Insolation Cycles Control the Timing and Pattern of Resonance Frequency Drifts at a Natural Rock Tower, Utah, USA
DOI:
https://doi.org/10.26443/seismica.v3i2.1375Abstract
Resonance frequency monitoring can detect structural changes during progressive rock slope failure; however, reversible environmentally-driven frequency drifts may inhibit identification of permanent changes. Frequency drifts are commonly correlated with air temperature, lagging temperature changes by zero to 35–60 days. Here we report observations from two years of monitoring at a rock tower in Utah, USA where annual resonance frequency changes appear to precede air temperature cycles by ~35 days. Using correlations with meteorological data supplemented by numerical modeling, we identify changes in insolation as the primary driver of annual frequency drifts, giving rise to the negative lag time. Sparse in-situ insolation data show that the daily frequency increase lags sunrise by several hours, while frequencies decrease at sunset, responses we attribute to the west facing aspect of the tower. Modeled daily insolation patterns match frequency data for months when in-situ measurements are not available. Numerical models offer the advantage of predicting insolation patterns for different aspects of the rock tower, such as the west facing cliff where measurements would be challenging. Our study highlights the value of long-term datasets in identifying mechanisms driving environmentally associated frequency drifts, understanding that is crucial to facilitate detection of permanent changes during progressive failure.
References
Anthony, R. E., Ringler, A. T., Wilson, D. C., & Wolin, E. (2019). Do low-cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D. Seismological Research Letters, 90(1), 219–228. https://doi.org/https://doi.org/10.1785/0220180251
Arosio, D., Aguzzoli, A., Zanzi, L., Panzeri, L., & Scaccabarozzi, D. (2023). Lab and Field Tests of a Low-Cost 3-Component Seismometer for Shallow Passive Seismic Applications. Earth and Space Science, 10(10), e2023EA002934. https://doi.org/10.1029/2023EA002934
Bessette-Kirton, E. K., Moore, J. R., Geimer, P. R., Finnegan, R., Häusler, M., & Dzubay, A. (2022). Structural characterization of a toppling rock slab from array-based ambient vibration measurements and numerical modal analysis. Journal of Geophysical Research: Earth Surface, 127(8), e2022JF006679. https://doi.org/10.1029/2022JF006679
Bottelin, P, Baillet, L., Larose, E., Jongmans, D., Hantz, D., Brenguier, O., Cadet, H., & Helmstetter, A. (2017). Monitoring rock reinforcement works with ambient vibrations: La Bourne case study (Vercors, France). Engineering Geology, 226, 136–145. https://doi.org/10.1016/j.enggeo.2017.06.002
Bottelin, Pierre, Baillet, L., Carrier, A., Larose, E., Jongmans, D., Brenguier, O., & Cadet, H. (2021). Toward workable and cost-efficient monitoring of unstable rock compartments with ambient noise. Geosciences, 11(6), 242. https://doi.org/10.3390/geosciences11060242
Bottelin, Pierre, Jongmans, D., Baillet, L., Lebourg, T., Hantz, D., Lévy, C., Le Roux, O., Cadet, H., Lorier, L., Rouiller, J.-D., & others. (2013). Spectral analysis of prone-to-fall rock compartments using ambient vibrations. Journal of Environmental and Engineering Geophysics, 18(4), 205–217. https://doi.org/10.2113/JEEG18.4.205
Bottelin, Pierre, Levy, C., Baillet, L., Jongmans, D., & Gueguen, P. (2013). Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophysical Journal International, 194(2), 849–858. https://doi.org/10.1093/gji/ggt046
Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., & Fäh, D. (2010). Ambient vibration analysis of an unstable mountain slope. Geophysical Journal International, 180(2), 820–828. https://doi.org/10.1111/j.1365-246X.2009.04451.x
Burjánek, J., Gischig, V., Moore, J. R., & Fäh, D. (2018). Ambient vibration characterization and monitoring of a rock slope close to collapse. Geophysical Journal International, 212(1), 297–310. https://doi.org/10.1093/gji/ggx424
Burjánek, J., Moore, J. R., Yugsi Molina, F. X., & Fäh, D. (2012). Instrumental evidence of normal mode rock slope vibration. Geophysical Journal International, 188(2), 559–569. https://doi.org/10.1111/j.1365-246X.2011.05272.x
Cole Jr, H. A. (1973). On-line failure detection and damping measurement of aerospace structures by random decrement signatures [Techreport]. NASA.
Colombero, C, Baillet, L., Comina, C., Jongmans, D., & Vinciguerra, S. (2017). Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling. Journal of Geophysical Research: Solid Earth, 122(8), 6346–6366. https://doi.org/10.1002/2017JB014111
Colombero, Chiara, Godio, A., & Jongmans, D. (2021). Ambient seismic noise and microseismicity monitoring of a prone-to-fall quartzite tower (Ormea, NW Italy). Remote Sensing, 13(9), 1664. https://doi.org/10.3390/rs13091664
Colombero, Chiara, Jongmans, D., Fiolleau, S., Valentin, J., Baillet, L., & Bièvre, G. (2021). Seismic noise parameters as indicators of reversible modifications in slope stability: a review. Surveys in Geophysics, 42, 339–375. https://doi.org/10.1007/s10712-021-09632-w
Corripio, J. G. (2003). Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. International Journal of Geographical Information Science, 17(1), 1–23. https://doi.org/10.1080/713811744
Del Gaudio, V., & Wasowski, J. (2011). Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology, 122(1–2), 73–83. https://doi.org/10.1016/j.enggeo.2010.09.007
Del Gaudio, V., Wasowski, J., & Muscillo, S. (2013). New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural Hazards and Earth System Sciences, 13(8), 2075–2087. https://doi.org/10.5194/nhessd-1-1319-2013
Dzubay, A., Moore, J. R., Finnegan, R., Jensen, E. K., Geimer, P. R., & Koper, K. D. (2022). Rotational Components of Normal Modes Measured at a Natural Sandstone Tower (Kane Springs Canyon, Utah, USA). The Seismic Record, 2(4), 260–268. https://doi.org/10.1785/0320220035
Finzi, Y., Ganz, N., Dor, O., Davis, M., Volk, O., Langer, S., Arrowsmith, R., & Tsesarsky, M. (2020). Stability analysis of fragile rock pillars and insights on fault activity in the Negev, Israel. Journal of Geophysical Research: Solid Earth, 125(12), e2019JB019269. https://doi.org/10.1029/2019JB019269
Fiolleau, S., Jongmans, D., Bièvre, G., Chambon, G., Baillet, L., & Vial, B. (2020). Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps. Geophysical Journal International, 221(3), 1777–1788. https://doi.org/10.1093/gji/ggaa050
Geimer, P. R., Finnegan, R., & Moore, J. R. (2022). Meteorological controls on reversible resonance changes in natural rock arches. Journal of Geophysical Research: Earth Surface, 127(10), e2022JF006734. https://doi.org/10.1029/2022JF006734
Guillemot, A, Audin, L., Larose, É., Baillet, L., Guéguen, P., Jaillet, S., & Delannoy, J.-J. (2024). A comprehensive seismic monitoring of the pillar threatening the world cultural heritage site Chauvet-Pont d’Arc cave, toward rock damage assessment. Earth and Space Science, 11(4), e2023EA003329. https://doi.org/10.1029/2023EA003329
Guillemot, Antoine, Baillet, L., Larose, E., & Bottelin, P. (2022). Changes in resonance frequency of rock columns due to thermoelastic effects on a daily scale: observations, modelling and insights to improve monitoring systems. Geophysical Journal International, 231(2), 894–906. https://doi.org/10.1093/gji/ggac216
Häusler, M., Michel, C., Burjánek, J., & Fäh, D. (2019). Fracture network imaging on rock slope instabilities using resonance mode analysis. Geophysical Research Letters, 46(12), 6497–6506.
Häusler, M., Michel, C., Burjanek, J., & Fäh, D. (2021). Monitoring the Preonzo rock slope instability using resonance mode analysis. Journal of Geophysical Research: Earth Surface, 126(4), e2020JF005709. https://doi.org/10.1029/2020JF005709 Ibrahim, S. (1977). Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 14(11), 696–700. https://doi.org/10.2514/3.57251
Jensen, E. K., Moore, J. R., Geimer, P. R., & Finnegan, R. (2024). Combined ambient vibration and surface displacement measurements for improved progressive failure monitoring at a toppling rock slab in Utah, USA. Frontiers in Earth Science, 12, 1364653. https://doi.org/10.3389/feart.2024.1364653
Jensen, E., & Moore, J. (2023). Coevolution of rock slope instability damage and resonance frequencies from distinct-element modeling. Journal of Geophysical Research: Earth Surface, 128(11), e2023JF007305. https://doi.org/10.1029/2023JF007305
Jongmans, D., Baillet, L., Larose, E., Bottelin, P., Mainsant, G., Chambon, G., & Jaboyedoff, M. (2015). Application of ambient vibration techniques for monitoring the triggering of rapid landslides. Engineering Geology for Society and Territory-Volume 2: Landslide Processes, 371–374.
Kleinbrod, U., Burjánek, J., & Fäh, D. (2019). Ambient vibration classification of unstable rock slopes: A systematic approach. Engineering Geology, 249, 198–217. https://doi.org/10.1016/j.enggeo.2018.12.012
Koper, K. D., & Burlacu, R. (2015). The fine structure of double-frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 120(3), 1677–1691. https://doi.org/10.1002/2014JB011820
Kumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11(5), 475–497. https://doi.org/10.1080/136588197242266
Lévy, C., Baillet, L., Jongmans, D., Mourot, P., & Hantz, D. (2010). Dynamic response of the Chamousset rock column (Western Alps, France). Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/https://doi.org/10.1029/2009JF001606
Moore, J. R., Geimer, P. R., Finnegan, R., & Michel, C. (2019). Dynamic analysis of a large freestanding rock tower (Castleton Tower, Utah). Bulletin of the Seismological Society of America, 109(5), 2125–2131. https://doi.org/10.1785/0120190118
Moore, J. R., Gischig, V., Burjanek, J., Loew, S., & Fäh, D. (2011). Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bulletin of the Seismological Society of America, 101(6), 3110–3116. https://doi.org/10.1785/0120110127
Müller, J., & Burjánek, J. (2023). In situ estimation of effective rock elastic moduli by seismic ambient vibrations. International Journal of Rock Mechanics and Mining Sciences, 170, 105459. https://doi.org/10.1016/j.ijrmms.2023.105459
Pilz, M., Parolai, S., Bindi, D., Saponaro, A., & Abdybachaev, U. (2014). Combining seismic noise techniques for landslide characterization. Pure and Applied Geophysics, 171, 1729–1745. https://doi.org/10.1007/s00024-013-0733-3
Plummer, M. A., & Phillips, F. M. (2003). A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews, 22(14), 1389–1406. https://doi.org/10.1016/S0277-3791(03)00081-7
Starr, A. M., Moore, J. R., & Thorne, M. S. (2015). Ambient resonance of Mesa Arch, Canyonlands National Park, Utah. Geophysical Research Letters, 42(16), 6696–6702. https://doi.org/10.1002/2015GL064917
Taruselli, M., Arosio, D., Longoni, L., Papini, M., & Zanzi, L. (2021). Seismic noise monitoring of a small rock block collapse test. Geophysical Journal International, 224(1), 207–215. https://doi.org/10.1093/gji/ggaa447
Valentin, J., Capron, A., Jongmans, D., Baillet, L., Bottelin, P., Donze, F., Larose, E., & Mangeney, A. (2017). The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling. Geophysical Journal International, 208(2), 1058–1076. https://doi.org/10.1093/gji/ggw440
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jeffrey Moore, Erin Jensen, Brendon Quirk, Guglielmo Grechi, Alex Dzubay
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers CMMI-2150896