Imaging microearthquake rupture processes using a dense array in Oklahoma
DOI:
https://doi.org/10.26443/seismica.v3i2.1354Abstract
Both large and small earthquakes rupture in complex ways. However, microearthquakes are often simplified as point sources and their rupture properties are challenging to resolve. We leverage seismic wavefields recorded by a dense array in Oklahoma to image microearthquake rupture processes. We construct machine-learning enabled catalogs and identify four spatially disconnected seismic clusters. These clusters likely delineate near-vertical strike-slip faults. We develop a new approach to use the maximum absolute SH-wave amplitude distributions (S-wave wavefields) to compare microearthquake rupture processes. We focus on one cluster with earthquakes located beneath the dense array and have a local magnitude range of -1.3 to 2.3. The S-wave wavefields of single earthquakes are generally coherent but differ slightly between the low-frequency (<12 Hz) and high-frequency (>12 Hz) bands. The S-wave wavefields are coherent between different earthquakes at low frequencies with average correlation coefficients greater than 0.95. However, the wavefield coherence decreases with increasing frequency for different earthquakes. This reduced coherence is likely due to the rupture differences among individual earthquakes. Our results suggest that earthquake slip of the microearthquakes dominates the radiated S-wave wavefields at higher frequencies. Our method suggests a new direction in resolving small earthquake source attributes using dense seismic arrays without assuming a rupture model.
References
Abercrombie, R. E. (1995). Earthquake source scaling relationships from- 1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research: Solid Earth, 100(B12), 24015–24036. https://doi.org/10.1029/95JB02397 DOI: https://doi.org/10.1029/95JB02397
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131
Abercrombie, R. E., Poli, P., & Bannister, S. (2017). Earthquake directivity, orientation, and stress drop within the subducting plate at the Hikurangi Margin, New Zealand. Journal of Geophysical Research: Solid Earth, 122(12), 10–176. https://doi.org/10.1002/2017JB014935 DOI: https://doi.org/10.1002/2017JB014935
Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula log N = a - bM and its Confidence Limits. Bulletin of the Earthquake Research Institute, 43, 237–239.
Al-Ismail, F., Ellsworth, W. L., & Beroza, G. C. (2023). A Time-Domain Approach for Accurate Spectral Source Estimation with Application to Ridgecrest, California, Earthquakes. Bulletin of the Seismological Society of America, 113(3), 1091–1101. https://doi.org/10.1785/0120220228 DOI: https://doi.org/10.1785/0120220228
Allmann, B. P., & Shearer, P. M. (2007). Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research: Solid Earth, 112(B4). https://doi.org/10.1029/2006JB004395 DOI: https://doi.org/10.1029/2006JB004395
Alt, R. C., & Zoback, M. D. (2017). In Situ Stress and Active Faulting in Oklahoma. Bulletin of the Seismological Society of America, 107(1), 216–228. https://doi.org/10.1785/0120160156 DOI: https://doi.org/10.1785/0120160156
Anderson, K., Sweet, J., & Woodward, B. (2016). IRIS Community Wavefield Experiment in Oklahoma. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/YW_2016
Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., White, M., Reyes, J., Hollis, D., & Barklage, M. (2015). Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1), 370–380. https://doi.org/10.1093/gji/ggv142 DOI: https://doi.org/10.1093/gji/ggv142
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Castro, R. R. (2006). Analysis of the Frequency Dependence of the S-Wave Radiation Pattern from Local Earthquakes in Central Italy. Bulletin of the Seismological Society of America, 96(2), 415–426. https://doi.org/10.1785/0120050066 DOI: https://doi.org/10.1785/0120050066
Chang, H., Abercrombie, R. E., Nakata, N., Pennington, C. N., Kemna, K. B., Cochran, E. S., & Harrington, R. M. (2023). Quantifying Site Effects and Their Influence on Earthquake Source Parameter Estimations Using a Dense Array in Oklahoma. Journal of Geophysical Research: Solid Earth, 128(9), e2023JB027144. https://doi.org/10.1029/2023JB027144 DOI: https://doi.org/10.1029/2023JB027144
Chen, X., & Shearer, P. M. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research, 116(B9), B09309. https://doi.org/10.1029/2011JB008263 DOI: https://doi.org/10.1029/2011JB008263
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM Review, 51(4), 661–703. https://doi.org/10.1137/070710111 DOI: https://doi.org/10.1137/070710111
Cochran, E. S., Ross, Z. E., Harrington, R. M., Dougherty, S. L., & Rubinstein, J. L. (2018). Induced Earthquake Families Reveal Distinctive Evolutionary Patterns Near Disposal Wells. Journal of Geophysical Research: Solid Earth, 123(9), 8045–8055. https://doi.org/10.1029/2018JB016270 DOI: https://doi.org/10.1029/2018JB016270
Darold, A. P., Holland, A. A., Morris, J. K., & Gibson, A. R. (2015). Oklahoma earthquake summary report 2014. Okla. Geol. Surv. Open-File Rept. OF1-2015, 1–46.
Dougherty, S. L., Cochran, E. S., & Harrington, R. M. (2019). The LArge‐n Seismic Survey in Oklahoma (LASSO) Experiment. Seismological Research Letters. https://doi.org/10.1785/0220190094 DOI: https://doi.org/10.1785/0220190094
Dreger, D., Nadeau, R. M., & Chung, A. (2007). Repeating earthquake finite source models: Strong asperities revealed on the San Andreas Fault. Geophysical Research Letters, 34(23), 2007GL031353. https://doi.org/10.1029/2007GL031353 DOI: https://doi.org/10.1029/2007GL031353
Ellsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942 DOI: https://doi.org/10.1126/science.1225942
Fan, W., & McGuire, J. J. (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma. Geophysical Journal International, 214(2), 1072–1087. https://doi.org/10.1093/gji/ggy203 DOI: https://doi.org/10.1093/gji/ggy203
Fialko, Y., & Jin, Z. (2021). Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence. Nature Geoscience, 14(7), 513–518. https://doi.org/10.1038/s41561-021-00758-5 DOI: https://doi.org/10.1038/s41561-021-00758-5
Gable, S. L., & Huang, Y. (2024). New Estimates of Magnitude-Frequency Distribution and b-Value Using Relative Magnitudes for the 2011 Prague, Oklahoma Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 129(1), e2023JB026455. https://doi.org/10.1029/2023JB026455 DOI: https://doi.org/10.1029/2023JB026455
Geffers, G.-M., Main, I. G., & Naylor, M. (2022). Biases in estimating b-values from small earthquake catalogues: how high are high b-values? Geophysical Journal International, 229(3), 1840–1855. https://doi.org/10.1093/gji/ggac028 DOI: https://doi.org/10.1093/gji/ggac028
Goebel, T. H. W., Hosseini, S. M., Cappa, F., Hauksson, E., Ampuero, J. P., Aminzadeh, F., & Saleeby, J. B. (2016). Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophysical Research Letters, 43(3), 1092–1099. https://doi.org/10.1002/2015GL066948 DOI: https://doi.org/10.1002/2015GL066948
Goebel, Thomas H.W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45(9), 815–818. https://doi.org/10.1130/G39147.1 DOI: https://doi.org/10.1130/G39147.1
Goebel, T.H.W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61. https://doi.org/10.1016/j.epsl.2017.05.011 DOI: https://doi.org/10.1016/j.epsl.2017.05.011
Gong, J., Fan, W., & Parnell‐Turner, R. (2022). Microseismicity Indicates Atypical Small‐Scale Plate Rotation at the Quebrada Transform Fault System, East Pacific Rise. Geophysical Research Letters, 49(3), e2021GL097000. https://doi.org/10.1029/2021GL097000 DOI: https://doi.org/10.1029/2021GL097000
Gong, J., Fan, W., & Parnell-Turner, R. (2023). Machine Learning-Based New Earthquake Catalog Illuminates On-Fault and Off-Fault Seismicity Patterns at the Discovery Transform Fault, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 24(9), e2023GC011043. https://doi.org/10.1029/2023GC011043 DOI: https://doi.org/10.1029/2023GC011043
Hardebeck, J. (2013). Constraining Epidemic Type Aftershock Sequence (ETAS) parameters from the Uniform California Earthquake Rupture Forecast, Version 3 catalog and validating the ETAS model for magnitude 6.5 or greater earthquakes. US Geol. Surv. Open-File Report.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B. (2010). Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1–4), 3–15. https://doi.org/10.1016/j.tecto.2009.07.023 DOI: https://doi.org/10.1016/j.tecto.2009.07.023
Herrmann, R. B., Benz, H., & Ammon, C. J. (2011). Monitoring the Earthquake Source Process in North America. Bulletin of the Seismological Society of America, 101(6), 2609–2625. https://doi.org/10.1785/0120110095 DOI: https://doi.org/10.1785/0120110095
Horton, S. (2012). Disposal of Hydrofracking Waste Fluid by Injection into Subsurface Aquifers Triggers Earthquake Swarm in Central Arkansas with Potential for Damaging Earthquake. Seismological Research Letters, 83(2), 250–260. https://doi.org/10.1785/gssrl.83.2.250 DOI: https://doi.org/10.1785/gssrl.83.2.250
Ibs-von Seht, M., & Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), 250–259. https://doi.org/10.1785/BSSA0890010250 DOI: https://doi.org/10.1785/BSSA0890010250
Johnson, C. W., Kilb, D., Baltay, A., & Vernon, F. (2020). Peak ground velocity spatial variability revealed by dense seismic array in southern California. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB019157. https://doi.org/10.1029/2019JB019157 DOI: https://doi.org/10.1029/2019JB019157
Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104(1), 117–133. https://doi.org/10.1111/j.1365-246X.1991.tb02498.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb02498.x
Kanamori, H., & Rivera, L. (2004). Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop. Bulletin of the Seismological Society of America, 94(1), 314–319. https://doi.org/10.1785/0120030159 DOI: https://doi.org/10.1785/0120030159
Kennett, B. L. N. (1986). Wavenumber and wavetype coupling in laterally heterogeneous media. Geophysical Journal International, 87(2), 313–331. https://doi.org/10.1111/j.1365-246X.1986.tb06626.x DOI: https://doi.org/10.1111/j.1365-246X.1986.tb06626.x
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802 DOI: https://doi.org/10.1126/science.1255802
Keranen, K. M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/G34045.1 DOI: https://doi.org/10.1130/G34045.1
Kwiatek, G., & Ben‐Zion, Y. (2013). Assessment of P and S wave energy radiated from very small shear‐tensile seismic events in a deep South African mine. Journal of Geophysical Research: Solid Earth, 118(7), 3630–3641. https://doi.org/10.1002/jgrb.50274 DOI: https://doi.org/10.1002/jgrb.50274
Langenbruch, C., & Zoback, M. D. (2016). How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science Advances, 2(11), e1601542. https://doi.org/10.1126/sciadv.1601542 DOI: https://doi.org/10.1126/sciadv.1601542
Lin, G., & Shearer, P. (2006). The COMPLOC Earthquake Location Package. Seismological Research Letters, 77(4), 440–444. https://doi.org/10.1785/gssrl.77.4.440 DOI: https://doi.org/10.1785/gssrl.77.4.440
McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bulletin of the Seismological Society of America, 94(2), 377–393. https://doi.org/10.1785/0120030091 DOI: https://doi.org/10.1785/0120030091
McGuire, J. J., & Kaneko, Y. (2018). Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop. Geophysical Journal International, 214(3), 2224–2235. https://doi.org/10.1093/gji/ggy201 DOI: https://doi.org/10.1093/gji/ggy201
McNamara, D. E., Benz, H. M., Herrmann, R. B., Bergman, E. A., Earle, P., Holland, A., Baldwin, R., & Gassner, A. (2015). Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike‐slip faulting. Geophysical Research Letters, 42(8), 2742–2749. https://doi.org/10.1002/2014GL062730 DOI: https://doi.org/10.1002/2014GL062730
Meng, H., & Ben-Zion, Y. (2018). Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California. Geophysical Journal International, 212(1), 442–457. https://doi.org/10.1093/gji/ggx404 DOI: https://doi.org/10.1093/gji/ggx404
Meng, H., & Fan, W. (2021). Immediate foreshocks indicating cascading rupture developments for 527 M 0.9 to 5.4 Ridgecrest earthquakes. Geophysical Research Letters, 48(19), e2021GL095704. https://doi.org/10.1029/2021GL095704 DOI: https://doi.org/10.1029/2021GL095704
Mori, J., & Frankel, A. (1990). Source parameters for small events associated with the 1986 North Palm Springs, California, Earthquake, determined using empirical Green functions. Bulletin of the Seismological Society of America, 80(2), 278–295. https://doi.org/10.1785/BSSA0800020278
Park, Y., Beroza, G. C., & Ellsworth, W. L. (2022). Basement Fault Activation before Larger Earthquakes in Oklahoma and Kansas. The Seismic Record, 2(3), 197–206. https://doi.org/10.1785/0320220020 DOI: https://doi.org/10.1785/0320220020
Pennington, C. N., Wu, Q., Chen, X., & Abercrombie, R. E. (2023). Quantifying rupture characteristics of microearthquakes in the Parkfield area using a high-resolution borehole network. Geophysical Journal International, 233(3), 1772–1785. https://doi.org/10.1093/gji/ggad023 DOI: https://doi.org/10.1093/gji/ggad023
Prieto, G. A., Shearer, P. M., Vernon, F. L., & Kilb, D. (2004). Earthquake source scaling and self-similarity estimation from stacking P and S spectra. Journal of Geophysical Research: Solid Earth, 109(B8). https://doi.org/10.1029/2004JB003084 DOI: https://doi.org/10.1029/2004JB003084
Qin, Y., Chen, X., Walter, J. I., Haffener, J., Trugman, D. T., Carpenter, B. M., Weingarten, M., & Kolawole, F. (2019). Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map. Journal of Geophysical Research: Solid Earth, 124(12), 12920–12934. https://doi.org/10.1029/2019JB018377 DOI: https://doi.org/10.1029/2019JB018377
Satoh, T. (2002). Empirical Frequency-Dependent Radiation Pattern of the 1998 Miyagiken-Nanbu Earthquake in Japan. Bulletin of the Seismological Society of America, 92(3), 1032–1039. https://doi.org/10.1785/0120010153 DOI: https://doi.org/10.1785/0120010153
Schoenball, M., & Ellsworth, W. L. (2017a). Waveform-relocated earthquake catalog for Oklahoma and southern Kansas illuminates the regional fault network. Seismological Research Letters, 88(5), 1252–1258. https://doi.org/10.1785/0220170083 DOI: https://doi.org/10.1785/0220170083
Schoenball, M., & Ellsworth, W. L. (2017b). A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through Induced Seismicity in Oklahoma and Southern Kansas. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017JB014850 DOI: https://doi.org/10.1002/2017JB014850
Shearer, P. M., Abercrombie, R. E., & Trugman, D. T. (2022). Improved stress drop estimates for M 1.5 to 4 earthquakes in southern California from 1996 to 2019. Journal of Geophysical Research: Solid Earth, 127(7), e2022JB024243. https://doi.org/10.1029/2022JB024243 DOI: https://doi.org/10.1029/2022JB024243
Sweet, J. R., Anderson, K. R., Bilek, S., Brudzinski, M., Chen, X., DeShon, H., Hayward, C., Karplus, M., Keranen, K., Langston, C., Lin, F., Beatrice Magnani, M., & Woodward, R. L. (2018). A Community Experiment to Record the Full Seismic Wavefield in Oklahoma. Seismological Research Letters, 89(5), 1923–1930. https://doi.org/10.1785/0220180079 DOI: https://doi.org/10.1785/0220180079
Takemura, S., Furumura, T., & Saito, T. (2009). Distortion of the apparent S -wave radiation pattern in the high-frequency wavefield: Tottori-Ken Seibu, Japan, earthquake of 2000. Geophysical Journal International, 178(2), 950–961. https://doi.org/10.1111/j.1365-246X.2009.04210.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04210.x
Takenaka, H., Mamada, Y., & Futamure, H. (2003). Near-source effect on radiation pattern of high-frequency S waves: strong SH–SV mixing observed from aftershocks of the 1997 Northwestern Kagoshima, Japan, earthquakes. Physics of the Earth and Planetary Interiors, 137(1–4), 31–43. https://doi.org/10.1016/S0031-9201(03)00006-2 DOI: https://doi.org/10.1016/S0031-9201(03)00006-2
Thatcher, W., & Hanks, T. C. (1973). Source parameters of southern California earthquakes. Journal of Geophysical Research, 78(35), 8547–8576. https://doi.org/10.1029/JB078i035p08547 DOI: https://doi.org/10.1029/JB078i035p08547
Trugman, D. T., Chu, S. X., & Tsai, V. C. (2021). Earthquake Source Complexity Controls the Frequency Dependence of Near‐Source Radiation Patterns. Geophysical Research Letters, 48(17), e2021GL095022. https://doi.org/10.1029/2021GL095022 DOI: https://doi.org/10.1029/2021GL095022
Trugman, D. T., & Shearer, P. M. (2017a). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890–2910. https://doi.org/10.1002/2017JB013971 DOI: https://doi.org/10.1002/2017JB013971
Trugman, D. T., & Shearer, P. M. (2017b). GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 88(2A), 379–391. https://doi.org/10.1785/0220160188 DOI: https://doi.org/10.1785/0220160188
Tsai, V. C., & Hirth, G. (2020). Elastic Impact Consequences for High‐Frequency Earthquake Ground Motion. Geophysical Research Letters, 47(5), e2019GL086302. https://doi.org/10.1029/2019GL086302 DOI: https://doi.org/10.1029/2019GL086302
van der Elst, N. J. (2021). B-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB021027. https://doi.org/10.1029/2020JB021027 DOI: https://doi.org/10.1029/2020JB021027
Vidale, J. E. (1989). Influence of focal mechanism on peak accelerations of strong motions of the Whittier Narrows, California, earthquake and an aftershock. Journal of Geophysical Research: Solid Earth, 94(B7), 9607–9613. https://doi.org/10.1029/JB094iB07p09607 DOI: https://doi.org/10.1029/JB094iB07p09607
Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth, 111(B5), 2005JB004034. https://doi.org/10.1029/2005JB004034 DOI: https://doi.org/10.1029/2005JB004034
Walsh, F. R., & Zoback, M. D. (2015). Oklahoma’s recent earthquakes and saltwater disposal. Science Advances, 1(5), e1500195. https://doi.org/10.1126/sciadv.1500195 DOI: https://doi.org/10.1126/sciadv.1500195
Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., Woelfel, I., Chang, J. C., Darold, A. P., & Holland, A. A. (2019). The Oklahoma Geological Survey Statewide Seismic Network. Seismological Research Letters, 91(2A), 611–621. https://doi.org/10.1785/0220190211 DOI: https://doi.org/10.1785/0220190211
Wang, R., Schmandt, B., Zhang, M., Glasgow, M., Kiser, E., Rysanek, S., & Stairs, R. (2020). Injection-induced earthquakes on complex fault zones of the Raton Basin illuminated by machine-learning phase picker and dense nodal array. Geophysical Research Letters, 47(14), e2020GL088168. https://doi.org/10.1029/2020GL088168 DOI: https://doi.org/10.1029/2020GL088168
Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A., & Rubinstein, J. L. (2015). High-rate injection is associated with the increase in U.S. mid-continent seismicity. Science, 348(6241), 1336–1340. https://doi.org/10.1126/science.aab1345 DOI: https://doi.org/10.1126/science.aab1345
Wu, Q., Chen, X., & Abercrombie, R. E. (2019). Source complexity of the 2015 Mw 4.0 Guthrie, Oklahoma earthquake. Geophysical Research Letters, 46(9), 4674–4684. https://doi.org/10.1029/2019GL082690 DOI: https://doi.org/10.1029/2019GL082690
Yang, L., Liu, X., & Beroza, G. C. (2021). Revisiting evidence for widespread seismicity in the upper mantle under Los Angeles. Science Advances, 7(4), eabf2862. https://doi.org/10.1126/sciadv.abf2862 DOI: https://doi.org/10.1126/sciadv.abf2862
Zhong, M., & Zhan, Z. (2020). An array-based receiver function deconvolution method: methodology and application. Geophysical Journal International, 222(1), 1–14. https://doi.org/10.1093/gji/ggaa113 DOI: https://doi.org/10.1093/gji/ggaa113
Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Harrison Burnett, Wenyuan Fan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR-2143413