Insolation Cycles Control the Timing and Pattern of Resonance Frequency Drifts at a Natural Rock Tower, Utah, USA

Authors

  • Jeffrey Moore Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA https://orcid.org/0000-0001-5831-2048
  • Erin Jensen Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
  • Brendon Quirk Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
  • Guglielmo Grechi Department of Earth Sciences, Sapienza University of Rome, Rome, Italy https://orcid.org/0000-0002-3882-043X
  • Alex Dzubay

DOI:

https://doi.org/10.26443/seismica.v3i2.1375

Abstract

Resonance frequency monitoring can detect structural changes during progressive rock slope failure; however, reversible environmentally-driven frequency drifts may inhibit identification of permanent changes. Frequency drifts are commonly correlated with air temperature, lagging temperature changes by zero to 35–60 days. Here we report observations from two years of monitoring at a rock tower in Utah, USA where annual resonance frequency changes appear to precede air temperature cycles by ~35 days. Using correlations with meteorological data supplemented by numerical modeling, we identify changes in insolation as the primary driver of annual frequency drifts, giving rise to the negative lag time. Sparse in-situ insolation data show that the daily frequency increase lags sunrise by several hours, while frequencies decrease at sunset, responses we attribute to the west facing aspect of the tower. Modeled daily insolation patterns match frequency data for months when in-situ measurements are not available. Numerical models offer the advantage of predicting insolation patterns for different aspects of the rock tower, such as the west facing cliff where measurements would be challenging. Our study highlights the value of long-term datasets in identifying mechanisms driving environmentally associated frequency drifts, understanding that is crucial to facilitate detection of permanent changes during progressive failure.

References

Anthony, R. E., Ringler, A. T., Wilson, D. C., & Wolin, E. (2019). Do low-cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D. Seismological Research Letters, 90(1), 219–228. https://doi.org/https://doi.org/10.1785/0220180251

Arosio, D., Aguzzoli, A., Zanzi, L., Panzeri, L., & Scaccabarozzi, D. (2023). Lab and Field Tests of a Low-Cost 3-Component Seismometer for Shallow Passive Seismic Applications. Earth and Space Science, 10(10), e2023EA002934. https://doi.org/10.1029/2023EA002934

Bessette-Kirton, E. K., Moore, J. R., Geimer, P. R., Finnegan, R., Häusler, M., & Dzubay, A. (2022). Structural characterization of a toppling rock slab from array-based ambient vibration measurements and numerical modal analysis. Journal of Geophysical Research: Earth Surface, 127(8), e2022JF006679. https://doi.org/10.1029/2022JF006679

Bottelin, P, Baillet, L., Larose, E., Jongmans, D., Hantz, D., Brenguier, O., Cadet, H., & Helmstetter, A. (2017). Monitoring rock reinforcement works with ambient vibrations: La Bourne case study (Vercors, France). Engineering Geology, 226, 136–145. https://doi.org/10.1016/j.enggeo.2017.06.002

Bottelin, Pierre, Baillet, L., Carrier, A., Larose, E., Jongmans, D., Brenguier, O., & Cadet, H. (2021). Toward workable and cost-efficient monitoring of unstable rock compartments with ambient noise. Geosciences, 11(6), 242. https://doi.org/10.3390/geosciences11060242

Bottelin, Pierre, Jongmans, D., Baillet, L., Lebourg, T., Hantz, D., Lévy, C., Le Roux, O., Cadet, H., Lorier, L., Rouiller, J.-D., & others. (2013). Spectral analysis of prone-to-fall rock compartments using ambient vibrations. Journal of Environmental and Engineering Geophysics, 18(4), 205–217. https://doi.org/10.2113/JEEG18.4.205

Bottelin, Pierre, Levy, C., Baillet, L., Jongmans, D., & Gueguen, P. (2013). Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophysical Journal International, 194(2), 849–858. https://doi.org/10.1093/gji/ggt046

Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., & Fäh, D. (2010). Ambient vibration analysis of an unstable mountain slope. Geophysical Journal International, 180(2), 820–828. https://doi.org/10.1111/j.1365-246X.2009.04451.x

Burjánek, J., Gischig, V., Moore, J. R., & Fäh, D. (2018). Ambient vibration characterization and monitoring of a rock slope close to collapse. Geophysical Journal International, 212(1), 297–310. https://doi.org/10.1093/gji/ggx424

Burjánek, J., Moore, J. R., Yugsi Molina, F. X., & Fäh, D. (2012). Instrumental evidence of normal mode rock slope vibration. Geophysical Journal International, 188(2), 559–569. https://doi.org/10.1111/j.1365-246X.2011.05272.x

Cole Jr, H. A. (1973). On-line failure detection and damping measurement of aerospace structures by random decrement signatures [Techreport]. NASA.

Colombero, C, Baillet, L., Comina, C., Jongmans, D., & Vinciguerra, S. (2017). Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling. Journal of Geophysical Research: Solid Earth, 122(8), 6346–6366. https://doi.org/10.1002/2017JB014111

Colombero, Chiara, Godio, A., & Jongmans, D. (2021). Ambient seismic noise and microseismicity monitoring of a prone-to-fall quartzite tower (Ormea, NW Italy). Remote Sensing, 13(9), 1664. https://doi.org/10.3390/rs13091664

Colombero, Chiara, Jongmans, D., Fiolleau, S., Valentin, J., Baillet, L., & Bièvre, G. (2021). Seismic noise parameters as indicators of reversible modifications in slope stability: a review. Surveys in Geophysics, 42, 339–375. https://doi.org/10.1007/s10712-021-09632-w

Corripio, J. G. (2003). Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. International Journal of Geographical Information Science, 17(1), 1–23. https://doi.org/10.1080/713811744

Del Gaudio, V., & Wasowski, J. (2011). Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology, 122(1–2), 73–83. https://doi.org/10.1016/j.enggeo.2010.09.007

Del Gaudio, V., Wasowski, J., & Muscillo, S. (2013). New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural Hazards and Earth System Sciences, 13(8), 2075–2087. https://doi.org/10.5194/nhessd-1-1319-2013

Dzubay, A., Moore, J. R., Finnegan, R., Jensen, E. K., Geimer, P. R., & Koper, K. D. (2022). Rotational Components of Normal Modes Measured at a Natural Sandstone Tower (Kane Springs Canyon, Utah, USA). The Seismic Record, 2(4), 260–268. https://doi.org/10.1785/0320220035

Finzi, Y., Ganz, N., Dor, O., Davis, M., Volk, O., Langer, S., Arrowsmith, R., & Tsesarsky, M. (2020). Stability analysis of fragile rock pillars and insights on fault activity in the Negev, Israel. Journal of Geophysical Research: Solid Earth, 125(12), e2019JB019269. https://doi.org/10.1029/2019JB019269

Fiolleau, S., Jongmans, D., Bièvre, G., Chambon, G., Baillet, L., & Vial, B. (2020). Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps. Geophysical Journal International, 221(3), 1777–1788. https://doi.org/10.1093/gji/ggaa050

Geimer, P. R., Finnegan, R., & Moore, J. R. (2022). Meteorological controls on reversible resonance changes in natural rock arches. Journal of Geophysical Research: Earth Surface, 127(10), e2022JF006734. https://doi.org/10.1029/2022JF006734

Guillemot, A, Audin, L., Larose, É., Baillet, L., Guéguen, P., Jaillet, S., & Delannoy, J.-J. (2024). A comprehensive seismic monitoring of the pillar threatening the world cultural heritage site Chauvet-Pont d’Arc cave, toward rock damage assessment. Earth and Space Science, 11(4), e2023EA003329. https://doi.org/10.1029/2023EA003329

Guillemot, Antoine, Baillet, L., Larose, E., & Bottelin, P. (2022). Changes in resonance frequency of rock columns due to thermoelastic effects on a daily scale: observations, modelling and insights to improve monitoring systems. Geophysical Journal International, 231(2), 894–906. https://doi.org/10.1093/gji/ggac216

Häusler, M., Michel, C., Burjánek, J., & Fäh, D. (2019). Fracture network imaging on rock slope instabilities using resonance mode analysis. Geophysical Research Letters, 46(12), 6497–6506.

Häusler, M., Michel, C., Burjanek, J., & Fäh, D. (2021). Monitoring the Preonzo rock slope instability using resonance mode analysis. Journal of Geophysical Research: Earth Surface, 126(4), e2020JF005709. https://doi.org/10.1029/2020JF005709 Ibrahim, S. (1977). Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 14(11), 696–700. https://doi.org/10.2514/3.57251

Jensen, E. K., Moore, J. R., Geimer, P. R., & Finnegan, R. (2024). Combined ambient vibration and surface displacement measurements for improved progressive failure monitoring at a toppling rock slab in Utah, USA. Frontiers in Earth Science, 12, 1364653. https://doi.org/10.3389/feart.2024.1364653

Jensen, E., & Moore, J. (2023). Coevolution of rock slope instability damage and resonance frequencies from distinct-element modeling. Journal of Geophysical Research: Earth Surface, 128(11), e2023JF007305. https://doi.org/10.1029/2023JF007305

Jongmans, D., Baillet, L., Larose, E., Bottelin, P., Mainsant, G., Chambon, G., & Jaboyedoff, M. (2015). Application of ambient vibration techniques for monitoring the triggering of rapid landslides. Engineering Geology for Society and Territory-Volume 2: Landslide Processes, 371–374.

Kleinbrod, U., Burjánek, J., & Fäh, D. (2019). Ambient vibration classification of unstable rock slopes: A systematic approach. Engineering Geology, 249, 198–217. https://doi.org/10.1016/j.enggeo.2018.12.012

Koper, K. D., & Burlacu, R. (2015). The fine structure of double-frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 120(3), 1677–1691. https://doi.org/10.1002/2014JB011820

Kumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11(5), 475–497. https://doi.org/10.1080/136588197242266

Lévy, C., Baillet, L., Jongmans, D., Mourot, P., & Hantz, D. (2010). Dynamic response of the Chamousset rock column (Western Alps, France). Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/https://doi.org/10.1029/2009JF001606

Moore, J. R., Geimer, P. R., Finnegan, R., & Michel, C. (2019). Dynamic analysis of a large freestanding rock tower (Castleton Tower, Utah). Bulletin of the Seismological Society of America, 109(5), 2125–2131. https://doi.org/10.1785/0120190118

Moore, J. R., Gischig, V., Burjanek, J., Loew, S., & Fäh, D. (2011). Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bulletin of the Seismological Society of America, 101(6), 3110–3116. https://doi.org/10.1785/0120110127

Müller, J., & Burjánek, J. (2023). In situ estimation of effective rock elastic moduli by seismic ambient vibrations. International Journal of Rock Mechanics and Mining Sciences, 170, 105459. https://doi.org/10.1016/j.ijrmms.2023.105459

Pilz, M., Parolai, S., Bindi, D., Saponaro, A., & Abdybachaev, U. (2014). Combining seismic noise techniques for landslide characterization. Pure and Applied Geophysics, 171, 1729–1745. https://doi.org/10.1007/s00024-013-0733-3

Plummer, M. A., & Phillips, F. M. (2003). A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews, 22(14), 1389–1406. https://doi.org/10.1016/S0277-3791(03)00081-7

Starr, A. M., Moore, J. R., & Thorne, M. S. (2015). Ambient resonance of Mesa Arch, Canyonlands National Park, Utah. Geophysical Research Letters, 42(16), 6696–6702. https://doi.org/10.1002/2015GL064917

Taruselli, M., Arosio, D., Longoni, L., Papini, M., & Zanzi, L. (2021). Seismic noise monitoring of a small rock block collapse test. Geophysical Journal International, 224(1), 207–215. https://doi.org/10.1093/gji/ggaa447

Valentin, J., Capron, A., Jongmans, D., Baillet, L., Bottelin, P., Donze, F., Larose, E., & Mangeney, A. (2017). The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling. Geophysical Journal International, 208(2), 1058–1076. https://doi.org/10.1093/gji/ggw440

Additional Files

Published

2024-11-25

How to Cite

Moore, J., Jensen, E., Quirk, B., Grechi, G., & Dzubay, A. (2024). Insolation Cycles Control the Timing and Pattern of Resonance Frequency Drifts at a Natural Rock Tower, Utah, USA. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1375

Issue

Section

Articles

Funding data