Unveiling midcrustal seismic activity at the front of the Bolivian altiplano, Cochabamba region
DOI:
https://doi.org/10.26443/seismica.v4i1.1380Keywords:
BoliviaOrocline, moment tensor, automated workflow, AndesAbstract
Located in the heart of the Bolivian orocline, the Cochabamba department and its two million inhabitants are exposed to frequent seismic activity. However, the tectonic structures causing these earthquakes remain poorly identified. Indeed, Bolivia’s national seismological network does not optimally cover the area and the hypocentral locations of local earthquakes are therefore subject to large uncertainties which hinder their association with specific faults. We established a regional network consisting of 11 broadband and short-period seismic stations, spaced approximately 20 km apart. This study highlights the initial 6-month seismic bulletin made by manual and automated deep-neural-network based seismic phase picking. We also test the network's ability to resolve focal mechanisms of moderate to small events with a combined inversion of waveforms and polarities. Our preliminary results document midcrustal microseismicity located in the Main Thrust fault shear zone, and in its hangingwall, in a region affected by tectonic slivers and transverse faults impacting the sedimentary cover. These outcomes provide fresh insights into the fault system’s seismogenic behavior and potential across the Bolivian orocline.
References
Ammirati, J., Villaseñor, A., Chevrot, S., Easton, G., Lehujeur, M., Ruiz, S., & Flores, M. C. (2022). Automated Earthquake Detection and Local Travel Time Tomography in the South‐Central Andes (32–35°S): Implications for Regional Tectonics. Journal of Geophysical Research: Solid Earth, 127(4). https://doi.org/10.1029/2022jb024097 DOI: https://doi.org/10.1029/2022JB024097
Ammirati, J.-B., Alvarado, P., & Beck, S. (2015). A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh wave phase velocity dispersion and teleseismic receiver functions. Geophysical Journal International, 202(1), 224–241. https://doi.org/10.1093/gji/ggv140 DOI: https://doi.org/10.1093/gji/ggv140
Baby, P., Hérail, G., Salinas, R., & Sempere, T. (1992). Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing: Example from the foreland thrust system of the southern Bolivian Subandean Zone. Tectonics, 11(3), 523–536. https://doi.org/10.1029/91tc03090 DOI: https://doi.org/10.1029/91TC03090
Beck, S., Barrientos, S., Kausel, E., & Reyes, M. (1998). Source characteristics of historic earthquakes along the central Chile subduction Askew et alzone. Journal of South American Earth Sciences, 11(2), 115–129. https://doi.org/10.1016/s0895-9811(98)00005-4 DOI: https://doi.org/10.1016/S0895-9811(98)00005-4
Bondár, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. https://doi.org/10.1111/j.1365-246x.2004.02070.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02070.x
Bondár, I., & Storchak, D. (2011). Improved location procedures at the International Seismological Centre. Geophysical Journal International, 186(3), 1220–1244. https://doi.org/10.1111/j.1365-246x.2011.05107.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05107.x
Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971. https://doi.org/10.1785/bssa0710040959 DOI: https://doi.org/10.1785/BSSA0710040959
Brooks, B. A., Bevis, M., Whipple, K., Ramon Arrowsmith, J., Foster, J., Zapata, T., Kendrick, E., Minaya, E., Echalar, A., Blanco, M., Euillades, P., Sandoval, M., & Smalley, R. J. (2011). Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc. Nature Geoscience, 4(6), 380–383. https://doi.org/10.1038/ngeo1143 DOI: https://doi.org/10.1038/ngeo1143
Buford Parks, V. M., & McQuarrie, N. (2019). Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 766, 302–325. https://doi.org/10.1016/j.tecto.2019.06.008 DOI: https://doi.org/10.1016/j.tecto.2019.06.008
Campos, J., Hatzfeld, D., Madariaga, R., Lopez, G., Kausel, E., Zollo, A., Iannacone, G., Fromm, R., Barrientos, S., & Lyon-Caen, H. (2002). A seismological study of the 1835 seismic gap in south-central Chile. Physics of the Earth and Planetary Interiors, 132(1–3), 177–195. https://doi.org/10.1016/s0031-9201(02)00051-1 DOI: https://doi.org/10.1016/S0031-9201(02)00051-1
Delouis, B. (2014). FMNEAR: Determination of Focal Mechanism and First Estimate of Rupture Directivity Using Near-Source Records and a Linear Distribution of Point Sources. Bulletin of the Seismological Society of America, 104(3), 1479–1500. https://doi.org/10.1785/0120130151 DOI: https://doi.org/10.1785/0120130151
Derode, B., Delouis, B., & Campos, J. (2019). Systematic Determination of Focal Mechanisms over a Wide Magnitude Range: Insights from the Real‐Time FMNEAR Implementation in Chile from 2015 to 2017. Seismological Research Letters, 90(3), 1285–1295. https://doi.org/10.1785/0220180322 DOI: https://doi.org/10.1785/0220180322
Derode, B., Gounon, A., Letort, J., Sylvander, M., Rigo, A., Benahmed, S., Grimaud, F., Latour, S., Pauchet, H., & Santamaria, A. (2023). Fluid-driven seismic swarms in the Gripp valley (Haute-Pyrénées, France). Geophysical Journal International, 234(3), 1903–1915. https://doi.org/10.1093/gji/ggad175 DOI: https://doi.org/10.1093/gji/ggad175
Devlin, S., Isacks, B. L., Pritchard, M. E., Barnhart, W. D., & Lohman, R. B. (2012). Depths and focal mechanisms of crustal earthquakes in the central Andes determined from teleseismic waveform analysis and InSAR. Tectonics, 31(2). https://doi.org/10.1029/2011tc002914 DOI: https://doi.org/10.1029/2011TC002914
Eichelberger, N., & McQuarrie, N. (2015). Kinematic reconstruction of the Bolivian orocline. Geosphere, 11(2), 445–462. https://doi.org/10.1130/ges01064.1 DOI: https://doi.org/10.1130/GES01064.1
Fernandez, G. A., Assumpção, M., Nieto, M., Griffiths, T., & Convers, J. (2019). Focal mechanism of the 5.1Mw 2014 Lloja earthquake, Bolivia: Probing the transition between extensional stresses of the central Altiplano and compressional stresses of the sub-Andes. Journal of South American Earth Sciences, 91, 102–107. https://doi.org/10.1016/j.jsames.2019.01.001 DOI: https://doi.org/10.1016/j.jsames.2019.01.001
Figueroa, S., Weiss, J. R., Hongn, F., Pingel, H., Escalante, L., Elías, L., Aranda‐Viana, R. G., & Strecker, M. R. (2020). Late Pleistocene to Recent Deformation in the Thick‐Skinned Fold‐and‐Thrust Belt of Northwestern Argentina (Central Calchaquí Valley, 26°S). Tectonics, 40(1). https://doi.org/10.1029/2020tc006394 DOI: https://doi.org/10.1029/2020TC006394
Funning, G. J., Barke, R. M. D., Lamb, S. H., Minaya, E., Parsons, B., & Wright, T. J. (2005). The 1998 Aiquile, Bolivia earthquake: A seismically active fault revealed with InSAR. Earth and Planetary Science Letters, 232(1–2), 39–49. https://doi.org/10.1016/j.epsl.2005.01.013 DOI: https://doi.org/10.1016/j.epsl.2005.01.013
Glasgow, M., Schmandt, B., Wang, R., Zhang, M., Bilek, S. L., & Kiser, E. (2021). Raton Basin Induced Seismicity Is Hosted by Networks of Short Basement Faults and Mimics Tectonic Earthquake Statistics. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022839 DOI: https://doi.org/10.1029/2021JB022839
Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S -wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80(6A), 1605–1628. https://doi.org/10.1785/bssa08006a1605 DOI: https://doi.org/10.1785/BSSA08006A1605
Hardebeck, J., & Husen, S. (2010). Earthquake location accuracy. https://doi.org/10.5078/CORSSA-55815573
Havskov, J., Voss, P. H., & Ottemöller, L. (2020). Seismological Observatory Software: 30 Yr of SEISAN. Seismological Research Letters, 91(3), 1846–1852. https://doi.org/10.1785/0220190313 DOI: https://doi.org/10.1785/0220190313
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723
Hoste-Colomer, R., Bollinger, L., Lyon-Caen, H., Adhikari, L. B., Baillard, C., Benoit, A., Bhattarai, M., Gupta, R. M., Jacques, E., Kandel, T., Koirala, B. P., Letort, J., Maharjan, K., Matrau, R., Pandey, R., & Timsina, C. (2018). Lateral variations of the midcrustal seismicity in western Nepal: Seismotectonic implications. Earth and Planetary Science Letters, 504, 115–125. https://doi.org/10.1016/j.epsl.2018.09.041 DOI: https://doi.org/10.1016/j.epsl.2018.09.041
Huang, Y., Zhang, S., Lv, Y., Li, Y., Zhang, Y., & Liu, M. (2020). Earthquake detection in the Jiangsu region, China using graphics-processing-unit-based Match & Locate and rapid earthquake association and location*. Earthquake Science, 33(1), 23–33. https://doi.org/10.29382/eqs-2020-0023-03 DOI: https://doi.org/10.29382/eqs-2020-0023-03
Hutton, L. K., & Boore, D. M. (1987). The ML scale in Southern California. Bulletin of the Seismological Society of America, 77(6), 2074–2094. https://doi.org/10.1785/bssa0770062074 DOI: https://doi.org/10.1785/BSSA0770062074
Isacks, B. L. (1988). Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. Journal of Geophysical Research: Solid Earth, 93(B4), 3211–3231. https://doi.org/10.1029/jb093ib04p03211 DOI: https://doi.org/10.1029/JB093iB04p03211
Jarrin, P., Nocquet, J.-M., Rolandone, F., Mora-Páez, H., Mothes, P., & Cisneros, D. (2022). Current motion and deformation of the Nazca Plate: new constraints from GPS measurements. Geophysical Journal International, 232(2), 842–863. https://doi.org/10.1093/gji/ggac353 DOI: https://doi.org/10.1093/gji/ggac353
Jiang, C., Fang, L., Fan, L., & Li, B. (2021). Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science, 34(5), 425–435. https://doi.org/10.29382/eqs-2021-0038 DOI: https://doi.org/10.29382/eqs-2021-0038
Jimenez, C., Tavera, H., Saavedra, M., & Calvo, M. (2014). El Terremoto de foco profundo de Bolivia 1994 a 8.2 Mw. Revista de Investigación de Física, 17(2), 1–7. https://doi.org/10.15381/rif.v17i2.11538 DOI: https://doi.org/10.15381/rif.v17i2.11538
Kissling, E., Ellsworth, W. L., Eberhart‐Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10), 19635–19646. https://doi.org/10.1029/93jb03138 DOI: https://doi.org/10.1029/93JB03138
Kley, J. (1999). Geologic and geometric constraints on a kinematic model of the Bolivian orocline. Journal of South American Earth Sciences, 12(2), 221–235. https://doi.org/10.1016/s0895-9811(99)00015-2 DOI: https://doi.org/10.1016/S0895-9811(99)00015-2
Koirala, B. P., Laporte, M., Bollinger, L., Batteux, D., Letort, J., Guilhem Trilla, A., Wendling-Vazquez, N., Bhattarai, M., Subedi, S., & Adhikari, L. B. (2023). Tectonic significance of the 2021 Lamjung, Nepal, mid-crustal seismic cluster. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01888-3 DOI: https://doi.org/10.1186/s40623-023-01888-3
Lamb, S. (2000). Active deformation in the Bolivian Andes, South America. Journal of Geophysical Research: Solid Earth, 105(B11), 25627–25653. https://doi.org/10.1029/2000jb900187 DOI: https://doi.org/10.1029/2000JB900187
Laporte, M, Bollinger, L., Lyon-Caen, H., Hoste-Colomer, R., Duverger, C., Letort, J., Riesner, M., Koirala, B. P., Bhattarai, M., Kandel, T., Timsina, C., & Adhikari, L. B. (2021). Seismicity in far western Nepal reveals flats and ramps along the Main Himalayan Thrust. Geophysical Journal International, 226(3), 1747–1763. https://doi.org/10.1093/gji/ggab159 DOI: https://doi.org/10.1093/gji/ggab159
Laporte, Marine, Letort, J., Bertin, M., & Bollinger, L. (2024). Understanding earthquake location uncertainties using global sensitivity analysis framework. Geophysical Journal International, 237(2), 1048–1060. https://doi.org/10.1093/gji/ggae093 DOI: https://doi.org/10.1093/gji/ggae093
Lavenu, A. (2006). Andean neotectonics between 1°N and 47°S (Ecuador, Bolivia and Chile): A review. Revista De La Asociación Geológica Argentina, 61(4), 504–524.
Lee, W. H., & Lahr, J. C. (1975). HYPO71: A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr75311 DOI: https://doi.org/10.3133/ofr75311
Letort, J., Vergoz, J., Guilbert, J., Cotton, F., Sebe, O., & Cano, Y. (2014). Moderate Earthquake Teleseismic Depth Estimations: New Methods and Use of the Comprehensive Nuclear-Test-Ban Treaty Organization Network Data. Bulletin of the Seismological Society of America, 104(2), 593–607. https://doi.org/10.1785/0120130126 DOI: https://doi.org/10.1785/0120130126
Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., & Li, H. (2020). Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence From Raw Seismic Data Using Machine‐Learning Phase Picker. Geophysical Research Letters, 47(4). https://doi.org/10.1029/2019gl086189 DOI: https://doi.org/10.1029/2019GL086189
Madariaga, R., Métois, M., Vigny, C., & Campos, J. (2010). Central Chile Finally Breaks. Science, 328(5975), 181–182. https://doi.org/10.1126/science.1189197 DOI: https://doi.org/10.1126/science.1189197
McBrearty, I. W., & Beroza, G. C. (2023). Earthquake Phase Association with Graph Neural Networks. Bulletin of the Seismological Society of America, 113(2), 524–547. https://doi.org/10.1785/0120220182 DOI: https://doi.org/10.1785/0120220182
McFarland, P. K., Bennett, R. A., Alvarado, P., & DeCelles, P. G. (2017). Rapid Geodetic Shortening Across the Eastern Cordillera of NW Argentina Observed by the Puna‐Andes GPS Array. Journal of Geophysical Research: Solid Earth, 122(10), 8600–8623. https://doi.org/10.1002/2017jb014739 DOI: https://doi.org/10.1002/2017JB014739
McNamara, D. E. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001 DOI: https://doi.org/10.1785/012003001
McQuarrie, N. (2002). The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geological Society of America Bulletin, 114(8), 950–963. https://doi.org/10.1130/0016-7606(2002)114<0950:tkhotc>2.0.co;2 DOI: https://doi.org/10.1130/0016-7606(2002)114<0950:TKHOTC>2.0.CO;2
Menager, M. (2023). Étude de l’utilisation de la méthode GRiD MT pour la détection et la caractérisation d’évènements sismiques: De l’échelle régionale à l’échelle locale [[PhD Thesis].]. http://www.theses.fr/2023COAZ4012/document
Mercier, J. L., Sebrier, M., Lavenu, A., Cabrera, J., Bellier, O., Dumont, J., & Machrare, J. (1992). Changes in the tectonic regime above a subduction zone of Andean Type: The Andes of Peru and Bolivia during the Pliocene‐Pleistocene. Journal of Geophysical Research: Solid Earth, 97(B8), 11945–11982. https://doi.org/10.1029/90jb02473 DOI: https://doi.org/10.1029/90JB02473
N.C.E.D.C. (2014). Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset.
Nieto, M., Joly, B., Fernández M., G. A., Condori, F., Baldivieso, J., Griffiths, T., Arce, W., & Machaca, Z. (2021). Observatorio San Calixto – National Seismic, Infrasound and Strong Motion Network of Bolivia (Plurinational State of). Summary of the Bulletin of the International Seismological Centre, 55(II), 29–49. https://doi.org/10.31905/thgtn1jd DOI: https://doi.org/10.31905/THGTN1JD
O.S.C. (2022). https://osc.org.bo/images/sismicos/20220518_Informe_sismico_04_2022_Provincia_Cha
Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics, 6(3), 233–248. DOI: https://doi.org/10.1029/TC006i003p00233
Peterson, J. R. (1993). Observations and modeling of seismic background noise. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr93322 DOI: https://doi.org/10.3133/ofr93322
Pujol, J. (1992). Joint hypocentral location in media with lateral velocity variations and interpretation of the station corrections. Physics of the Earth and Planetary Interiors, 75(1–3), 7–24. https://doi.org/10.1016/0031-9201(92)90114-b DOI: https://doi.org/10.1016/0031-9201(92)90114-B
Retailleau, L., Saurel, J.-M., Laporte, M., Lavayssière, A., Ferrazzini, V., Zhu, W., Beroza, G. C., Satriano, C., Komorowski, J.-C., & Team, O. (2023). Automatic detection for a comprehensive view of Mayotte seismicity. Comptes Rendus. Géoscience, 354(S2), 153–170. https://doi.org/10.5802/crgeos.133 DOI: https://doi.org/10.5802/crgeos.133
Richter, C. F. (1935). An instrumental earthquake magnitude scale*. Bulletin of the Seismological Society of America, 25(1), 1–32. https://doi.org/10.1785/bssa0250010001 DOI: https://doi.org/10.1785/BSSA0250010001
Rivadeneyra-Vera, C., Assumpção, M., Minaya, E., Aliaga, P., & Avila, G. (2016). Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks. Journal of South American Earth Sciences, 71, 54–62. https://doi.org/10.1016/j.jsames.2016.06.002 DOI: https://doi.org/10.1016/j.jsames.2016.06.002
Ruiz, S., Klein, E., del Campo, F., Rivera, E., Poli, P., Metois, M., Christophe, V., Baez, J. C., Vargas, G., Leyton, F., Madariaga, R., & Fleitout, L. (2016). The Seismic Sequence of the 16 September 2015 M w 8.3 Illapel, Chile, Earthquake. Seismological Research Letters, 87(4), 789–799. https://doi.org/10.1785/0220150281 DOI: https://doi.org/10.1785/0220150281
Ryan, J., Beck, S., Zandt, G., Wagner, L., Minaya, E., & Tavera, H. (2016). Central Andean crustal structure from receiver function analysis. Tectonophysics, 682, 120–133. https://doi.org/10.1016/j.tecto.2016.04.048 DOI: https://doi.org/10.1016/j.tecto.2016.04.048
Savvaidis, A., Young, B., Huang, G. D., & Lomax, A. (2019). TexNet: A Statewide Seismological Network in Texas. Seismological Research Letters. https://doi.org/10.1785/0220180350 DOI: https://doi.org/10.1785/0220180350
Sempere, T., Hérail, G., Oller, J., & Bonhomme, M. G. (1990). Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Geology, 18(10), 946. https://doi.org/10.1130/0091-7613(1990)018<0946:loemmt>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1990)018<0946:LOEMMT>2.3.CO;2
Silver, P. G., Beck, S. L., Wallace, T. C., Meade, C., Myers, S. C., James, D. E., & Kuehnel, R. (1995). Rupture Characteristics of the Deep Bolivian Earthquake of 9 June 1994 and the Mechanism of Deep-Focus Earthquakes. Science, 268(5207), 69–73. https://doi.org/10.1126/science.268.5207.69 DOI: https://doi.org/10.1126/science.268.5207.69
Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine-Learning-Based High-Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001 DOI: https://doi.org/10.1785/0320210001
Vega, A., & Buforn, E. (1991). Focal mechanisms of intraplate earthquakes in Bolivia, South America. Pure and Applied Geophysics, 136(4), 449–458. https://doi.org/10.1007/bf00878581 DOI: https://doi.org/10.1007/BF00878581
Vega, B. A. (1996). Complementos a la historia sísmica de Bolivia.
Venerdini, A., Alvarado, P., Ammirati, J.-B., Podesta, M., López, L., Fuentes, F., Linkimer, L., & Beck, S. (2020). Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data. Tectonophysics, 786, 228450. https://doi.org/10.1016/j.tecto.2020.228450 DOI: https://doi.org/10.1016/j.tecto.2020.228450
Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., Woelfel, I., Chang, J. C., Darold, A. P., & Holland, A. A. (2019). The Oklahoma Geological Survey Statewide Seismic Network. Seismological Research Letters, 91(2A), 611–621. https://doi.org/10.1785/0220190211 DOI: https://doi.org/10.1785/0220190211
Weiss, J. R., Brooks, B. A., Foster, J. H., Bevis, M., Echalar, A., Caccamise, D., Heck, J., Kendrick, E., Ahlgren, K., Raleigh, D., Smalley, R., & Vergani, G. (2016). Isolating active orogenic wedge deformation in the southern Subandes of Bolivia. Journal of Geophysical Research: Solid Earth, 121(8), 6192–6218. https://doi.org/10.1002/2016jb013145 DOI: https://doi.org/10.1002/2016JB013145
Wiemer, S., & Wyss, M. (2000). Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114 DOI: https://doi.org/10.1785/0119990114
Zhan, Z., Kanamori, H., Tsai, V. C., Helmberger, D. V., & Wei, S. (2014). Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth and Planetary Science Letters, 385, 89–96. https://doi.org/10.1016/j.epsl.2013.10.028 DOI: https://doi.org/10.1016/j.epsl.2013.10.028
Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid Earthquake Association and Location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052 DOI: https://doi.org/10.1785/0220190052
Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismological Research Letters, 93(5), 2426–2438. https://doi.org/10.1785/0220220019 DOI: https://doi.org/10.1785/0220220019
Zhu, W., & Beroza, G. C. (2018). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5). https://doi.org/10.1029/2021jb023249 DOI: https://doi.org/10.1029/2021JB023249
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gonzalo Antonio Fernandez M, Benoit Derode, Laurent Bollinger, Bertrand Delouis, Mayra Nieto, Felipe Condori, Nathan Sarret, Jean Letort, Stephanie Godey, Mathilde Wimez, Teddy Griffiths, Walter Arce

This work is licensed under a Creative Commons Attribution 4.0 International License.