, 150(1), 77--100. https://doi.org/10.1016/0040-1951(88)90296-X

Cui, C., Lei, W., Liu, Q., Peter, D., Bozdağ, E., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2024). GLAD-M35: a joint P and S global tomographic model with uncertainty quantification. gji, 239(1), 478–502. https://doi.org/10.1093/gji/ggae270

Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalçın, H., & others. (2018). The 2014 earthquake model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering, 16(8), 3465–3496. https://doi.org/10.1007/s10518-017-0096-8

Debayle, E., & Sambridge, M. (2004). Inversion of massive surface wave data sets: Model construction and resolution assessment. J. Geophys. Res., 109. https://doi.org/10.1029/2003jb002652

Debayle, Eric, & Ricard, Y. (2012). A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. Journal of Geophysical Research: Solid Earth, 117(B10). https://doi.org/10.1029/2012jb009288

Delaunay, A., Baby, G., Paredes, E. G., Fedorik, J., & Afifi, A. M. (2024). Evolution of the Eastern Red Sea Rifted margin: morphology, uplift processes and source-to-sink dynamics. Earth-Science Reviews, 250, 104698. https://doi.org/https://doi.org/10.1016/j.earscirev.2024.104698

Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., & Savasçin, Y. (2002). On the extension in western Anatolia and the Aegean sea. Journal of the Virtual Explorer, 8, 161--176. https://doi.org/10.3809/jvirtex.2002.00049

Duncan, R. A., Kent, A. J. R., Thornber, C. R., Schlieder, T. D., & Al-Amri, A. M. (2016). Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia. Journal of Volcanology and Geothermal Research, 313, 1–14. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2016.01.010

Ebinger, C., & Sleep, N. (2011). Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395, 788–791. https://doi.org/https://doi.org/10.1038/27417

Engdahl, E Robert, Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. https://doi.org/10.1111/j.1365-246x.2006.03127.x

Engdahl, E., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination . bssa, 88(3), 722–743. https://doi.org/10.1785/bssa0880030722

Engdahl, E.R., Giacomo, D. D., Sakarya, B., Gkarlaouni, C. G., Harris, J., J., & Storchak, D. A. (2020). ISC EHB1964-2016, an improved data set for studies of Earth structure and globalseismicity. Earth and Space Sci., 7, e2019EA000897. https://doi.org/10.1029/2019EA000897

Espindola-Carmona, A., Örsvuran, R., Mai, P. M., Bozdağ, E., & Peter, D. B. (2024). Geophysical Journal International. Earth and Planetary Science Letters, 236(2), 952–966. https://doi.org/10.1093/gji/ggad462

Fairhead, J., & Okereke, C. (1987). A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonophysics, 143(1–3), 141–159. https://doi.org/10.1016/0040-1951(87)90084-9

Ferreira, A. M. G., Woodhouse, J. H., Visser, K., & Trampert, J. (2010). On the Robustness of Global Radially Anisotropic Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2009JB006716

Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2010). Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270–280. https://doi.org/10.1016/j.epsl.2009.12.003

Giardini, D., Basham, P., & Berry, M. (1993). The ILP’s global seismic hazard assessment program for the UN/IDNDR. Natural Disasters: Protecting Vulnerable Communities: Proceedings of the Conference Held in London, 13-15 October 1993, 225–237. https://doi.org/10.1029/91eo00383

Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Tümsa, M. B. D., Akkar, S., Gülen, L., & Zare, M. (2018). Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering, 16(8), 3567–3570. https://doi.org/10.1007/s10518-018-0347-3

Gök, R., Mahdi, H., Al-Shukri, H., & Rodgers, A. J. (2008). Crustal structure of Iraq from receiver functions and surface wave dispersion: Implications for understanding the deformation history of the Arabian–Eurasian collision. gji, 172(3), 1179–1187. https://doi.org/10.1111/j.1365-246x.2007.03670.x

Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent-continent collision zone: eastern Turkey. gji, 169(3), 1079–1088. https://doi.org/10.1111/j.1365-246x.2006.03288.x

Gök, R., Sandvol, E., Türkelli, N., Seber, D., & Barazangi, M. (2003). Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. grl, 30(24), 8042. https://doi.org/10.1029/2003GL018020

Gök, Rengin, Kaviani, A., Matzel, E. M., Pasyanos, M. E., Mayeda, K., Yetirmishli, G., El-Hussain, I., Al-Amri, A., Al-Jeri, F., Godoladze, T., & others. (2016). Moment magnitudes of local/regional events from 1D coda calibrations in the broader Middle East region. bssa, 106(5), 1926–1938. https://doi.org/10.1785/0120160045

Grünthal, G., Bosse, C., Sellami, S., Mayer-Rosa, D., & Giardini, D. (1999). Compilation of the GSHAP regional seismic hazard for Europe, Africa and the Middle East. https://doi.org/10.4401/ag-3782

Hansen, S. E., Gaherty, J. B., Schwartz, S. Y., Rodgers, A. J., & Al-Amri, A. M. (2008). Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007jb005335

Hansen, S. E., Rodgers, A. J., Schwartz, S. Y., & Al-Amri, A. M. (2007). Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth and Planetary Science Letters, 259(3–4), 256–265. https://doi.org/10.1016/j.epsl.2007.04.035

Hatzfeld, D., & Molnar, P. (2010). Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2). https://doi.org/10.1029/2009rg000304

International Seismological Centre. (2020). ISC-EHB dataset. https://doi.org/https://doi.org/10.31905/PY08W6S3

Jackson, J., & McKenzie, D. (1988). The relationship between plate motions and seismic tremors, and the rates of active deformation in the Mediterranean and Middle East: Royal Astronomical Society Geophysical Journal, v. 93. https://doi.org/10.1111/j.1365-246x.1988.tb01387.x

Jafari, A., Ao, S., Jamei, S., & Ghasemi, H. (2023). Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history. Earth-Sci. Rev., 241, 104419. https://doi.org/10.1016/j.earscirev.2023.104419

Karasözen, E., Nissen, E., Bergman, E. A., & Ghods, A. (2019). Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 124(8), 9109–9129. https://doi.org/10.1029/2019jb017336

Karasözen, E., Nissen, E., Bergman, E. A., Johnson, K. L., & Walters, R. J. (2016). Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 121(6), 4553–4574. https://doi.org/10.1002/2016jb012828

Kaviani, A, Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophysical Journal International, 171(1), 399–410. https://doi.org/10.1111/j.1365-246x.2007.03535.x

Kaviani, Ayoub, Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., & Sandvol, E. (2020). Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography. Geophysical Journal International, 221(2), 1349–1365. https://doi.org/10.1093/gji/ggaa075

Kennett, B. L., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x

Khrepy, S. E., Koulakov, I., Gerya, T., Al-Arifi, N., Alajmi, M. S., & Qadrouh, A. N. (2021). Transition from continental rifting to ocanic spreading in the northern Red Sea area. Sci. Rep., 11, 5594. https://doi.org/10.1038/s41598-021-84952-w

Kim, R., Witek, M., Chang, S.-J., Lim, J.-A., Mai, P. M., & Zahran, H. (2023). Isotropic and radially anisotropic S-velocity structure beneath the Arabian plate inferred from surface wave tomography. Tectonophysics, 862, 229968. https://doi.org/https://doi.org/10.1016/j.tecto.2023.229968

Kiuchi, R., Mooney, W. D., & Zahran, H. M. (2019). Ground‐Motion Prediction Equations for Western Saudi Arabia. bssa, 109(6), 2722–2737. https://doi.org/10.1785/0120180302

Koulakov, I., Burov, E., Cloetingh, S., El Khrepy, S., Al-Arifi, N., & Bushenkova, N. (2016). Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion. Tectonophysics, 667, 176–188. https://doi.org/https://doi.org/10.1016/j.tecto.2015.11.022

Kustowski, B., Ekström, G., & Dziewoński, A. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. 113(B6). https://doi.org/10.1029/2007jb005169

Kustowski, B., Ekström, G., & Dziewonski, A. M. (2008). The shear‐wave velocity structure in the upper mantle beneath Eurasia. Geophys. J. Int., 174, 978--992. https://doi.org/10.1111/j.1365-246x.2008.03865.x

Kværna, T., Ringdal, F., & Baadshaug, U. (2007). North Korea’s nuclear test: The capability for seismic monitoring of the North Korean test site. Seismological Research Letters, 78(5), 487–497. https://doi.org/10.1785/gssrl.78.5.487

Laske, G., & Masters, G. (1996). Constraints on global phase velocity maps from long-period polarization data. Journal of Geophysical Research: Solid Earth, 101(B7), 16059–16075. https://doi.org/10.1029/96jb00526

Laske, G., Masters., G., Ma, Z., & Pasyanos, M. (2012). Update on CRUST1.0 – A 1-degree Global Model of Earth’s Crust. EGU General Assembly Geophys. Res. Abstracts, 15, EGU2012-3743–1.

Le Pichon, X., & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1–2), 1–42. https://doi.org/10.1016/0040-1951(79)90131-8

Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323–351. https://doi.org/10.1146/annurev-earth-040809-152419

Lebedev, S., & van der Hilst, R. D. (2008). Global upper‐mantle tomography with the automated multimode inversion of surface and S wave forms. Geophys. J. Int., 173, 505--518. https://doi.org/10.1111/j.1365-246x.2008.03721.x

Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2020). Global Adjoint Tomography – Model GLAD-M25. Geophys. J. Int., 223(1), 1–21. https://doi.org/10.1093/gji/ggaa253

Lekić, V., & Romanowicz, B. (2011). Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International, 185(2), 799–831. https://doi.org/10.1111/j.1365-246x.2011.04969.x

Li, X.-D., & Romanowicz, B. (1996). Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. 101(B10), 22245–22272. https://doi.org/10.1029/96JB01306

Lim, J. ‐A., Chang, S. ‐J., Mai, P. M., & Zahran, H. (2020). Asthenospheric flow of plume material beneath Arabia inferred from S wave traveltime tomography. Journal of Geophysical Research: Solid Earth, 125, e2020JB019668. https://doi.org/https://doi.org/10.1029/2020JB019668

Maggi, A., Jackson, J., Priestley, K., & Baker, C. (2000). A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? Geophysical Journal International, 143(3), 629–661. https://doi.org/10.1046/j.1365-246x.2000.00254.x

Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3), 1068–1080. https://doi.org/10.1111/j.1365-246x.2005.02505.x

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., & others. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719. https://doi.org/10.1029/1999jb900351

McKenzie, D. (2020). The structure of the lithosphere and upper mantle beneath the Eastern Mediterranean and Middle East. Mediterranean Geoscience Reviews, 2, 311–326. https://doi.org/https://doi.org/10.1007/s42990-020-00038-1

McKenzie, Dan. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185. https://doi.org/10.1111/j.1365-246x.1972.tb02351.x

McKenzie, DP. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239–243. https://doi.org/10.1038/226239a0

McNamara, D., & Walter, W. (1997). Rayleigh wave group velocity dispersion across Northern Africa, Southern Europe and the Middle East [Techreport]. Lawrence Livermore National Lab., CA (United States).

Mégnin, C., & Romanowicz, B. (2000). The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. gji, 143(3), 709–728. https://doi.org/10.1046/j.1365-246x.2000.00298.x

Meier, T., Becker, D., Endrun, B., Rische, M., Bohnhoff, M., Stöckhert, B., & Harjes, H. P. (2007). A model for the Hellenic subduction zone in the area of Crete based on seismological investigations. Geological Society, London, Special Publications, 291, 183–199. https://doi.org/10.1144/sp291.9

Mokhtar, T. A., & Al-Saeed, M. M. (1994). Shear wave velocity structures of the Arabian Peninsula. Tectonophysics, 230(1–2), 105–125. https://doi.org/10.1016/0040-1951(94)90149-x

Montelli, R., Nolet, G., Masters, G., Dahlen, F. A., & Hung, S.-H. (2004). Global P and PP traveltime tomography: rays versus waves. gji, 158, 637–654. https://doi.org/10.1111/j.1365-246X.2004.02346.x

Moufti, M. R., & Németh, K. (2016). Harrat Rahat: The Geoheritage Value of the Youngest Long-Lived Volcanic Field in the Kingdom of Saudi Arabia. In Geoheritage of Volcanic Harrats in Saudi Arabia (pp. 33–120). Springer International Publishing. https://doi.org/10.1007/978-3-319-33015-0_3

Mukhopadhyay, B., Mogren, S., Mukhopadhyay, M., & Dasgupta, S. (2013). Incipient status of dyke intrusion in top crust–evidences from the Al-Ays 2009 earthquake swarm, Harrat Lunayyir, SW Saudi Arabia. Geomatics, Natural Hazards and Risk, 4(1), 30–48. https://doi.org/10.1080/19475705.2012.663794

Myers, S. C., Begnaud, M. L., Ballard, S., Pasyanos, M. E., Phillips, W. S., Ramirez, A. L., Antolik, M. S., Hutchenson, K. D., Dwyer, J. J., Rowe, C. A., & others. (2010). A crust and upper-mantle model of Eurasia and North Africa for Pn travel-time calculation. bssa, 100(2), 640–656. https://doi.org/10.1785/0120090198

Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research: Solid Earth, 119(4), 3561–3583. https://doi.org/10.1002/2013jb010796

Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944. https://doi.org/10.1111/j.1365-246x.2011.05119.x

Nolet, G., Hello, Y., Van der Lee, S., Bonnieux, S., Ruiz, M. C., Pazmino, N. A., Deschamps, A., Regnier, M. M., Font, Y., Chen, Y. J., & Simons, F. J. (2019). Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Scientific Reports, 9, 1326. https://doi.org/10.1038/s41598-018-36835-w

Nolet, G., & van der Lee, S. (2022). Error estimates for seismic body wave delay times in the ISC-EHB Bulletin. Geophys. J. Int., 231, 1739–1749. https://doi.org/10.1093/gji/ggac282

Nolet, Guust. (2008). A breviary of seismic tomography. A Breviary of Seismic Tomography, by Guust Nolet, Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/cbo9780511984709

Pallister, J. S., McCausland, W. A., Jónsson, S., Lu, Z., Zahran, H. M., El Hadidy, S., Aburukbah, A., Stewart, I. C., Lundgren, P. R., White, R. A., & others. (2010). Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nature Geoscience, 3(10), 705–712. https://doi.org/10.1038/ngeo966

Parisi, L., Augustin, N., Trippanera, D., Kirk, H., Dannowski, A., Matrau, R., Fittipaldi, M., Nobile, A., Zielke, O., Valero Cano, E., Hoogewerf, G., Aspiotis, T., Manzo-Vega, S., Espindola Carmona, A., Barreto, A., Juchem, M., Suhendi, C., Schmidt-Aursch, M., Mai, P. M., & Jónsson, S. (2024). The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone. Seismica, 3(1), 104698. https://doi.org/https://doi.org/10.26443/seismica.v3i1.729

Park, Y., Nyblade, A. A., Rodgers, A. J., & Al-Amri, A. (2007). Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: Implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield. ggg, 8, Q06021. https://doi.org/10.1029/2006GC001566

Park, Yongcheol, Nyblade, A. A., Rodgers, A. J., & Al-Amri, A. (2008). S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 9(7). https://doi.org/10.1029/2007gc001895

Pasyanos, M. E., Tarabulsi, Y. M., Al-Hadidy, S. Y., Raddadi, W. W., Mousa, A. D., El-Hussain, I., Al-Jeri, F., Al-Shukri, H., & Gök, R. (2021). Improved lithospheric attenuation structure of the Arabian Peninsula through the use of national network data. Arab J Geosci , 14(914). https://doi.org/10.1007/s12517-021-07294-x

Pasyanos, M. E., & Walter, W. R. (2002). Crust and upper‐mantle structure of North Africa, Europe and the Middle East from inversion of surface waves . Geophysical Journal International, 149, 463--48. https://doi.org/10.1046/j.1365-246x.2002.01663.x

Pasyanos, Michael E, Walter, W. R., & Hazler, S. E. (2001). A surface wave dispersion study of the Middle East and North Africa for monitoring the Comprehensive Nuclear-Test-Ban Treaty. In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves (pp. 1445–1474). Springer. https://doi.org/10.1007/978-3-0348-8264-4_7

Pasyanos, Michael E, Walter, W. R., & Matzel, E. M. (2009). A simultaneous multiphase approach to determine P-wave and S-wave attenuation of the crust and upper mantle. bssa, 99(6), 3314–3325. https://doi.org/10.1785/0120090061

Piromallo, C., & Morelli, A. (2003). P wave tomography of the mantle under the Alpine‐Mediterranean area. Journal of Geophysical Research, 108, 2065. https://doi.org/10.1029/2002jb001757

Portner, D. E., Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Qzacar, A. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P‐wave tomography beneath Anatolia. Geosphere, 14, 907–925. https://doi.org/10.1130/ges01617.1

Reilinger, R., & McClusky, S. (2011). Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. gji, 186, 971–979. https://doi.org/10.1111/j.1365-246X.2011.05133.x

Reilinger, Robert, McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., & others. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004051

Richards, P. G., & Kim, W.-Y. (2007). Seismic signature. Nature Physics, 3(1), 4–6. https://doi.org/10.1038/nphys495

Ring, U., Glodny, J., Thomas Will, T., & Thomson, S. (2010). The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annu. Rev. Earth Planet. Sci., 38, 45--76. https://doi.org/10.1146/annurev.earth.050708.170910

Ring, Uwe, Glodny, J., Will, T., & Thomson, S. (2010). The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annual Review of Earth and Planetary Sciences, 38, 45–76. https://doi.org/10.1146/annurev.earth.050708.170910

Ritsema, J, Deuss, A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. gji, 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246x.2010.04884.x

Ritsema, Jeroen, Rivera, L. A., Komatitsch, D., Tromp, J., & van Heijst, H.-J. (2002). Effects of crust and mantle heterogeneity on PP/P and SS/S amplitude ratios. Geophysical Research Letters, 29(10), 72–1. https://doi.org/10.1029/2001GL013831

Ritzwoller, M. H., Barmin, M. P., Villasenäor, A., Levshin, A. L., Engdahl, E. R., Spakman, W., & Trampert, J. (1999). Construction of a 3-DP and S model of the crust and upper mantle to improve regional locations in W. China, Central Asia, and parts of the Middle East. Proceedings of the 21th Annual Seismic Research Symposium on Monitoring a Comprehensive Test-Ban Treaty, DoD and DoE, 656–665. https://doi.org/10.21236/ada405941

Rodgers, A. J., Krischer, L., Afanasiev, M., Boehm, C., Doody, C., & Simmons, N. (2024). Adjoint Waveform Tomography for Crustal and Upper Mantle Structure of the Middle East and Southwest Asia for Improved Waveform Simulations Using Openly Available Broadband Data. bssa. https://doi.org/https://doi.org/10.1785/0120230248

Rovden, L. (1993). The tectonic expression of slab pull at continental convergent boundaries. Tectonics, 12(2), 3. https://doi.org/10.1029/92tc02248

Sanborn, C. J., Cormier, V. F., & Fitzpatrick, M. (2017). Combined effects of deterministic and statistical structure on high-frequency regional seismograms. Geophysical Journal International, 210(2), 1143–1159. https://doi.org/10.1093/gji/ggx219

Sandvol, E., Seber, D., Barazangi, M., Vernon, F., Mellors, R., & Al-Amri, A. (1998). Lithospheric seismic velocity discontinuities beneath the Arabian Shield. grl, 25, 2873–2876. https://doi.org/10.1029/98gl02214

Sanfilippo, A., Cai, (Merry) Yue, Jácome, A. P. G., & Ligi, M. (2019). Geochemistry of the Lunayyir and Khaybar Volcanic Fields (Saudi Arabia): Insights into the Origin of Cenozoic Arabian Volcanism. In N. M. A. Rasul & I. C. F. Stewart (Eds.), Geological Setting, Palaeoenvironment and Archaeology of the Red Sea (pp. 389–415). Springer International Publishing. https://doi.org/10.1007/978-3-319-99408-6_18

Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. gji, 194, 417–449. https://doi.org/10.1093/gji/ggt095

Schettino, A., Macchiavelli, C., Pierantoni, P. P., Zanoni, D., & Rasul, N. (2016). Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophys. J. Int. , 207, 457–480. https://doi.org/10.1093/gji/ggw280

Sen, P. A., Temel, A., & Gourgaud, A. (2004). Petrogenetic modeling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol. Mag., 141, 81–98. https://doi.org/10.1017/S0016756803008550

Şengör, A., Görür, N., & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation, and Sedimentation, Kevin T. Biddle, Nicholas Christie-Blick. Special Publications of SEPM. https://doi.org/https://doi.org/10.2110/pec.85.37.0211

Shapiro, N. M., & Ritzwoller, M. H. (2002). Monte‐Carlo inversion for a global shear‐velocity model of the crust and upper mantle. Geophysical Journal International, 151, 88--105. https://doi.org/10.1046/j.1365-246x.2002.01742.x

Shedlock, K. M., Giardini, D., Grunthal, G., & Zhang, P. (2000). The GSHAP global seismic hazard map. Seismological Research Letters, 71(6), 679–686. https://doi.org/10.1785/gssrl.71.6.679

Simmons, N A, Myers, S. C., Morency, C., Chiang, A., & Knapp, D. R. (2021). SPiRaL: A Multiresolution Global Tomography Model of Seismic Wave Speeds and Radial Anisotropy Variations in the Crust and Mantle. Geophysical Journal International, 227(2), 1366–1391. https://doi.org/10.1093/gji/ggab277

Simmons, Nathan A, Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. 117(B10). https://doi.org/10.1029/2012jb009525

Sonder, L. J., & England, P. C. (1989). Effects of a temperature-dependent rheology on large-scale continental extension. Journal of Geophysical Research: Solid Earth, 94(B6), 7603–7619. https://doi.org/10.1016/0148-9062(90)90013-r

Spakman, W., Wortel, M. J. R., & Vlaar, N. J. (1988). The hellenic subduction zone: A tomographic image and its geodynamic implications. Geophysical Research Letters, 15, 60–63. https://doi.org/10.1029/gl015i001p00060

Sukhovich, A., Bonnieux, S., Hello, Y., Irisson, J.-O., Simons, F. J., & Nolet, G. (2015). Seismic monitoring in the oceans by autonomous floats. Nature Communications, 6(1), 8027. https://doi.org/10.1038/ncomms9027

Tang, Z., Julià, J., Zahran, H., & Mai, P. M. (2016). The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics, 680, 8–27. https://doi.org/10.1016/j.tecto.2016.05.004

Tang, Z., Mai, P. M., Chang, S.-J., & Zahran, H. (2018). Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography. Earth and Planetary Science Letters, 495, 24–37. https://doi.org/10.1016/j.epsl.2018.05.011

Tang, Z., Mai, P. M., Julià, J., & Zahran, H. (2019). Shear velocity structure beneath Saudi Arabia from the joint inversion of P and S wave receiver functions, and Rayleigh wave group velocity dispersion data. Journal of Geophysical Research: Solid Earth, 124(5), 4767–4787. https://doi.org/10.1029/2018jb017131

Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the southern California crust. Science, 325(5943), 988–992. https://doi.org/10.1126/science.1175298

Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266. https://doi.org/10.1190/1.1441754

Tavakoli, B., & Ghafory-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annali Di Geofisica, 42(6), 1013–1021. https://doi.org/10.4401/ag-3781

Tian, Y., Hung, S.-H., Nolet, G., Montelli, R., & Dahlen, F. A. (2007). Dynamic ray tracing and traveltime corrections for global seismic tomography. Journal of Computational Physics, 226(1), 672–687. https://doi.org/10.1016/j.jcp.2007.04.025

Tkalčić, H., Pasyanos, M. E., Rodgers, A. J., Gök, R., Walter, W., & Al-Amri, A. (2006). A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/10.1029/2005JB004130

Toksöz, M. N., Kuleli, S., Gürbüz, C., Kalafat, D., Bekler, T., Zor, E., Yılmazer, M., Öğütçü, Z., Schultz, C. A., & Harris, D. B. (2003). Calibration of regional seismic stations in the Middle East with shots in Turkey. Proceedings of the 25th Annual Seismic Research Review, 1, 162–171.

Trampert, J., Deschamps, F., Resovsky, J., & Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306(5697), 853–856. https://doi.org/10.1126/science.1101996

van der Lee, S., & Nolet, G. (1997). Upper mantle S velocity structure of North America. J. Geophys. Res., 102(B10), 22815–22838. https://doi.org/10.1029/97JB01168

Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. ANNALS OF GEOPHYSICS, 47, 247–306. https://doi.org/10.4401/ag-3276

Viltres, R., Jónsson, S., Alothman, A. O., Liu, S., Leroy, S., Masson, F., Doubre, S., & Reilinger, R. (2022). Present-day motion of the Arabian plate. Tectonics, 41, e2021TC007013. https://doi.org/https://doi.org/10.1029/2021TC

Voronin, S., Mikesell, D., Slezak, I., & Nolet, G. (2014). Solving large tomographic linear systems: size reduction and error estimation. Geophysical Journal International, 199(1), 276–285. https://doi.org/10.1093/gji/ggu242

Voytan, D. P., Lay, T., Chaves, E. J., & Ohman, J. T. (2019). Yield estimates for the six north Korean nuclear tests from teleseismic P wave modeling and intercorrelation of P and Pn recordings. Journal of Geophysical Research: Solid Earth, 124(5), 4916–4939. https://doi.org/10.1029/2019jb017418

Walter, W., Harris, D., & Myers, S. (1997). Seismic discrimination between earthquakes and explosions in the Middle East and North Africa [Techreport]. Lawrence Livermore National Lab., CA (US).

Walter, W. R., Matzel, E., Pasyanos, M. E., Harris, D. B., Gok, R., & Ford, S. R. (2007). Empirical observations of earthquake-explosion discrimination using P/S ratios and implications for the sources of explosion S-waves [Techreport]. LAWRENCE LIVERMORE NATIONAL LAB CA.

Wei, W., Zhao, D., Wei, F., Bai, X., & Xu, J. (2019). Mantle Dynamics of the Eastern Mediterranean and Middle East: Constraints From P‐Wave Anisotropic Tomography. Geochemistry, Geophysics, Geosystems, 20, 4505–4530. https://doi.org/10.1029/2019GC008512

Weinstein, Y., Navon, O., Altherr, R., & Stein, M. (2006). The Role of Lithospheric Mantle Heterogeneity in the Generation of Plio- Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam (Israel). Journal of Petrology, 47(5), 1017–1050. https://doi.org/10.1093/petrology/egl003

Witek, M., Lee, S.-M., Chang, S.-J., & van der Lee, S. (2023). Waveform inversion of large data sets for radially anisotropic Earth structure. Geophys. J. Int., 232, 1311–1339. https://doi.org/10.1093/gji/ggac393

Woodhouse, J. H., & Dziewoński, A. M. (1984). Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms. jgr, 89, 5953–5986.

Woodhouse, J., & Wong, Y. (1986). Amplitude, phase and path anomalies of mantle waves. Geophys. J. R. Astr. Soc., 87, 753–773. https://doi.org/10.1111/j.1365-246X.1986.tb01970.x

Wortel, M., & Spakman, W. (2003). Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917. https://doi.org/10.1126/science.290.5498.1910

Zhu, H., Bozdağ, E., Peter, D., & Tromp, J. (2012). Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience, 5(7), 493. https://doi.org/10.1038/ngeo1501

Downloads

Published

2025-06-23

How to Cite

Bozdağ, E., Desilva, S., Nolet, G., Orsvuran, R., Gok, R., Tarabulsi, Y. M., Hosny, A., Yousef, K., & Mousa, A. (2025). P-Wave Arrival-Time Tomography of the Middle East Using ISC-EHB and Waveform Data. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1349

Issue

Section

Articles

Funding data