P-Wave Arrival-Time Tomography of the Middle East Using ISC-EHB and Waveform Data
DOI:
https://doi.org/10.26443/seismica.v4i1.1349Keywords:
seismic tomography, P wave traveltimes, inversion, mantle, Middle EastAbstract
High-resolution seismic images are essential to gain insights into tectonic and geodynamical processes and assess seismic hazards. We constructed a P-wave model, MEPT (Middle East P-wave Travel-time), of the upper mantle beneath the Middle East and the surrounding region, which has a complex tectonic and geological history embodying various plate boundaries such as spreading ridges, subduction, suture zones, and strike-slip faults causing destructive earthquakes, specifically in Iran, Caucasus and Anatolia, and active volcanism. We use data from the ISC-EHB bulletin and onset-time readings of first-arrival P waves from waveforms recorded in the Arabian Peninsula. The additional onset-time readings from the regional waveform data significantly improve the resolution of the structure underneath the Arabian Peninsula, clearly indicating the boundary between the Arabian platform and the Arabian shield down to about 300 km depth, highlighted by slow and fast wavespeed perturbations in the upper mantle. Consistent with previous studies, we observe the Arabian-Eurasian collision, the Red Sea rifting, the Hellenic Arc, and low-velocity anomalies beneath the lithosphere of the Red Sea and the west of the Arabian shield. Our model supports the connection of the slow wavespeed anomalies in the lithosphere along the Red Sea to the Afar plume and shows evidence for smaller mantle upwellings underneath the Arabian plate and Jordan.
References
Abgarmi, B., Delph, J. R., Ozacar, A. A., Beck, S. L., Zandt, G., Sandvol, E., Turkelli, N., & Biryol, C. B. (2017). Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics. Geosphere, 13(6), 1774–1787. https://doi.org/10.1130/GES01509.1
Adams, A., Brazier, R., Nyblade, A., Rodgers, A., & Al-Amri, A. (2009). Source parameters for moderate earthquakes in the Zagros Mountains with implications for the depth extent of seismicity. bssa, 99(3), 2044–2049. https://doi.org/10.1785/0120080314
Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3), 401–419. https://doi.org/10.1007/s00531-005-0481-4
Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S., & Savasçin, Y. (2007). The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. Geological Society of America, Special Paper, 418, 1–15. https://doi.org/10.1130/2007.2418(01)
Al-Damegh, K., Sandvol, E., Al-Lazki, A., & Barazang, M. (2004). Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions. gji, 157(2), 775–795. https://doi.org/10.1111/j.1365-246X.2004.02246.x
Al-Lazki, A. I., Sandvol, E., Buland, D., Seber, Barazangi, M., Turkelli, N., & Mohamad, R. (2004). Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates . Geophys. J. Int., 158, 1024–1040. https://doi.org/10.1111/j.1365-246X.2004.02355.x
Allmann, B. P., Shearer, P. M., & Hauksson, E. (2008). Spectral discrimination between quarry blasts and earthquakes in southern California. bssa, 98(4), 2073–2079. https://doi.org/10.1785/0120070215
Almalki, K. A., Betts, P. G., & Ailleres, L. (2015). The Red Sea – 50yearsof geological and geophysical research. Earth-Sci. Rev., 147, 109–140. https://doi.org/10.1016/j.earscirev.2015.05.002
Artemieva, I. M., Yang, H., & Thybo, H. (2022). Incipient Ocean spreading beneath the Arabian shield. Earth-Sci. Rev., 226, 103955. https://doi.org/10.1016/j.earscirev.2022.103955
Augustin, N., van der Zwan, F. M., Devey, C. W., & Brandsdóttir, B. (2021). 13 million years of seafloor spreading throughout the Red Sea Basin. Nat. Commun., 12, 2427. https://doi.org/10.1038/s41467-021-22586-2
Ball, P. W., Roberts, G. G., Mark, D. F., Barfod, D. N., White, N. J., Lodhia, B. H., Nahdi, M. M., & Garni, S. (2023). Geochemical and geochronological analysis of Harrat Rahat, Saudi Arabia: An example of plume related intraplate magmatism. Lithos, 446–447, 107112. https://doi.org/10.1016/j.lithos.2023.107112
Bassin, C., Laske, G., & Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. EOS, 81.
Bijwaard, H., & Spakman, W. (2000). Non-linear global P-wave tomography by iterated linearized inversion. Geophysical Journal International, 141, 71–82. https://doi.org/10.1046/j.1365-246x.2000.00053.x
Bijwaard, Harmen, Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth, 103(B12), 30055–30078. https://doi.org/10.1029/98JB02467
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001GC000252
Biryol, C., Beck, S. L., Zandt, G., & Ozacar, A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P‐wave tomography. Geophys. J. Int., 184, 1037–1057. https://doi.org/doi: 10.1111/j.1365-246X.2010.04910.x
Bonatti, E. (1985). Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature, 316, 33–37. https://doi.org/10.1038/316033a0
Boyce, A., Bastow, I. D., Cottaar, S., Kounoudis, R., Guilloud De Courbeville, J., Caunt, E., & Desai, S. (2021). New P-wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2020gc009302
Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2016). Global adjoint tomography: first-generation model. Geophys. J. Int., 207(3), 1736–1766. https://doi.org/10.1093/gji/ggw356
Bozdağ, Ebru, & Trampert, J. (2008). On Crustal Corrections in Surface Wave Tomography. Geophysical Journal International, 172(3), 1066–1082. https://doi.org/10.1111/j.1365-246X.2007.03690.x
Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta, 14(1–3), 3–30. https://doi.org/10.1080/09853111.2001.11432432
Braunmiller, J., Kradolfer, U., Baer, M., & Giardini, D. (2002). Regional moment tensor determination in the European–Mediterranean area—initial results. Tectonophysics, 356(1–3), 5–22. https://doi.org/10.1016/S0040-1951(02)00374-8
Braunmiller, J., & Nábělek, J. (1996). Geometry of continental normal faults: seismological constraints. Journal of Geophysical Research: Solid Earth, 101(B2), 3045–3052. https://doi.org/10.1029/95JB02882
Burchfiel, B. C., Royden, L. H., Papanikolaou, D., & Pearce, F. D. (2018). Crustal development within a retreating subduction system: The Hellenides. Geosphere, 14(3), 1119--1130. https://doi.org/10.1130/ges01573.1
Camp, V.E., & Roobol, M. J. (2006). Upwelling asthenosphere beneath Western Arabia and its regional implications. J. Geophys. Res., 97, 15255–15271. https://doi.org/10.1029/92JB00943
Camp, Victor E, Hooper, P. R., Roobol, M. J., & White, D. (1987). The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bulletin of Volcanology, 49(2), 489–508. https://doi.org/10.1007/BF01245475
Cawood, P., Kroner, A., Collins, W. J., Kusky, & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318, 1--36. https://doi.org/10.1144/sp318.1
Celli, N. L., Lebedev, S., Schaeffer, A. J., & Gaina, C. (2020). African cratonic lithosphere carved by mantle plumes. Nat. Commun., 11, 92. https://doi.org/10.1038/s41467-019-13871-2
Chang, S.-J., & Van der Lee, S. V. (2011). Mantle plumes and associated flow beneath Arabia and East Africa. Earth and Planetary Science Letters, 302(3), 448–454. https://doi.org/10.1016/j.epsl.2010.12.050
Chang, Sung-Joon, Van der Lee, S., & Flanagan, M. P. (2012). A new P-velocity model for the Tethyan margin from a scaled S-velocity model and the inversion of P- and PKP-delay times. Physics of the Earth and Planetary Interiors, 210–211, 1–7. https://doi.org/10.1016/j.pepi.2012.08.005
Charlety, J., Voronin, S., Nolet, G., Loris, I., Simons, F. J., Sigloch, K., & Daubechies, I. C. (2013). Global seismic tomography with sparsity constraints: Comparison with smoothing and damping regularization. Journal of Geophysical Research: Solid Earth, 118(9), 4887–4899. https://doi.org/10.1002/jgrb.50326, 2013
Chiang, A., Gök, R., Tarabulsi, Y. M., El-Hadidy, S. Y., Wael W. Raddadi, W. W., & Mousa, A. D. (2021). Seismic source characterization of the Arabian Peninsula and Zagros Mountains from regional moment tensor and coda envelopes. Arabian Journal of Geosciences, 14(9). https://doi.org/10.1007/s12517-020-06266-x
Christova, C., & Nikolova, S. B. (1993). The Aegean region: deep structures and seismological properties. Geophys. J. Int., 115, 635–653. https://doi.org/10.1111/j.1365-246x.1993.tb01485.x
Civilini, F., Mooney, W. D., Savage, M. K., Townend, J., & Zahran, H. (2019). Crustal imaging of northern Harrat Rahat, Saudi Arabia, from ambient noise tomography. gji, 219(3), 1532–1549. https://doi.org/10.1093/gji/ggz380
Coleman, R. G., & McGuire, A. V. (1988). Magma systems related to theRed Sea opening. Tectonophysics, 150(1), 77--100. https://doi.org/10.1016/0040-1951(88)90296-X
Cui, C., Lei, W., Liu, Q., Peter, D., Bozdağ, E., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2024). GLAD-M35: a joint P and S global tomographic model with uncertainty quantification. gji, 239(1), 478–502. https://doi.org/10.1093/gji/ggae270
Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., Elias, A., Adamia, S., Tsereteli, N., Yalçın, H., & others. (2018). The 2014 earthquake model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering, 16(8), 3465–3496. https://doi.org/10.1007/s10518-017-0096-8
Debayle, E., & Sambridge, M. (2004). Inversion of massive surface wave data sets: Model construction and resolution assessment. J. Geophys. Res., 109. https://doi.org/10.1029/2003jb002652
Debayle, Eric, & Ricard, Y. (2012). A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. Journal of Geophysical Research: Solid Earth, 117(B10). https://doi.org/10.1029/2012jb009288
Delaunay, A., Baby, G., Paredes, E. G., Fedorik, J., & Afifi, A. M. (2024). Evolution of the Eastern Red Sea Rifted margin: morphology, uplift processes and source-to-sink dynamics. Earth-Science Reviews, 250, 104698. https://doi.org/https://doi.org/10.1016/j.earscirev.2024.104698
Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F., & Savasçin, Y. (2002). On the extension in western Anatolia and the Aegean sea. Journal of the Virtual Explorer, 8, 161--176. https://doi.org/10.3809/jvirtex.2002.00049
Duncan, R. A., Kent, A. J. R., Thornber, C. R., Schlieder, T. D., & Al-Amri, A. M. (2016). Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia. Journal of Volcanology and Geothermal Research, 313, 1–14. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2016.01.010
Ebinger, C., & Sleep, N. (2011). Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395, 788–791. https://doi.org/https://doi.org/10.1038/27417
Engdahl, E Robert, Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. https://doi.org/10.1111/j.1365-246x.2006.03127.x
Engdahl, E., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination . bssa, 88(3), 722–743. https://doi.org/10.1785/bssa0880030722
Engdahl, E.R., Giacomo, D. D., Sakarya, B., Gkarlaouni, C. G., Harris, J., J., & Storchak, D. A. (2020). ISC EHB1964-2016, an improved data set for studies of Earth structure and globalseismicity. Earth and Space Sci., 7, e2019EA000897. https://doi.org/10.1029/2019EA000897
Espindola-Carmona, A., Örsvuran, R., Mai, P. M., Bozdağ, E., & Peter, D. B. (2024). Geophysical Journal International. Earth and Planetary Science Letters, 236(2), 952–966. https://doi.org/10.1093/gji/ggad462
Fairhead, J., & Okereke, C. (1987). A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonophysics, 143(1–3), 141–159. https://doi.org/10.1016/0040-1951(87)90084-9
Ferreira, A. M. G., Woodhouse, J. H., Visser, K., & Trampert, J. (2010). On the Robustness of Global Radially Anisotropic Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2009JB006716
Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2010). Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270–280. https://doi.org/10.1016/j.epsl.2009.12.003
Giardini, D., Basham, P., & Berry, M. (1993). The ILP’s global seismic hazard assessment program for the UN/IDNDR. Natural Disasters: Protecting Vulnerable Communities: Proceedings of the Conference Held in London, 13-15 October 1993, 225–237. https://doi.org/10.1029/91eo00383
Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Tümsa, M. B. D., Akkar, S., Gülen, L., & Zare, M. (2018). Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering, 16(8), 3567–3570. https://doi.org/10.1007/s10518-018-0347-3
Gök, R., Mahdi, H., Al-Shukri, H., & Rodgers, A. J. (2008). Crustal structure of Iraq from receiver functions and surface wave dispersion: Implications for understanding the deformation history of the Arabian–Eurasian collision. gji, 172(3), 1179–1187. https://doi.org/10.1111/j.1365-246x.2007.03670.x
Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent-continent collision zone: eastern Turkey. gji, 169(3), 1079–1088. https://doi.org/10.1111/j.1365-246x.2006.03288.x
Gök, R., Sandvol, E., Türkelli, N., Seber, D., & Barazangi, M. (2003). Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. grl, 30(24), 8042. https://doi.org/10.1029/2003GL018020
Gök, Rengin, Kaviani, A., Matzel, E. M., Pasyanos, M. E., Mayeda, K., Yetirmishli, G., El-Hussain, I., Al-Amri, A., Al-Jeri, F., Godoladze, T., & others. (2016). Moment magnitudes of local/regional events from 1D coda calibrations in the broader Middle East region. bssa, 106(5), 1926–1938. https://doi.org/10.1785/0120160045
Grünthal, G., Bosse, C., Sellami, S., Mayer-Rosa, D., & Giardini, D. (1999). Compilation of the GSHAP regional seismic hazard for Europe, Africa and the Middle East. https://doi.org/10.4401/ag-3782
Hansen, S. E., Gaherty, J. B., Schwartz, S. Y., Rodgers, A. J., & Al-Amri, A. M. (2008). Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007jb005335
Hansen, S. E., Rodgers, A. J., Schwartz, S. Y., & Al-Amri, A. M. (2007). Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth and Planetary Science Letters, 259(3–4), 256–265. https://doi.org/10.1016/j.epsl.2007.04.035
Hatzfeld, D., & Molnar, P. (2010). Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2). https://doi.org/10.1029/2009rg000304
International Seismological Centre. (2020). ISC-EHB dataset. https://doi.org/https://doi.org/10.31905/PY08W6S3
Jackson, J., & McKenzie, D. (1988). The relationship between plate motions and seismic tremors, and the rates of active deformation in the Mediterranean and Middle East: Royal Astronomical Society Geophysical Journal, v. 93. https://doi.org/10.1111/j.1365-246x.1988.tb01387.x
Jafari, A., Ao, S., Jamei, S., & Ghasemi, H. (2023). Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history. Earth-Sci. Rev., 241, 104419. https://doi.org/10.1016/j.earscirev.2023.104419
Karasözen, E., Nissen, E., Bergman, E. A., & Ghods, A. (2019). Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 124(8), 9109–9129. https://doi.org/10.1029/2019jb017336
Karasözen, E., Nissen, E., Bergman, E. A., Johnson, K. L., & Walters, R. J. (2016). Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 121(6), 4553–4574. https://doi.org/10.1002/2016jb012828
Kaviani, A, Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophysical Journal International, 171(1), 399–410. https://doi.org/10.1111/j.1365-246x.2007.03535.x
Kaviani, Ayoub, Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., & Sandvol, E. (2020). Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography. Geophysical Journal International, 221(2), 1349–1365. https://doi.org/10.1093/gji/ggaa075
Kennett, B. L., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x
Khrepy, S. E., Koulakov, I., Gerya, T., Al-Arifi, N., Alajmi, M. S., & Qadrouh, A. N. (2021). Transition from continental rifting to ocanic spreading in the northern Red Sea area. Sci. Rep., 11, 5594. https://doi.org/10.1038/s41598-021-84952-w
Kim, R., Witek, M., Chang, S.-J., Lim, J.-A., Mai, P. M., & Zahran, H. (2023). Isotropic and radially anisotropic S-velocity structure beneath the Arabian plate inferred from surface wave tomography. Tectonophysics, 862, 229968. https://doi.org/https://doi.org/10.1016/j.tecto.2023.229968
Kiuchi, R., Mooney, W. D., & Zahran, H. M. (2019). Ground‐Motion Prediction Equations for Western Saudi Arabia. bssa, 109(6), 2722–2737. https://doi.org/10.1785/0120180302
Koulakov, I., Burov, E., Cloetingh, S., El Khrepy, S., Al-Arifi, N., & Bushenkova, N. (2016). Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion. Tectonophysics, 667, 176–188. https://doi.org/https://doi.org/10.1016/j.tecto.2015.11.022
Kustowski, B., Ekström, G., & Dziewoński, A. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. 113(B6). https://doi.org/10.1029/2007jb005169
Kustowski, B., Ekström, G., & Dziewonski, A. M. (2008). The shear‐wave velocity structure in the upper mantle beneath Eurasia. Geophys. J. Int., 174, 978--992. https://doi.org/10.1111/j.1365-246x.2008.03865.x
Kværna, T., Ringdal, F., & Baadshaug, U. (2007). North Korea’s nuclear test: The capability for seismic monitoring of the North Korean test site. Seismological Research Letters, 78(5), 487–497. https://doi.org/10.1785/gssrl.78.5.487
Laske, G., & Masters, G. (1996). Constraints on global phase velocity maps from long-period polarization data. Journal of Geophysical Research: Solid Earth, 101(B7), 16059–16075. https://doi.org/10.1029/96jb00526
Laske, G., Masters., G., Ma, Z., & Pasyanos, M. (2012). Update on CRUST1.0 – A 1-degree Global Model of Earth’s Crust. EGU General Assembly Geophys. Res. Abstracts, 15, EGU2012-3743–1.
Le Pichon, X., & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1–2), 1–42. https://doi.org/10.1016/0040-1951(79)90131-8
Le Pichon, X., & Kreemer, C. (2010). The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323–351. https://doi.org/10.1146/annurev-earth-040809-152419
Lebedev, S., & van der Hilst, R. D. (2008). Global upper‐mantle tomography with the automated multimode inversion of surface and S wave forms. Geophys. J. Int., 173, 505--518. https://doi.org/10.1111/j.1365-246x.2008.03721.x
Lei, W., Ruan, Y., Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., & Pugmire, D. (2020). Global Adjoint Tomography – Model GLAD-M25. Geophys. J. Int., 223(1), 1–21. https://doi.org/10.1093/gji/ggaa253
Lekić, V., & Romanowicz, B. (2011). Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophysical Journal International, 185(2), 799–831. https://doi.org/10.1111/j.1365-246x.2011.04969.x
Li, X.-D., & Romanowicz, B. (1996). Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. 101(B10), 22245–22272. https://doi.org/10.1029/96JB01306
Lim, J. ‐A., Chang, S. ‐J., Mai, P. M., & Zahran, H. (2020). Asthenospheric flow of plume material beneath Arabia inferred from S wave traveltime tomography. Journal of Geophysical Research: Solid Earth, 125, e2020JB019668. https://doi.org/https://doi.org/10.1029/2020JB019668
Maggi, A., Jackson, J., Priestley, K., & Baker, C. (2000). A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? Geophysical Journal International, 143(3), 629–661. https://doi.org/10.1046/j.1365-246x.2000.00254.x
Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3), 1068–1080. https://doi.org/10.1111/j.1365-246x.2005.02505.x
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., & others. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719. https://doi.org/10.1029/1999jb900351
McKenzie, D. (2020). The structure of the lithosphere and upper mantle beneath the Eastern Mediterranean and Middle East. Mediterranean Geoscience Reviews, 2, 311–326. https://doi.org/https://doi.org/10.1007/s42990-020-00038-1
McKenzie, Dan. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109–185. https://doi.org/10.1111/j.1365-246x.1972.tb02351.x
McKenzie, DP. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239–243. https://doi.org/10.1038/226239a0
McNamara, D., & Walter, W. (1997). Rayleigh wave group velocity dispersion across Northern Africa, Southern Europe and the Middle East [Techreport]. Lawrence Livermore National Lab., CA (United States).
Mégnin, C., & Romanowicz, B. (2000). The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. gji, 143(3), 709–728. https://doi.org/10.1046/j.1365-246x.2000.00298.x
Meier, T., Becker, D., Endrun, B., Rische, M., Bohnhoff, M., Stöckhert, B., & Harjes, H. P. (2007). A model for the Hellenic subduction zone in the area of Crete based on seismological investigations. Geological Society, London, Special Publications, 291, 183–199. https://doi.org/10.1144/sp291.9
Mokhtar, T. A., & Al-Saeed, M. M. (1994). Shear wave velocity structures of the Arabian Peninsula. Tectonophysics, 230(1–2), 105–125. https://doi.org/10.1016/0040-1951(94)90149-x
Montelli, R., Nolet, G., Masters, G., Dahlen, F. A., & Hung, S.-H. (2004). Global P and PP traveltime tomography: rays versus waves. gji, 158, 637–654. https://doi.org/10.1111/j.1365-246X.2004.02346.x
Moufti, M. R., & Németh, K. (2016). Harrat Rahat: The Geoheritage Value of the Youngest Long-Lived Volcanic Field in the Kingdom of Saudi Arabia. In Geoheritage of Volcanic Harrats in Saudi Arabia (pp. 33–120). Springer International Publishing. https://doi.org/10.1007/978-3-319-33015-0_3
Mukhopadhyay, B., Mogren, S., Mukhopadhyay, M., & Dasgupta, S. (2013). Incipient status of dyke intrusion in top crust–evidences from the Al-Ays 2009 earthquake swarm, Harrat Lunayyir, SW Saudi Arabia. Geomatics, Natural Hazards and Risk, 4(1), 30–48. https://doi.org/10.1080/19475705.2012.663794
Myers, S. C., Begnaud, M. L., Ballard, S., Pasyanos, M. E., Phillips, W. S., Ramirez, A. L., Antolik, M. S., Hutchenson, K. D., Dwyer, J. J., Rowe, C. A., & others. (2010). A crust and upper-mantle model of Eurasia and North Africa for Pn travel-time calculation. bssa, 100(2), 640–656. https://doi.org/10.1785/0120090198
Nissen, E., Jackson, J., Jahani, S., & Tatar, M. (2014). Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? Journal of Geophysical Research: Solid Earth, 119(4), 3561–3583. https://doi.org/10.1002/2013jb010796
Nissen, E., Tatar, M., Jackson, J. A., & Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3), 928–944. https://doi.org/10.1111/j.1365-246x.2011.05119.x
Nolet, G., Hello, Y., Van der Lee, S., Bonnieux, S., Ruiz, M. C., Pazmino, N. A., Deschamps, A., Regnier, M. M., Font, Y., Chen, Y. J., & Simons, F. J. (2019). Imaging the Galápagos mantle plume with an unconventional application of floating seismometers. Scientific Reports, 9, 1326. https://doi.org/10.1038/s41598-018-36835-w
Nolet, G., & van der Lee, S. (2022). Error estimates for seismic body wave delay times in the ISC-EHB Bulletin. Geophys. J. Int., 231, 1739–1749. https://doi.org/10.1093/gji/ggac282
Nolet, Guust. (2008). A breviary of seismic tomography. A Breviary of Seismic Tomography, by Guust Nolet, Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/cbo9780511984709
Pallister, J. S., McCausland, W. A., Jónsson, S., Lu, Z., Zahran, H. M., El Hadidy, S., Aburukbah, A., Stewart, I. C., Lundgren, P. R., White, R. A., & others. (2010). Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nature Geoscience, 3(10), 705–712. https://doi.org/10.1038/ngeo966
Parisi, L., Augustin, N., Trippanera, D., Kirk, H., Dannowski, A., Matrau, R., Fittipaldi, M., Nobile, A., Zielke, O., Valero Cano, E., Hoogewerf, G., Aspiotis, T., Manzo-Vega, S., Espindola Carmona, A., Barreto, A., Juchem, M., Suhendi, C., Schmidt-Aursch, M., Mai, P. M., & Jónsson, S. (2024). The First Network of Ocean Bottom Seismometers in the Red Sea to Investigate the Zabargad Fracture Zone. Seismica, 3(1), 104698. https://doi.org/https://doi.org/10.26443/seismica.v3i1.729
Park, Y., Nyblade, A. A., Rodgers, A. J., & Al-Amri, A. (2007). Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: Implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield. ggg, 8, Q06021. https://doi.org/10.1029/2006GC001566
Park, Yongcheol, Nyblade, A. A., Rodgers, A. J., & Al-Amri, A. (2008). S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochemistry, Geophysics, Geosystems, 9(7). https://doi.org/10.1029/2007gc001895
Pasyanos, M. E., Tarabulsi, Y. M., Al-Hadidy, S. Y., Raddadi, W. W., Mousa, A. D., El-Hussain, I., Al-Jeri, F., Al-Shukri, H., & Gök, R. (2021). Improved lithospheric attenuation structure of the Arabian Peninsula through the use of national network data. Arab J Geosci , 14(914). https://doi.org/10.1007/s12517-021-07294-x
Pasyanos, M. E., & Walter, W. R. (2002). Crust and upper‐mantle structure of North Africa, Europe and the Middle East from inversion of surface waves . Geophysical Journal International, 149, 463--48. https://doi.org/10.1046/j.1365-246x.2002.01663.x
Pasyanos, Michael E, Walter, W. R., & Hazler, S. E. (2001). A surface wave dispersion study of the Middle East and North Africa for monitoring the Comprehensive Nuclear-Test-Ban Treaty. In Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves (pp. 1445–1474). Springer. https://doi.org/10.1007/978-3-0348-8264-4_7
Pasyanos, Michael E, Walter, W. R., & Matzel, E. M. (2009). A simultaneous multiphase approach to determine P-wave and S-wave attenuation of the crust and upper mantle. bssa, 99(6), 3314–3325. https://doi.org/10.1785/0120090061
Piromallo, C., & Morelli, A. (2003). P wave tomography of the mantle under the Alpine‐Mediterranean area. Journal of Geophysical Research, 108, 2065. https://doi.org/10.1029/2002jb001757
Portner, D. E., Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Qzacar, A. (2018). Subduction termination through progressive slab deformation across Eastern Mediterranean subduction zones from updated P‐wave tomography beneath Anatolia. Geosphere, 14, 907–925. https://doi.org/10.1130/ges01617.1
Reilinger, R., & McClusky, S. (2011). Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. gji, 186, 971–979. https://doi.org/10.1111/j.1365-246X.2011.05133.x
Reilinger, Robert, McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., & others. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb004051
Richards, P. G., & Kim, W.-Y. (2007). Seismic signature. Nature Physics, 3(1), 4–6. https://doi.org/10.1038/nphys495
Ring, U., Glodny, J., Thomas Will, T., & Thomson, S. (2010). The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annu. Rev. Earth Planet. Sci., 38, 45--76. https://doi.org/10.1146/annurev.earth.050708.170910
Ring, Uwe, Glodny, J., Will, T., & Thomson, S. (2010). The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annual Review of Earth and Planetary Sciences, 38, 45–76. https://doi.org/10.1146/annurev.earth.050708.170910
Ritsema, J, Deuss, A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. gji, 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246x.2010.04884.x
Ritsema, Jeroen, Rivera, L. A., Komatitsch, D., Tromp, J., & van Heijst, H.-J. (2002). Effects of crust and mantle heterogeneity on PP/P and SS/S amplitude ratios. Geophysical Research Letters, 29(10), 72–1. https://doi.org/10.1029/2001GL013831
Ritzwoller, M. H., Barmin, M. P., Villasenäor, A., Levshin, A. L., Engdahl, E. R., Spakman, W., & Trampert, J. (1999). Construction of a 3-DP and S model of the crust and upper mantle to improve regional locations in W. China, Central Asia, and parts of the Middle East. Proceedings of the 21th Annual Seismic Research Symposium on Monitoring a Comprehensive Test-Ban Treaty, DoD and DoE, 656–665. https://doi.org/10.21236/ada405941
Rodgers, A. J., Krischer, L., Afanasiev, M., Boehm, C., Doody, C., & Simmons, N. (2024). Adjoint Waveform Tomography for Crustal and Upper Mantle Structure of the Middle East and Southwest Asia for Improved Waveform Simulations Using Openly Available Broadband Data. bssa. https://doi.org/https://doi.org/10.1785/0120230248
Rovden, L. (1993). The tectonic expression of slab pull at continental convergent boundaries. Tectonics, 12(2), 3. https://doi.org/10.1029/92tc02248
Sanborn, C. J., Cormier, V. F., & Fitzpatrick, M. (2017). Combined effects of deterministic and statistical structure on high-frequency regional seismograms. Geophysical Journal International, 210(2), 1143–1159. https://doi.org/10.1093/gji/ggx219
Sandvol, E., Seber, D., Barazangi, M., Vernon, F., Mellors, R., & Al-Amri, A. (1998). Lithospheric seismic velocity discontinuities beneath the Arabian Shield. grl, 25, 2873–2876. https://doi.org/10.1029/98gl02214
Sanfilippo, A., Cai, (Merry) Yue, Jácome, A. P. G., & Ligi, M. (2019). Geochemistry of the Lunayyir and Khaybar Volcanic Fields (Saudi Arabia): Insights into the Origin of Cenozoic Arabian Volcanism. In N. M. A. Rasul & I. C. F. Stewart (Eds.), Geological Setting, Palaeoenvironment and Archaeology of the Red Sea (pp. 389–415). Springer International Publishing. https://doi.org/10.1007/978-3-319-99408-6_18
Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. gji, 194, 417–449. https://doi.org/10.1093/gji/ggt095
Schettino, A., Macchiavelli, C., Pierantoni, P. P., Zanoni, D., & Rasul, N. (2016). Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophys. J. Int. , 207, 457–480. https://doi.org/10.1093/gji/ggw280
Sen, P. A., Temel, A., & Gourgaud, A. (2004). Petrogenetic modeling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol. Mag., 141, 81–98. https://doi.org/10.1017/S0016756803008550
Şengör, A., Görür, N., & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation, and Sedimentation, Kevin T. Biddle, Nicholas Christie-Blick. Special Publications of SEPM. https://doi.org/https://doi.org/10.2110/pec.85.37.0211
Shapiro, N. M., & Ritzwoller, M. H. (2002). Monte‐Carlo inversion for a global shear‐velocity model of the crust and upper mantle. Geophysical Journal International, 151, 88--105. https://doi.org/10.1046/j.1365-246x.2002.01742.x
Shedlock, K. M., Giardini, D., Grunthal, G., & Zhang, P. (2000). The GSHAP global seismic hazard map. Seismological Research Letters, 71(6), 679–686. https://doi.org/10.1785/gssrl.71.6.679
Simmons, N A, Myers, S. C., Morency, C., Chiang, A., & Knapp, D. R. (2021). SPiRaL: A Multiresolution Global Tomography Model of Seismic Wave Speeds and Radial Anisotropy Variations in the Crust and Mantle. Geophysical Journal International, 227(2), 1366–1391. https://doi.org/10.1093/gji/ggab277
Simmons, Nathan A, Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. 117(B10). https://doi.org/10.1029/2012jb009525
Sonder, L. J., & England, P. C. (1989). Effects of a temperature-dependent rheology on large-scale continental extension. Journal of Geophysical Research: Solid Earth, 94(B6), 7603–7619. https://doi.org/10.1016/0148-9062(90)90013-r
Spakman, W., Wortel, M. J. R., & Vlaar, N. J. (1988). The hellenic subduction zone: A tomographic image and its geodynamic implications. Geophysical Research Letters, 15, 60–63. https://doi.org/10.1029/gl015i001p00060
Sukhovich, A., Bonnieux, S., Hello, Y., Irisson, J.-O., Simons, F. J., & Nolet, G. (2015). Seismic monitoring in the oceans by autonomous floats. Nature Communications, 6(1), 8027. https://doi.org/10.1038/ncomms9027
Tang, Z., Julià, J., Zahran, H., & Mai, P. M. (2016). The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics, 680, 8–27. https://doi.org/10.1016/j.tecto.2016.05.004
Tang, Z., Mai, P. M., Chang, S.-J., & Zahran, H. (2018). Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography. Earth and Planetary Science Letters, 495, 24–37. https://doi.org/10.1016/j.epsl.2018.05.011
Tang, Z., Mai, P. M., Julià, J., & Zahran, H. (2019). Shear velocity structure beneath Saudi Arabia from the joint inversion of P and S wave receiver functions, and Rayleigh wave group velocity dispersion data. Journal of Geophysical Research: Solid Earth, 124(5), 4767–4787. https://doi.org/10.1029/2018jb017131
Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the southern California crust. Science, 325(5943), 988–992. https://doi.org/10.1126/science.1175298
Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266. https://doi.org/10.1190/1.1441754
Tavakoli, B., & Ghafory-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annali Di Geofisica, 42(6), 1013–1021. https://doi.org/10.4401/ag-3781
Tian, Y., Hung, S.-H., Nolet, G., Montelli, R., & Dahlen, F. A. (2007). Dynamic ray tracing and traveltime corrections for global seismic tomography. Journal of Computational Physics, 226(1), 672–687. https://doi.org/10.1016/j.jcp.2007.04.025
Tkalčić, H., Pasyanos, M. E., Rodgers, A. J., Gök, R., Walter, W., & Al-Amri, A. (2006). A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/10.1029/2005JB004130
Toksöz, M. N., Kuleli, S., Gürbüz, C., Kalafat, D., Bekler, T., Zor, E., Yılmazer, M., Öğütçü, Z., Schultz, C. A., & Harris, D. B. (2003). Calibration of regional seismic stations in the Middle East with shots in Turkey. Proceedings of the 25th Annual Seismic Research Review, 1, 162–171.
Trampert, J., Deschamps, F., Resovsky, J., & Yuen, D. (2004). Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306(5697), 853–856. https://doi.org/10.1126/science.1101996
van der Lee, S., & Nolet, G. (1997). Upper mantle S velocity structure of North America. J. Geophys. Res., 102(B10), 22815–22838. https://doi.org/10.1029/97JB01168
Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. ANNALS OF GEOPHYSICS, 47, 247–306. https://doi.org/10.4401/ag-3276
Viltres, R., Jónsson, S., Alothman, A. O., Liu, S., Leroy, S., Masson, F., Doubre, S., & Reilinger, R. (2022). Present-day motion of the Arabian plate. Tectonics, 41, e2021TC007013. https://doi.org/https://doi.org/10.1029/2021TC
Voronin, S., Mikesell, D., Slezak, I., & Nolet, G. (2014). Solving large tomographic linear systems: size reduction and error estimation. Geophysical Journal International, 199(1), 276–285. https://doi.org/10.1093/gji/ggu242
Voytan, D. P., Lay, T., Chaves, E. J., & Ohman, J. T. (2019). Yield estimates for the six north Korean nuclear tests from teleseismic P wave modeling and intercorrelation of P and Pn recordings. Journal of Geophysical Research: Solid Earth, 124(5), 4916–4939. https://doi.org/10.1029/2019jb017418
Walter, W., Harris, D., & Myers, S. (1997). Seismic discrimination between earthquakes and explosions in the Middle East and North Africa [Techreport]. Lawrence Livermore National Lab., CA (US).
Walter, W. R., Matzel, E., Pasyanos, M. E., Harris, D. B., Gok, R., & Ford, S. R. (2007). Empirical observations of earthquake-explosion discrimination using P/S ratios and implications for the sources of explosion S-waves [Techreport]. LAWRENCE LIVERMORE NATIONAL LAB CA.
Wei, W., Zhao, D., Wei, F., Bai, X., & Xu, J. (2019). Mantle Dynamics of the Eastern Mediterranean and Middle East: Constraints From P‐Wave Anisotropic Tomography. Geochemistry, Geophysics, Geosystems, 20, 4505–4530. https://doi.org/10.1029/2019GC008512
Weinstein, Y., Navon, O., Altherr, R., & Stein, M. (2006). The Role of Lithospheric Mantle Heterogeneity in the Generation of Plio- Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam (Israel). Journal of Petrology, 47(5), 1017–1050. https://doi.org/10.1093/petrology/egl003
Witek, M., Lee, S.-M., Chang, S.-J., & van der Lee, S. (2023). Waveform inversion of large data sets for radially anisotropic Earth structure. Geophys. J. Int., 232, 1311–1339. https://doi.org/10.1093/gji/ggac393
Woodhouse, J. H., & Dziewoński, A. M. (1984). Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms. jgr, 89, 5953–5986.
Woodhouse, J., & Wong, Y. (1986). Amplitude, phase and path anomalies of mantle waves. Geophys. J. R. Astr. Soc., 87, 753–773. https://doi.org/10.1111/j.1365-246X.1986.tb01970.x
Wortel, M., & Spakman, W. (2003). Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917. https://doi.org/10.1126/science.290.5498.1910
Zhu, H., Bozdağ, E., Peter, D., & Tromp, J. (2012). Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience, 5(7), 493. https://doi.org/10.1038/ngeo1501
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ebru Bozdağ, Susini Desilva, Guust Nolet, Ridvan Orsvuran, Rengin Gok, Yahya M. Tarabulsi, Ahmed Hosny, Khalid Yousef, Abdullah Mousa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Air Force Research Laboratory
Grant numbers FA9453-19-C-0068 -
National Science Foundation
Grant numbers EAR1945565 -
National Science Foundation
Grant numbers OAC-2103621