FINNSIP - The mobile Finnish Seismic Instrument Pool
DOI:
https://doi.org/10.26443/seismica.v4i1.1379Keywords:
Seismic infrastructure, research infrastructure, mobile seismic pool, seismic data acqusitionAbstract
We report on establishing the mobile Finnish Seismic Instrument Pool (FINNSIP) that is owned and operated by Finnish academic and research institutions. The pool supports domestic and international collaborative seismic research. At the conclusion of the 2020 to 2024 build-up stage, the instrumentation includes 46 broadband seismometers and digitizers, 5 accelerometers, and 1216 and 71 Geospace and SmartSolo autonomous geophone units, respectively, making FINNSIP one of the largest and most coherent mobile seismic instrument pools in Europe in the public sector. We explain the utilization of the pool instruments and discuss the equipment, facilities, ownership and governance structure, fees, and the management and support system. Through Finland's membership in the Observatories and Research Facilities for European Seismology (ORFEUS) and the Finnish European Plate Observing System (EPOS) node, FINNSIP endorses and implements international data management standards and best practices as promoted in Europe. The importance of appropriate data and computing systems is highlighted by the ~90 TB volume of formatted data that has been collected in 25 large-N projects between October 2021 and December 2024. We summarize a checklist for building, operating, and managing this extensive seismic pool that can inform the planning and establishment of other research infrastructure.
References
Abdi, A., Heinonen, S., Juhlin, C., & Karinen, T. (2015). Constraints on the geometry of the Suasselkä post-glacial fault, northern Finland, based on reflection seismic imaging. Tectonophysics, 649, 130–138. https://doi.org/10.1016/j.tecto.2015.03.004 DOI: https://doi.org/10.1016/j.tecto.2015.03.004
Afonin, N., Kozlovskaya, E., Heinonen, S., & Buske, S. (2021). Near-surface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry. Solid Earth, 12(7), 1563–1579. https://doi.org/10.5194/se-12-1563-2021 DOI: https://doi.org/10.5194/se-12-1563-2021
Afonin, N., Kozlovskaya, E., Moisio, K., Kokko, E.-R., & Okkonen, J. (2023). Frost quakes in wetlands in northern Finland during extreme winter weather conditions and related hazard to urban infrastructure. EGUsphere. https://doi.org/10.5194/egusphere-2023-1853 DOI: https://doi.org/10.5194/egusphere-2023-1853
Afonin, Nikita, Kozlovskaya, E., & Canales, R. M. (2022). Application of passive seismic interferometry for mapping mining waste storage facilities: A case study of Pyhäsalmi mine in Finland. Journal of Applied Geophysics, 202, 104669. https://doi.org/10.1016/j.jappgeo.2022.104669 DOI: https://doi.org/10.1016/j.jappgeo.2022.104669
Ahokangas, E., Mäkinen, J., Artimo, A., Pasanen, A., & Vanhala, H. (2020). Interlobate esker aquifer characterization by high resolution seismic reflection method with landstreamer in SW Finland. Journal of Applied Geophysics, 177, 104014. https://doi.org/10.1016/j.jappgeo.2020.104014 DOI: https://doi.org/10.1016/j.jappgeo.2020.104014
Albaric, J., Kühn, D., Ohrnberger, M., Langet, N., Harris, D., Polom, U., Lecomte, I., & Hillers, G. (2021). Seismic Monitoring of Permafrost in Svalbard, Arctic Norway. Seismological Research Letters, 92(5), 2891–2904. https://doi.org/10.1785/0220200470 DOI: https://doi.org/10.1785/0220200470
Aleshin, I., Kholodkov, K., Kozlovskaya, E., & Malygin, I. (2023). Crust Macrofracturing as the Evidence of the Last Deglaciation. Pure and Applied Geophysics, 180(9), 3289–3301. https://doi.org/10.1007/s00024-023-03334-7 DOI: https://doi.org/10.1007/s00024-023-03334-7
AlpArray Seismic Network. (2015). AlpArray Seismic Network (AASN) temporary component. AlpArray Working Group. https://doi.org/10.12686/ALPARRAY/Z3_2015
Anthony, R. E., Ringler, A. T., Wilson, D. C., & Wolin, E. (2018). Do Low‐Cost Seismographs Perform Well Enough for Your Network? An Overview of Laboratory Tests and Field Observations of the OSOP Raspberry Shake 4D. Seismological Research Letters, 90(1), 219–228. https://doi.org/10.1785/0220180251 DOI: https://doi.org/10.1785/0220180251
Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60(2), e2021RG000769. https://doi.org/10.1029/2021RG000769 DOI: https://doi.org/10.1029/2021RG000769
Aster, R., Beaudoin, B., Hole, J., Fouch, M., Fowler, J., & James, D. (2005). IRIS Seismology Program marks 20 years of discovery. Eos, Transactions American Geophysical Union, 86(17), 171–172. https://doi.org/10.1029/2005EO170002 DOI: https://doi.org/10.1029/2005EO170002
Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., White, M., Reyes, J., Hollis, D., & Barklage, M. (2015). Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1), 370–380. https://doi.org/10.1093/gji/ggv142 DOI: https://doi.org/10.1093/gji/ggv142
Bernauer, F., Behnen, K., Wassermann, J., Egdorf, S., Igel, H., Donner, S., Stammler, K., Hoffmann, M., Edme, P., Sollberger, D., Schmelzbach, C., Robertsson, J., Paitz, P., Igel, J., Smolinski, K., Fichtner, A., Rossi, Y., Izgi, G., Vollmer, D., … Brokesova, J. (2021). Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources. Sensors, 21(1). https://doi.org/10.3390/s21010264 DOI: https://doi.org/10.3390/s21010264
Beroza, G. C. (2010). 15 Years Later: The Growing Legacy of the 1995 Kobe Earthquake. Seismological Research Letters, 81(1), 5–6. https://doi.org/10.1785/gssrl.81.1.5 DOI: https://doi.org/10.1785/gssrl.81.1.5
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Brodic, B., Malinowski, M., Putkinen, N., Koskela, E., Laakso, V., & Heinonen, S. (2023). P- and S-Wave Reflection Seismic Imaging Using DAS and Nodal Receivers: an Example from Kurikka, Finland. 2023(1), 1–5. https://doi.org/https://doi.org/10.3997/2214-4609.202320182 DOI: https://doi.org/10.3997/2214-4609.202320182
Ceylan, S., Giardini, D., Clinton, J. F., Kim, D., Khan, A., Stähler, S. C., Zenhäusern, G., Lognonné, P., & Banerdt, W. B. (2023). Mapping the Seismicity of Mars With InSight. Journal of Geophysical Research: Planets, 128(8), e2023JE007826. https://doi.org/10.1029/2023JE007826 DOI: https://doi.org/10.1029/2023JE007826
Chamarczuk, M., Malinowski, M., Nishitsuji, Y., Thorbecke, J., Koivisto, E., Heinonen, S., Juurela, S., Mężyk, M., & Draganov, D. (2019). Automatic 3D illumination-diagnosis method for large-N arrays: Robust data scanner and machine-learning feature provider. Geophysics, 84(3), Q13–Q25. https://doi.org/10.1190/geo2018-0504.1 DOI: https://doi.org/10.1190/geo2018-0504.1
Chmiel, M., Mordret, A., Boué, P., Brenguier, F., Lecocq, T., Courbis, R., Hollis, D., Campman, X., Romijn, R., & Van der Veen, W. (2019). Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field. Geophysical Journal International, 218(3), 1781–1795. https://doi.org/10.1093/gji/ggz237 DOI: https://doi.org/10.1093/gji/ggz237
Colombero, C., Papadopoulou, M., Kauti, T., Skyttä, P., Koivisto, E., Savolainen, M., & Socco, L. V. (2022). Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland). Solid Earth, 13(2), 417–429. https://doi.org/10.5194/se-13-417-2022 DOI: https://doi.org/10.5194/se-13-417-2022
Cotton, F., Strollo, A., Pedersen, H., Crowley, H., Wiemer, S., Haslinger, F., Urvois, M., Schmittbuhl, J., Lorito, S., Babeyko, A., Bailo, D., Michalek, J., Lange, O., Quintero, J., Festa, G., Murphy, S., Majdanski, M., Christadle, I., Prestes, M., & Weege, S. (2023). Advancing frontier knowledge of the solid earth by providing access to integrated and customized services: the Geo-INQUIRE project. EGUsphere. https://doi.org/10.5194/egusphere-egu23-12686 DOI: https://doi.org/10.5194/egusphere-egu23-12686
Dehghannejad, M., Juhlin, C., Malehmir, A., Skyttä, P., & Weihed, P. (2010). Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden. Journal of Applied Geophysics, 71(4), 125–136. https://doi.org/10.1016/j.jappgeo.2010.06.002 DOI: https://doi.org/10.1016/j.jappgeo.2010.06.002
Ding, Y., & Malehmir, A. (2021). Reverse time migration (RTM) imaging of iron oxide deposits in the Ludvika mining area, Sweden. Solid Earth, 12(8), 1707–1718. https://doi.org/10.5194/se-12-1707-2021 DOI: https://doi.org/10.5194/se-12-1707-2021
Ding, Yinshuai, Hu, H., Malallah, A., Fehler, M. C., Huang, L., Malehmir, A., & Zheng, Y. (2021). Mapping subsurface karsts and voids using directional elastic wave packets. Geophysics, 86(6), S405–S416. https://doi.org/10.1190/geo2021-0027.1 DOI: https://doi.org/10.1190/geo2021-0027.1
Eeva, S., Karjalainen, A., Koivisto, E., Korkka-Niemi, K., Rautio, A., Räisänen, O., Gee, R., & Birt, B. (2023). Hydrogeological Characterization of Crystalline Bedrock Using Borehole Magnetic Resonance. Groundwater, 61(6), 793–815. https://doi.org/10.1111/gwat.13290 DOI: https://doi.org/10.1111/gwat.13290
Eulenfeld, T., Hillers, G., Vuorinen, T. A. T., & Wegler, U. (2023). Induced Earthquake Source Parameters, Attenuation, and Site Effects From Waveform Envelopes in the Fennoscandian Shield. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB025162. https://doi.org/10.1029/2022JB025162 DOI: https://doi.org/10.1029/2022JB025162
Friederich, W., Evangelidis, C., Papazachos, C., Sokos, E., Kaviris, G., & Cernih, D. (2022). AdriaArray Temporary Network: Greece, North Macedonia. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/Y0T2-3B67
Green, P. F., Japsen, P., Bonow, J. M., Chalmers, J. A., Duddy, I. R., & Kukkonen, I. T. (2022). The post-Caledonian thermo-tectonic evolution of Fennoscandia. Gondwana Research, 107, 201–234. https://doi.org/10.1016/j.gr.2022.03.007 DOI: https://doi.org/10.1016/j.gr.2022.03.007
Haberland, C., & Ritter, O. (2016). GIPP: Geophysical instrument pool Potsdam. Journal of Large-Scale Research Facilities JLSRF, 2, A64–A64. https://doi.org/10.17815/jlsrf-2-128 DOI: https://doi.org/10.17815/jlsrf-2-128
Hand, E. (2014). A boom in boomless seismology. Science, 345(6198), 720–721. https://doi.org/10.1126/science.345.6198.720 DOI: https://doi.org/10.1126/science.345.6198.720
Haslinger, F., Basili, R., Bossu, R., Cauzzi, C., Cotton, F., Crowley, H., Custódio, S., Danciu, L., Locati, M., Michelini, A., & others. (2022). Coordinated and interoperable seismological data and product services in Europe: the EPOS thematic core service for seismology. Annals of Geophysics, 65(2). https://doi.org/10.4401/ag-8767 DOI: https://doi.org/10.4401/ag-8767
Havskov, J., & Ottemöller, L. (2010). Routine data processing in earthquake seismology: with sample data, exercises and software. Springer Science & Business Media. https://doi.org/10.1007/978-90-481-8697-6 DOI: https://doi.org/10.1007/978-90-481-8697-6_9
Heinonen, S., Malinowski, M., Hloušek, F., Gislason, G., Buske, S., Koivisto, E., & Wojdyla, M. (2019). Cost-Effective Seismic Exploration: 2D Reflection Imaging at the Kylylahti Massive Sulfide Deposit, Finland. Minerals, 9(5). https://doi.org/10.3390/min9050263 DOI: https://doi.org/10.3390/min9050263
Herrmann, M., Kraft, T., Tormann, T., Scarabello, L., & Wiemer, S. (2019). A Consistent High-Resolution Catalog of Induced Seismicity in Basel Based on Matched Filter Detection and Tailored Post-Processing. Journal of Geophysical Research: Solid Earth, 124(8), 8449–8477. https://doi.org/10.1029/2019JB017468 DOI: https://doi.org/10.1029/2019JB017468
Hillers, G., Campillo, M., Brenguier, F., Moreau, L., Agnew, D. C., & Ben-Zion, Y. (2019). Seismic Velocity Change Patterns Along the San Jacinto Fault Zone Following the 2010 M7.2 El Mayor-Cucapah and M5.4 Collins Valley Earthquakes. Journal of Geophysical Research: Solid Earth, 124(7), 7171–7192. https://doi.org/10.1029/2018JB017143 DOI: https://doi.org/10.1029/2018JB017143
Hillers, G., Campillo, M., & Ma, K.-F. (2014). Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth and Planetary Science Letters, 391, 121–127. https://doi.org/10.1016/j.epsl.2014.01.040 DOI: https://doi.org/10.1016/j.epsl.2014.01.040
Hillers, G., Roux, P., Campillo, M., & Ben-Zion, Y. (2016). Focal spot imaging based on zero lag cross-correlation amplitude fields: Application to dense array data at the San Jacinto fault zone. Journal of Geophysical Research: Solid Earth, 121(11), 8048–8067. https://doi.org/10.1002/2016JB013014 DOI: https://doi.org/10.1002/2016JB013014
Hillers, Gregor, Vuorinen, T. A. T., Uski, M. R., Kortström, J. T., Mäntyniemi, P. B., Tiira, T., Malin, P. E., & Saarno, T. (2020). The 2018 geothermal reservoir stimulation in Espoo/Helsinki, southern Finland: Seismic network anatomy and data features. Seismological Research Letters, 91(2A), 770–786. https://doi.org/10.1785/0220190253 DOI: https://doi.org/10.1785/0220190253
Institute Earth Sciences “Jaume Almera” CSIC (ICTJA Spain). (2007). IberArray. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IB
Institute of Seismology, U. of H. (1980). The Finnish National Seismic Network. GFZ Data Services. https://doi.org/10.14470/UR044600
IRIS Transportable Array. (2003). USArray Transportable Array. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TA
Jiao, P., & Alavi, A. H. (2020). Artificial intelligence in seismology: Advent, performance and future trends. Geoscience Frontiers, 11(3), 739–744. https://doi.org/10.1016/j.gsf.2019.10.004 DOI: https://doi.org/10.1016/j.gsf.2019.10.004
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509. https://doi.org/10.1038/s41467-018-04860-y DOI: https://doi.org/10.1038/s41467-018-04860-y
Karplus, M., & Schmandt, B. (2018). Preface to the Focus Section on Geophone Array Seismology. Seismological Research Letters, 89(5), 1597–1600. https://doi.org/10.1785/0220180212 DOI: https://doi.org/10.1785/0220180212
Kennett, B. L. N., Stipčević, J., & Gorbatov, A. (2015). Spiral‐Arm Seismic Arrays. Bulletin of the Seismological Society of America, 105(4), 2109–2116. https://doi.org/10.1785/0120140354 DOI: https://doi.org/10.1785/0120140354
Khalili, M., Brodic, B., Göransson, P., Heinonen, S., Hesthaven, J. S., Pasanen, A., Vauhkonen, M., Yadav, R., & Lähivaara, T. (2023). Seismic monitoring of water volume in a porous storage: A field-data study. ArXiv Preprint ArXiv:2312.14605. https://doi.org/10.48550/arXiv.2312.14605
Koivisto, E., Malehmir, A., Hellqvist, N., Voipio, T., & Wijns, C. (2015). Building a 3D model of lithological contacts and near‐mine structures in the Kevitsa mining and exploration site, Northern Finland: constraints from 2D and 3D reflection seismic data. Geophysical Prospecting, 63(4-Hard Rock Seismic imaging), 754–773. https://doi.org/10.1111/1365-2478.12252 DOI: https://doi.org/10.1111/1365-2478.12252
Koivisto, Emilia, Malehmir, A., Heikkinen, P., Heinonen, S., & Kukkonen, I. (2012). 2D reflection seismic investigations at the Kevitsa Ni-Cu-PGE deposit, northern Finland. Geophysics, 77(5), WC149–WC162. https://doi.org/10.1190/geo2011-0496.1 DOI: https://doi.org/10.1190/geo2011-0496.1
Kong, Q., Allen, R. M., Schreier, L., & Kwon, Y.-W. (2016). MyShake: A smartphone seismic network for earthquake early warning and beyond. Science Advances, 2(2), e1501055. https://doi.org/10.1126/sciadv.1501055 DOI: https://doi.org/10.1126/sciadv.1501055
Kortström, J., Uski, M., & Tiira, T. (2016). Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 87, 22–30. https://doi.org/10.1016/j.cageo.2015.11.006 DOI: https://doi.org/10.1016/j.cageo.2015.11.006
Krauss, Z., Ni, Y., Henderson, S., & Denolle, M. (2023). Seismology in the cloud: guidance for the individual researcher. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.979 DOI: https://doi.org/10.26443/seismica.v2i2.979
Kukkonen, I. T., Heikkinen, P. J., Malin, P. E., Renner, J., Dresen, G., Karjalainen, A., Rytkönen, J., & Solantie, J. (2023). Hydraulic conductivity of the crystalline crust: Insights from hydraulic stimulation and induced seismicity of an enhanced geothermal system pilot reservoir at 6 km depth, Espoo, southern Finland. Geothermics, 112, 102743. https://doi.org/10.1016/j.geothermics.2023.102743 DOI: https://doi.org/10.1016/j.geothermics.2023.102743
Kwiatek, G., Saarno, T., Ader, T., Bluemle, F., Bohnhoff, M., Chendorain, M., Dresen, G., Heikkinen, P., Kukkonen, I., Leary, P., Leonhardt, M., Malin, P., Martı́nez-Garzón, P., Passmore, K., Passmore, P., Valenzuela, S., & Wollin, C. (2019). Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aav7224 DOI: https://doi.org/10.1126/sciadv.aav7224
Lecocq, T., Hicks, S. P., Noten, K. V., van Wijk, K., Koelemeijer, P., Plaen, R. S. M. D., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., Arroyo-Solórzano, M., Assink, J. D., Büyükakpınar, P., Cannata, A., Cannavo, F., Carrasco, S., Caudron, C., Chaves, E. J., Cornwell, D. G., … Xiao, H. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/10.1126/science.abd2438 DOI: https://doi.org/10.1126/science.abd2438
Lin, F.-C., Li, D., Clayton, R. W., & Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45–Q56. https://doi.org/10.1190/geo2012-0453.1 DOI: https://doi.org/10.1190/geo2012-0453.1
Lindqvist, T., Skyttä, P., Koivisto, E., Häkkinen, T., & Somervuori, P. (2017). Delineating the network of brittle structures with geotechnical, structural and reflection seismic data, Kevitsa open pit, northern Finland. GeoResJ, 13, 159–174. https://doi.org/10.1016/j.grj.2017.04.004 DOI: https://doi.org/10.1016/j.grj.2017.04.004
Lindsey, N. J., & Martin, E. R. (2021). Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213 DOI: https://doi.org/10.1146/annurev-earth-072420-065213
Malehmir, A., Heinonen, S., Dehghannejad, M., Heino, P., Maries, G., Karell, F., Suikkanen, M., & Salo, A. (2017). Landstreamer seismics and physical property measurements in the Siilinjärvi open-pit apatite (phosphate) mine, central Finland. Geophysics, 82(2), B29–B48. https://doi.org/10.1190/geo2016-0443.1 DOI: https://doi.org/10.1190/geo2016-0443.1
Malinowski, M., Putkinen, N., Brodic, B., Laakso, V., Koskela, E., Heinonen, S., Engström, J., & Paananen, M. (2023). P- and S-wave Seismic Imaging of a Complex Aquifer System in Kurikka, Western Finland. First Break, 41(8), 67–72. https://doi.org/10.3997/1365-2397.fb2023063 DOI: https://doi.org/10.3997/1365-2397.fb2023063
Mäntyniemi, P. B. (2004). Pre-instrumental earthquakes in a low-seismicity region: A reinvestigation of the macroseismic data for the 16 November 1931 events in Central Finland using statistical analysis. Journal of Seismology, 8(1), 71–90. https://doi.org/10.1023/B:JOSE.0000009501.13091.2d DOI: https://doi.org/10.1023/B:JOSE.0000009501.13091.2d
Mäntyniemi, P. B. (2017). Macroseismology in Finland from the 1730s to the 2000s. Part 2: From an obligation of the learned elite to citizen science. Geophysica, 52(2), 23–41. https://archive.geophysica.fi/pdf/geophysica_2017_52_2_023_mantyniemi.pdf
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J. (2011). ObsPy - what can it do for data centers and observatories? Annals of Geophysics, 54(1), 47–58. https://doi.org/10.4401/ag-4838 DOI: https://doi.org/10.4401/ag-4838
Mollehuara Canales, R., Kozlovskaya, E., Lunkka, J. P., Guan, H., Banks, E., & Moisio, K. (2020). Geoelectric interpretation of petrophysical and hydrogeological parameters in reclaimed mine tailings areas. Journal of Applied Geophysics, 181, 104139. https://doi.org/10.1016/j.jappgeo.2020.104139 DOI: https://doi.org/10.1016/j.jappgeo.2020.104139
Mollehuara Canales, Raul, Afonin, N., Kozlovskaya, E., Lunkka, J., & Pedretti, D. (2021). Leveraging active-source seismic data in mining tailings: Refraction and MASW analysis, elastic parameters, and hydrogeological conditions. Bulletin of the Geological Society of Finland, 93, 105–127. https://doi.org/10.17741/bgsf/93.2.002 DOI: https://doi.org/10.17741/bgsf/93.2.002
Mollehuara-Canales, R., Kozlovskaya, E., Lunkka, J. P., Moisio, K., & Pedretti, D. (2021). Non-invasive geophysical imaging and facies analysis in mining tailings. Journal of Applied Geophysics, 192, 104402. https://doi.org/10.1016/j.jappgeo.2021.104402 DOI: https://doi.org/10.1016/j.jappgeo.2021.104402
Mordret, A., & Grushin, A. G. (2024). Beating the aliasing limit with aperiodic monotile arrays. ArXiv Preprint ArXiv:2408.16476. DOI: https://doi.org/10.5194/egusphere-egu25-7397
Moreau, L., Boué, P., Serripierri, A., Weiss, J., Hollis, D., Pondaven, I., Vial, B., Garambois, S., Larose, E., Helmstetter, A., Stehly, L., Hillers, G., & Gilbert, O. (2020). Sea Ice Thickness and Elastic Properties From the Analysis of Multimodal Guided Wave Propagation Measured With a Passive Seismic Array. Journal of Geophysical Research: Oceans, 125(4), e2019JC015709. https://doi.org/10.1029/2019JC015709 DOI: https://doi.org/10.1029/2019JC015709
Observatories, & for European Seismology ORFEUS, R. F. (2025). European Mobile Seismic Instrument Pools. https://www.orfeus-eu.org/data/mobile/. https://www.orfeus-eu.org/data/mobile/
Okkonen, J., Neupauer, R. M., Kozlovskaya, E., Afonin, N., Moisio, K., Taewook, K., & Muurinen, E. (2020). Frost Quakes: Crack Formation by Thermal Stress. Journal of Geophysical Research: Earth Surface, 125(9), e2020JF005616. https://doi.org/10.1029/2020JF005616 DOI: https://doi.org/10.1029/2020JF005616
Riedel, M., Cosma, C., Enescu, N., Koivisto, E., Komminaho, K., Vaittinen, K., & Malinowski, M. (2018). Underground Vertical Seismic Profiling with Conventional and Fiber-Optic Systems for Exploration in the Kylylahti Polymetallic Mine, Eastern Finland. Minerals, 8(11). https://doi.org/10.3390/min8110538 DOI: https://doi.org/10.3390/min8110538
Rintamäki, A. E., Hillers, G., Vuorinen, T. A. T., Luhta, T., Pownall, J. M., Tsarsitalidou, C., Galvin, K., Keskinen, J., Kortström, J. T., Lin, T.-C., Mäntyniemi, P. B., Oinonen, K. J., Oksanen, T. J., Seipäjärvi, P. J., Taylor, G., Uski, M. R., Voutilainen, A. I., & Whipp, D. M. (2021). A seismic network to monitor the 2020 EGS stimulation in the Espoo/Helsinki area, southern Finland. Seismological Research Letters, 93(2A), 1046–1062. https://doi.org/10.1785/0220210195 DOI: https://doi.org/10.1785/0220210195
Salminen, J., Elming, S.-AA., & Layer, P. (2023). Timing the break-up of the Baltica and Laurentia connection in Nuna – Rapid plate motion oscillation and plate tectonics in the Mesoproterozoic. Precambrian Research, 384, 106923. https://doi.org/10.1016/j.precamres.2022.106923 DOI: https://doi.org/10.1016/j.precamres.2022.106923
Schütt, J. M., & Whipp, D. M. (2020). Controls on Continental Strain Partitioning Above an Oblique Subduction Zone, Northern Andes. Tectonics, 39(4), e2019TC005886. https://doi.org/10.1029/2019TC005886 DOI: https://doi.org/10.1029/2019TC005886
Singh, B., Malinowski, M., Hloušek, F., Koivisto, E., Heinonen, S., Hellwig, O., Buske, S., Chamarczuk, M., & Juurela, S. (2019). Sparse 3D Seismic Imaging in the Kylylahti Mine Area, Eastern Finland: Comparison of Time Versus Depth Approach. Minerals, 9(5). https://doi.org/10.3390/min9050305 DOI: https://doi.org/10.3390/min9050305
Skyttä, P., Piippo, S., Kloppenburg, A., & Corti, G. (2019). 2.45 Ga break-up of the Archaean continent in Northern Fennoscandia: Rifting dynamics and the role of inherited structures within the Archaean basement. Precambrian Research, 324, 303–323. https://doi.org/10.1016/j.precamres.2019.02.004 DOI: https://doi.org/10.1016/j.precamres.2019.02.004
Sollberger, D., Igel, H., Schmelzbach, C., Edme, P., van Manen, D.-J., Bernauer, F., Yuan, S., Wassermann, J., Schreiber, U., & Robertsson, J. O. A. (2020). Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors, 20(23). https://doi.org/10.3390/s20236904 DOI: https://doi.org/10.3390/s20236904
Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K., Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M., Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., … Triantafyllis, N. (2021). EIDA: The European Integrated Data Archive and Service Infrastructure within ORFEUS. Seismological Research Letters, 92(3), 1788–1795. https://doi.org/10.1785/0220200413 DOI: https://doi.org/10.1785/0220200413
Suarez, G., van Eck, T., Giardini, D., Ahern, T., Butler, R., & Tsuboi, S. (2008). The International Federation of Digital Seismograph Networks (FDSN): An Integrated System of Seismological Observatories. IEEE Systems Journal, 2(3), 431–438. https://doi.org/10.1109/JSYST.2008.2003294 DOI: https://doi.org/10.1109/JSYST.2008.2003294
Taylor, G., Hillers, G., & Vuorinen, T. A. T. (2021). Using array-derived rotational motion to obtain local wave propagation properties from earthquakes induced by the 2018 geothermal stimulation in Finland. Geophysical Research Letters, 48(6). https://doi.org/10.1029/2020gl090403 DOI: https://doi.org/10.1029/2020GL090403
Tiira, T., Janik, T., Skrzynik, T., Komminaho, K., Heinonen, A., Veikkolainen, T., Väkevä, S., & Korja, A. (2020). Full-scale crustal interpretation of Kokkola–Kymi (KOKKY) seismic profile, Fennoscandian shield. Pure and Applied Geophysics, 177(8), 3775–3795. https://doi.org/10.1007/s00024-020-02459-3 DOI: https://doi.org/10.1007/s00024-020-02459-3
Tirronniemi, J., Bischoff, A., Malinowski, M., Autio, U., Karinen, T., Lukkarinen, V., Heinonen, S., Mikkola, P., Leskelä, T., Patzer, C., Piipponen, K., Nousiainen, N., Hakala, P., Martinkauppi, M., Anttilainen, T., Engström, J., Konnunaho, J., Telkkälä, P., & Haavikko, S. (2024). Koillismaa Deep Hole – Final Report [GTK Open File Work Report]. Geological Survey of Finland. https://hakku.gtk.fi/fi/publications?id=22284
Torvalds, L. (1997). Linux: a Portable Operating System. MSc thesis, University of Helsinki, Department of Computer Science. https://www.cs.helsinki.fi/u/kutvonen/index_files/linus.pdf
Uski, M., & Tuppurainen, A. (1996). A new local magnitude scale for the Finnish seismic network. Tectonophysics, 261(1–3), 23–37. https://doi.org/10.1016/0040-1951(96)00054-6 DOI: https://doi.org/10.1016/0040-1951(96)00054-6
van der Hilst, R., Kennett, B., Christie, D., & Grant, J. (1994). Project Skippy explores lithosphere and mantle beneath Australia. Eos, Transactions American Geophysical Union, 75(15), 177–181. https://doi.org/10.1029/94EO00857 DOI: https://doi.org/10.1029/94EO00857
Veikkolainen, T., Kortström, J., Vuorinen, T., Salmenperä, I., Luhta, T., Mäntyniemi, P., Hillers, G., & Tiira, T. (2021). The Finnish National Seismic Network: Toward fully automated analysis of low-magnitude seismic events. Seismological Research Letters, 92(3), 1581–1591. https://doi.org/10.1785/0220200352 DOI: https://doi.org/10.1785/0220200352
Veikkolainen, T., & Kukkonen, I. T. (2019). Highly varying radiogenic heat production in Finland, Fennoscandian Shield. Tectonophysics, 750, 93–116. https://doi.org/10.1016/j.tecto.2018.11.006 DOI: https://doi.org/10.1016/j.tecto.2018.11.006
Wang, X., Williams, E. F., Karrenbach, M., Herráez, M. G., Martins, H. F., & Zhan, Z. (2020). Rose Parade Seismology: Signatures of Floats and Bands on Optical Fiber. Seismological Research Letters, 91(4), 2395–2398. https://doi.org/10.1785/0220200091 DOI: https://doi.org/10.1785/0220200091
Whipp, D. M., Kellett, D. A., Coutand, I., & Ketcham, R. A. (2022). Short communication: Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers. Geochronology, 4(1), 143–152. https://doi.org/10.5194/gchron-4-143-2022 DOI: https://doi.org/10.5194/gchron-4-143-2022
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18 DOI: https://doi.org/10.1038/sdata.2016.18
Zeng, S., Zheng, Y., Niu, F., & Ai, S. (2020). Measurements of Seismometer Orientation of the First Phase CHINArray and Their Implications on Vector‐Recording‐Based Seismic Studies. Bulletin of the Seismological Society of America, 111(1), 36–49. https://doi.org/10.1785/0120200129 DOI: https://doi.org/10.1785/0120200129
Zhang, Z.-X., Gong, F., Kozlovskaya, E., & Aladejare, A. (2023). Characteristic Impedance and Its Applications to Rock and Mining Engineering. Rock Mechanics and Rock Engineering, 56(4), 3139–3158. https://doi.org/10.1007/s00603-023-03216-3 DOI: https://doi.org/10.1007/s00603-023-03216-3
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gregor Hillers, Emilia Koivisto, Päivi Haapanala, Ilmo Kukkonen, Roméo Courbis, Yinshuai Ding, Thomas Fordell, Suvi Heinonen, Niina Junno, Anssi Juntunen, Kari Komminaho, Elena Kozlovskaya, Jussi Leveinen, Kari Moisio, Jyri Näränen, Tahvo Oksanen, Piettari Skyttä, Eija Tanskanen, Timo Tiira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Research Council of Finland
Grant numbers 328984;328776;328778-328782;328784;328786