Heterogeneous high frequency seismic radiation from complex ruptures
DOI:
https://doi.org/10.26443/seismica.v3i2.1351Keywords:
normal stress bump, fault geometry, laboratory seismology, peak ground acceleration, enhanced high frequency radiationAbstract
Fault geometric heterogeneities such as roughness, stepovers, or other irregularities are known to affect the spectra of radiated waves during an earthquake. To investigate the effect of normal stress heterogeneity on radiated spectra, we utilized a poly(methyl methacrylate) (PMMA) laboratory fault with a single, localized bump. By varying the normal stress on the bump and the fault-average normal stress, we produced earthquake-like ruptures that ranged from smooth, continuous ruptures to complex ruptures with variable rupture propagation velocity, slip distribution, and stress drop. High prominence bumps produced complex events that radiated more high frequency energy, relative to low frequency energy, than continuous events without a bump. In complex ruptures, the high frequency energy showed significant spatial variation correlated with heterogeneous peak slip rate and maximum local stress drop caused by the bump. Continuous ruptures emitted spatially uniform bursts of high frequency energy. Near-field peak ground acceleration (PGA) measurements of complex ruptures show nearly an order-of-magnitude higher PGA near the bump than elsewhere. We propose that for natural faults, geometric heterogeneities may be a plausible explanation for commonly observed order-of-magnitude variations in near-fault PGA.
References
Andrews, D. J. (2010). Ground motion hazard from supershear rupture. Tectonophysics, 493(3), 216–221. https://doi.org/10.1016/j.tecto.2010.02.003 DOI: https://doi.org/10.1016/j.tecto.2010.02.003
Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., Ji, C., Johnston, M. J. S., Langbein, J., Lienkaemper, J. J., Michael, A. J., Murray, J. R., Nadeau, R. M., Reasenberg, P. A., Reichle, M. S., Roeloffs, E. A., Shakal, A., Simpson, R. W., & Waldhauser, F. (2005). Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437(7061), 969–974. https://doi.org/10.1038/nature04067 DOI: https://doi.org/10.1038/nature04067
Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng, T., & Huang, H. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(3), 200–205. https://doi.org/10.1038/s41561-018-0297-z DOI: https://doi.org/10.1038/s41561-018-0297-z
Beeler, N. M. (2021). Characterizing fault roughness—Are faults rougher at long or short wavelengths? [Open-File Report 2020-1134]. US Geological Survey. https://doi.org/10.3133/ofr20201134 DOI: https://doi.org/10.3133/ofr20201134
Ben-David, O., Cohen, G., & Fineberg, J. (2010). The Dynamics of the Onset of Frictional Slip. Science, 330(6001), 211–214. https://doi.org/10.1126/science.1194777 DOI: https://doi.org/10.1126/science.1194777
Boatwright, J. (1988). The seismic radiation from composite models of faulting. Bulletin of the Seismological Society of America, 78(2), 489–508. https://doi.org/10.1785/BSSA0780020489
Boatwright, J., & Quin, H. (1986). The Seismic Radiation from a 3-D Dynamic Model of a Complex Rupture Process. Part I: Confined Ruptures. In Earthquake Source Mechanics (pp. 97–109). American Geophysical Union (AGU). https://doi.org/https://doi.org/10.1029/GM037p0097 DOI: https://doi.org/10.1029/GM037p0097
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997
Buijze, L., Guo, Y., Niemeijer, A. R., Ma, S., & Spiers, C. J. (2021). Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale. Earth and Planetary Science Letters, 554, 116652. https://doi.org/10.1016/j.epsl.2020.116652 DOI: https://doi.org/10.1016/j.epsl.2020.116652
Candela, T., & Brodsky, E. E. (2016). The minimum scale of grooving on faults. Geology, 44(8), 603–606. https://doi.org/10.1130/G37934.1 DOI: https://doi.org/10.1130/G37934.1
Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020430. https://doi.org/https://doi.org/10.1029/2020JB020430 DOI: https://doi.org/10.1029/2020JB020430
Cebry, S. B. L., Ke, C.-Y., & McLaskey, G. C. (2022). The Role of Background Stress State in Fluid-Induced Aseismic Slip and Dynamic Rupture on a 3-m Laboratory Fault. Journal of Geophysical Research: Solid Earth, 127(8), e2022JB024371. https://doi.org/10.1029/2022JB024371 DOI: https://doi.org/10.1029/2022JB024371
Cebry, Sara B. L., Sorhaindo, K., & McLaskey, G. C. (2023). Laboratory Earthquake Rupture Interactions With a High Normal Stress Bump. Journal of Geophysical Research: Solid Earth, 128(11), e2023JB027297. https://doi.org/10.1029/2023JB027297 DOI: https://doi.org/10.1029/2023JB027297
Cebry, Sara Beth L., Ke, C.-Y., Shreedharan, S., Marone, C., Kammer, D. S., & McLaskey, G. C. (2022). Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering. Nature Communications, 13(1), 6839. https://doi.org/10.1038/s41467-022-34397-0 DOI: https://doi.org/10.1038/s41467-022-34397-0
Cochran, E. S., Page, M. T., Van Der Elst, N. J., Ross, Z. E., & Trugman, D. T. (2023). Fault Roughness at Seismogenic Depths and Links to Earthquake Behavior. The Seismic Record, 3(1), 37–47. https://doi.org/10.1785/0320220043 DOI: https://doi.org/10.1785/0320220043
Courboulex, F., Dujardin, A., Vallee, M., Delouis, B., Sira, C., Deschamps, A., Honore, L., & Thouvenot, F. (2013). High-Frequency Directivity Effect for an Mw 4.1 Earthquake, Widely Felt by the Population in Southeastern France. Bulletin of the Seismological Society of America, 103(6), 3347–3353. https://doi.org/10.1785/0120130073 DOI: https://doi.org/10.1785/0120130073
Das, S., & Aki, K. (1977). Fault plane with barriers: A versatile earthquake model. Journal of Geophysical Research, 82(36), 5658–5670. https://doi.org/10.1029/JB082i036p05658 DOI: https://doi.org/10.1029/JB082i036p05658
Dong, P., Xia, K., Xu, Y., Elsworth, D., & Ampuero, J.-P. (2023). Laboratory earthquakes decipher control and stability of rupture speeds. Nature Communications, 14(1), 2427. https://doi.org/10.1038/s41467-023-38137-w DOI: https://doi.org/10.1038/s41467-023-38137-w
Duan, B., Liu, Z., & Elliott, A. J. (2019). Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest China: 2. The Realistically Complex Fault Geometry. Tectonics, 38(3), 1120–1137. https://doi.org/10.1029/2018TC005196 DOI: https://doi.org/10.1029/2018TC005196
Dunham, E. M., Belanger, D., Cong, L., & Kozdon, J. E. (2011). Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults. Bulletin of the Seismological Society of America, 101(5), 2308–2322. https://doi.org/10.1785/0120100076 DOI: https://doi.org/10.1785/0120100076
Dunham, Eric M., & Archuleta, R. J. (2005). Near-source ground motion from steady state dynamic rupture pulses. Geophysical Research Letters, 32(3). https://doi.org/10.1029/2004GL021793 DOI: https://doi.org/10.1029/2004GL021793
Dunham, Eric M., Favreau, P., & Carlson, J. M. (2003). A Supershear Transition Mechanism for Cracks. Science, 299(5612), 1557–1559. https://doi.org/10.1126/science.1080650 DOI: https://doi.org/10.1126/science.1080650
Fang, Z., & Dunham, E. M. (2013). Additional shear resistance from fault roughness and stress levels on geometrically complex faults. Journal of Geophysical Research: Solid Earth, 118(7), 3642–3654. https://doi.org/https://doi.org/10.1002/jgrb.50262 DOI: https://doi.org/10.1002/jgrb.50262
Ji, C., & Archuleta, R. J. (2021). Two Empirical Double-Corner-Frequency Source Spectra and Their Physical Implications. Bulletin of the Seismological Society of America, 111(2), 737–761. https://doi.org/10.1785/0120200238 DOI: https://doi.org/10.1785/0120200238
Jia, Z., Jin, Z., Marchandon, M., Ulrich, T., Gabriel, A.-A., Fan, W., Shearer, P., Zou, X., Rekoske, J., Bulut, F., Garagon, A., & Fialko, Y. (2023). The complex dynamics of the 2023 Kahramanmaraş, Turkey, M w 7.8-7.7 earthquake doublet. Science, 381(6661), 985–990. https://doi.org/10.1126/science.adi0685 DOI: https://doi.org/10.1126/science.adi0685
Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2), 1002–1015. https://doi.org/10.1093/gji/ggu030 DOI: https://doi.org/10.1093/gji/ggu030
Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive‐zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research: Solid Earth, 120(2), 1053–1079. https://doi.org/10.1002/2014JB011642 DOI: https://doi.org/10.1002/2014JB011642
Lee, S.-J., Chen, H.-W., & Ma, K.-F. (2007). Strong ground motion simulation of the 1999 Chi-Chi, Taiwan earthquake from a realistic three-dimensional source and crustal structure. Journal of Geophysical Research: Solid Earth, 112(B6). https://doi.org/https://doi.org/10.1029/2006JB004615 DOI: https://doi.org/10.1029/2006JB004615
Loh, C.-H., Lee, Z.-K., Wu, T.-C., & Peng, S.-Y. (2000). Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999. Earthquake Engineering & Structural Dynamics, 29(6), 867–897. https://doi.org/https://doi.org/10.1002/(SICI)1096-9845(200006)29:6<867::AID-EQE943>3.0.CO;2-E DOI: https://doi.org/10.1002/(SICI)1096-9845(200006)29:6<867::AID-EQE943>3.0.CO;2-E
Madariaga, R., Ampuero, J. P., & Adda-Bedia, M. (2006). Seismic radiation from simple models of earthquakes. Geophysical Monograph Series, 170, 223–236. https://doi.org/10.1029/170GM23 DOI: https://doi.org/10.1029/170GM23
Madariaga, Raul. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. https://doi.org/10.1785/BSSA0660030639 DOI: https://doi.org/10.1785/BSSA0660030639
Mai, P. M., Aspiotis, T., Aquib, T. A., Cano, E. V., Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K. H., Ribot, M., Parisi, L., Suhendi, C., Tang, Y., Yalcin, B., Avşar, U., Klinger, Y., & Jónsson, S. (2023). The Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and Analyses. The Seismic Record, 3(2), 105–115. https://doi.org/10.1785/0320230007 DOI: https://doi.org/10.1785/0320230007
Marty, S., Passelègue, F. X., Aubry, J., Bhat, H. S., Schubnel, A., & Madariaga, R. (2019). Origin of High‐Frequency Radiation During Laboratory Earthquakes. Geophysical Research Letters, 46(7), 3755–3763. https://doi.org/10.1029/2018GL080519 DOI: https://doi.org/10.1029/2018GL080519
McLaskey, G. C., & Glaser, S. D. (2010). Hertzian impact: Experimental study of the force pulse and resulting stress waves. The Journal of the Acoustical Society of America, 128(3), 1087–1096. https://doi.org/10.1121/1.3466847 DOI: https://doi.org/10.1121/1.3466847
McLaskey, G. C., & Lockner, D. A. (2018). Shear failure of a granite pin traversing a sawcut fault. International Journal of Rock Mechanics and Mining Sciences, 110, 97–110. https://doi.org/10.1016/j.ijrmms.2018.07.001 DOI: https://doi.org/10.1016/j.ijrmms.2018.07.001
McLaskey, G. C., Lockner, D. A., Kilgore, B. D., & Beeler, N. M. (2015). A Robust Calibration Technique for Acoustic Emission Systems Based on Momentum Transfer from a Ball Drop. Bulletin of the Seismological Society of America, 105(1), 257–271. https://doi.org/10.1785/0120140170 DOI: https://doi.org/10.1785/0120140170
McLaskey, G. C., & Yamashita, F. (2017). Slow and fast ruptures on a laboratory fault controlled by loading characteristics. Journal of Geophysical Research: Solid Earth, 122(5), 3719–3738. https://doi.org/10.1002/2016JB013681 DOI: https://doi.org/10.1002/2016JB013681
Miyake, H. (2003). Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. Bulletin of the Seismological Society of America, 93(6), 2531–2545. https://doi.org/10.1785/0120020183 DOI: https://doi.org/10.1785/0120020183
Oral, E., Ampuero, J. P., Ruiz, J., & Asimaki, D. (2022). A Method to Generate Initial Fault Stresses for Physics-Based Ground-Motion Prediction Consistent with Regional Seismicity. Bulletin of the Seismological Society of America, 112(6), 2812–2827. https://doi.org/10.1785/0120220064 DOI: https://doi.org/10.1785/0120220064
Oskin, M. E., Elliott, A. J., Duan, B., Lui-Zeng, J., Lui, Z., Shao, Y., & et, al. (2015, November). Earthquake gates: Linking rupture length to geologically constrained dynamics of fault complexity, with examples from the Altyn Tagh and San Andreas faults. Earthquake Gates: Linking Rupture Length to Geologically Constrained Dynamics of Fault Complexity, with Examples from the Altyn Tagh and San Andreas Faults.
Ozacar, A. A., & Beck, S. L. (2004). The 2002 Denali Fault and 2001 Kunlun Fault Earthquakes: Complex Rupture Processes of Two Large Strike-Slip Events. Bulletin of the Seismological Society of America, 94(6B), S278–S292. https://doi.org/10.1785/0120040604 DOI: https://doi.org/10.1785/0120040604
Rodriguez Padilla, A. M., Oskin, M. E., Rockwell, T. K., Delusina, I., & Singleton, D. M. (2022). Joint earthquake ruptures of the San Andreas and San Jacinto faults, California, USA. Geology, 50(4), 387–391. https://doi.org/10.1130/G49415.1 DOI: https://doi.org/10.1130/G49415.1
Rousseau, C.-E., & Rosakis, A. J. (2003). On the influence of fault bends on the growth of sub-Rayleigh and intersonic dynamic shear ruptures: INFLUENCE OF FAULTS BENDS ON SHEAR RUPTURES. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002JB002310 DOI: https://doi.org/10.1029/2002JB002310
Rubino, V., Lapusta, N., & Rosakis, A. J. (2022). Intermittent lab earthquakes in dynamically weakening fault gouge. Nature, 606(7916), 922–929. https://doi.org/10.1038/s41586-022-04749-3 DOI: https://doi.org/10.1038/s41586-022-04749-3
Rubino, V., Rosakis, A. J., & Lapusta, N. (2017). Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nature Communications, 8(1), 15991. https://doi.org/10.1038/ncomms15991 DOI: https://doi.org/10.1038/ncomms15991
Sagy, A., Brodsky, E. E., & Axen, G. J. (2007). Evolution of fault-surface roughness with slip. Geology, 35(3), 283–286. https://doi.org/10.1130/G23235A.1 DOI: https://doi.org/10.1130/G23235A.1
Sagy, A., Morad, D., & Lyakhovsky, V. (2024). Can Geometrical Barrier Explain the Mw 7.8 Earthquake in Southern Türkiye on February 2023? Seismological Research Letters, 95(2A), 643–650. https://doi.org/10.1785/0220230280 DOI: https://doi.org/10.1785/0220230280
Selvadurai, P. A. (2019). Laboratory Insight Into Seismic Estimates of Energy Partitioning During Dynamic Rupture: An Observable Scaling Breakdown. Journal of Geophysical Research: Solid Earth, 124(11), 11350–11379. https://doi.org/10.1029/2018JB017194 DOI: https://doi.org/10.1029/2018JB017194
Shi, Z., & Day, S. M. (2013). Rupture dynamics and ground motion from 3-D rough-fault simulations. Journal of Geophysical Research: Solid Earth, 118(3), 1122–1141. https://doi.org/10.1002/jgrb.50094 DOI: https://doi.org/10.1002/jgrb.50094
Steinhardt, W., Dillavou, S., Agajanian, M., Rubinstein, S. M., & Brodsky, E. E. (2023). Seismological Stress Drops for Confined Ruptures Are Invariant to Normal Stress. Geophysical Research Letters, 50(9), e2022GL101366. https://doi.org/10.1029/2022GL101366 DOI: https://doi.org/10.1029/2022GL101366
Trugman, D. T., & Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890–2910. https://doi.org/10.1002/2017JB013971 DOI: https://doi.org/10.1002/2017JB013971
Tsurugi, M., Tanaka, R., Kagawa, T., & Irikura, K. (2020). High‐Frequency Spectral Decay Characteristics of Seismic Records of Inland Crustal Earthquakes in Japan: Evaluation of the fmax and κ Models. Bulletin of the Seismological Society of America, 110(2), 452–470. https://doi.org/10.1785/0120180342 DOI: https://doi.org/10.1785/0120180342
Wu, B. S., & McLaskey, G. C. (2018). Broadband Calibration of Acoustic Emission and Ultrasonic Sensors from Generalized Ray Theory and Finite Element Models. Journal of Nondestructive Evaluation, 37(1), 8. https://doi.org/10.1007/s10921-018-0462-8 DOI: https://doi.org/10.1007/s10921-018-0462-8
Wu, B. S., & McLaskey, G. C. (2019). Contained Laboratory Earthquakes Ranging From Slow to Fast. Journal of Geophysical Research: Solid Earth, 124(10), 10270–10291. https://doi.org/10.1029/2019JB017865 DOI: https://doi.org/10.1029/2019JB017865
Xia, K., Rosakis, A. J., & Kanamori, H. (2004). Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition. Science, 303(5665), 1859–1861. https://doi.org/10.1126/science.1094022 DOI: https://doi.org/10.1126/science.1094022
Yamashita, F., Fukuyama, E., Xu, S., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2021). Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nature Communications, 12(1), 4302. https://doi.org/10.1038/s41467-021-24625-4 DOI: https://doi.org/10.1038/s41467-021-24625-4
Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang, J., & Sun, H. (2023). Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet. Nature Geoscience, 16(11), 1054–1060. https://doi.org/10.1038/s41561-023-01283-3 DOI: https://doi.org/10.1038/s41561-023-01283-3
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sara Cebry, Greg McLaskey
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR-1847139 and EAR-2240375