A model of the earthquake cycle along the Gofar oceanic transform faults
DOI:
https://doi.org/10.26443/seismica.v3i2.1382Keywords:
Earthquake Cycle, Gofar Transform Fault, Coulomb StressAbstract
The Gofar oceanic transform fault at the East Pacific Rise has one of the best seismic cycles recorded by modern instruments. The timing, location, and magnitude of major earthquakes (Mw>5.5) have been well constrained by data from global seismic networks for the past 30 years. The earthquake interval is short, about 3-5 years. Several segments have already experienced 5 cycles since 1995, when the seismic network was good enough for surface wave relocation. Two ocean bottom seismometer deployments (2008-2009, 2021-2023) also provide constraints on the seismic properties on the fault. This makes Gofar an ideal place to study earthquake cycles. Here, we developed a model for the seismic cycle along the Gofar transform fault using a semi-analytical approach for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations embedded within an elastic layer overlying a Maxwell viscoelastic half-space. The 160-km long fault is divided into three major segments with six asperities. Our model simulates the earthquake pattern on this fault for the past 30 years. Most of the time, each asperity ruptured as a large earthquake every 3-5 years. Most segments have a nearly constant Coulomb stress threshold of 2-3 MPa, providing optimal conditions for the forecasting of future earthquakes along Gofar. For three cases that deviated from this simple regular pattern, a large earthquake occurred with a centroid location between two asperities. This is likely due to concurrent rupture that involved both asperities. We also modeled surface deformation with different elastic layer thicknesses and mantle viscosities. Even though most deformation is in the horizontal direction, the difference in both horizontal and vertical directions between models can be as large as a few centimeters per year. Several seafloor geodesy methods can be used to differentiate between models, and seafloor pressure might be the most appropriate one at this remote location.
References
Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005821
Barbot, S., Moore, J. D. P., & Lambert, V. (2017). Displacement and Stress Associated with Distributed Anelastic Deformation in a Half‐Space. Bulletin of the Seismological Society of America, 107(2), 821–855. https://doi.org/10.1785/0120160237
Barnhoorn, A., van der Wal, W., & Drury, M. R. (2011). Upper mantle viscosity and lithospheric thickness under Iceland. Journal of Geodynamics, 52(3–4), 260–270. https://doi.org/10.1016/j.jog.2011.01.002
Boettcher, M. S., & McGuire, J. J. (2009). Scaling relations for seismic cycles on mid‐ocean ridge transform faults. Geophysical Research Letters, 36(21). https://doi.org/10.1029/2009gl040115
Bufe, C. G., Harsh, P. W., & Burford, R. O. (1977). Steady‐state seismic slip – A precise recurrence model. Geophysical Research Letters, 4(2), 91–94. https://doi.org/10.1029/gl004i002p00091
Bürgmann, R., & Chadwell, D. (2014). Seafloor Geodesy. Annual Review of Earth and Planetary Sciences, 42(1), 509–534. https://doi.org/10.1146/annurev-earth-060313-054953
Bürgmann, R., & Dresen, G. (2008). Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36(1), 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326
Calmant, S., Francheteau, J., & Cazenave, A. (1990). Elastic Layer Thickening With Age of the Oceanic Lithosphere: A Tool For Prediction of the Age of Volcanoes Or Oceanic Crust. Geophysical Journal International, 100(1), 59–67. https://doi.org/10.1111/j.1365-246x.1990.tb04567.x
Castellanos, J. C., Zhan, Z., & Wu, W. (2020). Absolute Centroid Location of Submarine Earthquakes from 3D Waveform Modeling of Water Reverberations. Journal of Geophysical Research: Solid Earth, 125(5). https://doi.org/10.1029/2019jb018941
Chadwell, C. D., & Sweeney, A. D. (2010). Acoustic Ray-Trace Equations for Seafloor Geodesy. Marine Geodesy, 33(2–3), 164–186. https://doi.org/10.1080/01490419.2010.492283
Cleveland, K. M., & Ammon, C. J. (2015). Precise Relative Earthquake Magnitudes from Cross Correlation. Bulletin of the Seismological Society of America, 105(3), 1792–1796. https://doi.org/10.1785/0120140329
Cox, S., Fagereng, A., & MacLeod, C. J. (2021). Shear Zone Development in Serpentinized Mantle: Implications for the Strength of Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020jb020763
Decriem, J., & Árnadóttir, T. (2012). Transient crustal deformation in the South Iceland Seismic Zone observed by GPS and InSAR during 2000–2008. Tectonophysics, 581, 6–18. https://doi.org/10.1016/j.tecto.2011.09.028
DeSanto, J. B., Webb, S. C., Nooner, S. L., Schmidt, D. A., Crowell, B. W., Brooks, B. A., Ericksen, T. L., & Chadwell, C. D. (2023). Limited shallow slip for the 2020 Simeonof earthquake, Alaska, constrained by GNSS-Acoustic. Geophysical Research Letters, 50(16). https://doi.org/10.1029/2023gl105045
Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., & Brocher, T. (1987). Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature, 326(6108), 35–41. https://doi.org/10.1038/326035a0
Dobashi, Y., & Inazu, D. (2021). Improving Detectability of Seafloor Deformation From Bottom Pressure Observations Using Numerical Ocean Models. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.598270
Fischer, K. M., Rychert, C. A., Dalton, C. A., Miller, M. S., Beghein, C., & Schutt, D. L. (2020). A comparison of oceanic and continental mantle lithosphere. Physics of the Earth and Planetary Interiors, 309, 106600. https://doi.org/10.1016/j.pepi.2020.106600
Fredrickson, E. K., Gomberg, J. S., Wilcock, W. S. D., Hautala, S. L., Hermann, A. J., & Johnson, H. P. (2023). Slow Slip Detectability in Seafloor Pressure Records Offshore Alaska. Journal of Geophysical Research: Solid Earth, 128(2). https://doi.org/10.1029/2022jb024767
Fredrickson, E. K., Wilcock, W. S. D., Schmidt, D. A., MacCready, P., Roland, E., Kurapov, A. L., Zumberge, M. A., & Sasagawa, G. S. (2019). Optimizing Sensor Configurations for the Detection of Slow‐Slip Earthquakes in Seafloor Pressure Records, Using the Cascadia Subduction Zone as a Case Study. Journal of Geophysical Research: Solid Earth, 124(12), 13504–13531. https://doi.org/10.1029/2019jb018053
Froment, B., McGuire, J. J., van der Hilst, R. D., Gouédard, P., Roland, E. C., Zhang, H., & Collins, J. A. (2014). Imaging along‐strike variations in mechanical properties of the Gofar transform fault, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 119(9), 7175–7194. https://doi.org/10.1002/2014jb011270
Gong, J., Fan, W., Boettcher, M. S., McGuire, J. J., Warren, J. M., Behn, M. D., Roland, E. C., & Liu, Y. (2023). Ridge-transform fault interaction controls earthquake swarm activity at the Gofar transform fault. AGU Fall Meeting Abstracts, 2023(39), 13–039.
Gong, Jianhua, & Fan, W. (2022). Seismicity, Fault Architecture, and Slip Mode of the Westernmost Gofar Transform Fault. Journal of Geophysical Research: Solid Earth, 127(11). https://doi.org/10.1029/2022jb024918
Gregory, E. P. M., Singh, S. C., Marjanović, M., & Wang, Z. (2021). Serpentinized peridotite versus thick mafic crust at the Romanche oceanic transform fault. Geology, 49(9), 1132–1136. https://doi.org/10.1130/g49097.1
Guo, H., Zhang, H., & Froment, B. (2018). Structural control on earthquake behaviors revealed by high-resolution Vp/Vs imaging along the Gofar transform fault, East Pacific Rise. Earth and Planetary Science Letters, 499, 243–255. https://doi.org/10.1016/j.epsl.2018.07.037
Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9
Howe, M., Ekström, G., & Nettles, M. (2019). Improving relative earthquake locations using surface-wave source corrections. Geophysical Journal International, 219(1), 297–312. https://doi.org/10.1093/gji/ggz291
Howell, S., Smith-Konter, B., Frazer, N., Tong, X., & Sandwell, D. (2016). The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience, 9(8), 611–614. https://doi.org/10.1038/ngeo2741
Johnson, K. M., & Segall, P. (2004). Viscoelastic earthquake cycle models with deep stress‐driven creep along the San Andreas fault system. Journal of Geophysical Research: Solid Earth, 109(B10). https://doi.org/10.1029/2004jb003096
Johnson, K., Villani, M., Bayliss, K., Brooks, C., Chandrasekhar, S., Chartier, T., Chen, Y.-S., Garcia-Pelaez, J., Gee, R., Styron, R., Rood, A., Simionato, M., & Pagani, M. (2023). Global Earthquake Model (GEM) Seismic Hazard Map. Zenodo. https://doi.org/10.5281/ZENODO.8409647
Kato, N. (2002). Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space. Earth, Planets and Space, 54(11), 1077–1083. https://doi.org/10.1186/bf03353305
Kato, N. (2020). Complexity in the Earthquake Cycle Increases with the Number of Interacting Patches. Pure and Applied Geophysics, 177(10), 4657–4676. https://doi.org/10.1007/s00024-020-02555-4
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935
Kohli, A. H., & Warren, J. M. (2020). Evidence for a Deep Hydrologic Cycle on Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb017751
Kohli, A., Wolfson-Schwehr, M., Prigent, C., & Warren, J. M. (2021). Oceanic transform fault seismicity and slip mode influenced by seawater infiltration. Nature Geoscience, 14(8), 606–611. https://doi.org/10.1038/s41561-021-00778-1
Lambert, V., & Barbot, S. (2016). Contribution of viscoelastic flow in earthquake cycles within the lithosphere‐asthenosphere system. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070345
Lange, D., Kopp, H., Royer, J.-Y., Henry, P., Çakir, Z., Petersen, F., Sakic, P., Ballu, V., Bialas, J., Özeren, M. S., Ergintav, S., & Géli, L. (2019). Interseismic strain build-up on the submarine North Anatolian Fault offshore Istanbul. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11016-z
Li, S., Grapenthin, R., Sigmundsson, F., Drouin, V., Hreinsdóttir, S., & Ófeigsson, B. G. (2022). Post-rifting relaxation during 2015–2020 following the Bárðarbunga-Holuhraun dike intrusion and eruption in Iceland. Geophysical Research Letters, 49(13). https://doi.org/10.1029/2022gl098977
Liu, T., Gong, J., Fan, W., & Lin, G. (2023). In‐Situ Vp/Vs Reveals Fault‐Zone Material Variation at the Westernmost Gofar Transform Fault, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025310
Liu, Y., McGuire, J. J., & Behn, M. D. (2020). Aseismic transient slip on the Gofar transform fault, East Pacific Rise. Proceedings of the National Academy of Sciences, 117(19), 10188–10194. https://doi.org/10.1073/pnas.1913625117
Lowry, A. R., Ribe, N. M., & Smith, R. B. (2000). Dynamic elevation of the Cordillera, western United States. Journal of Geophysical Research: Solid Earth, 105(B10), 23371–23390. https://doi.org/10.1029/2000jb900182
Lu, Z., Audet, P., Li, C., Zhu, S., & Wu, Z. (2021). What Controls Effective Elastic Thickness of the Lithosphere in the Pacific Ocean? Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb021074
Lynch, J. C., Burgmann, R., & Richards, M. A. (2003). When faults communicate: Viscoelastic coupling and earthquake clustering in a simple two‐fault system. Geophysical Research Letters, 30(6). https://doi.org/10.1029/2002gl016765
McGuire, J. J. (2008). Seismic Cycles and Earthquake Predictability on East Pacific Rise Transform Faults. Bulletin of the Seismological Society of America, 98(3), 1067–1084. https://doi.org/10.1785/0120070154
McGuire, Jeffrey J., & Collins, J. A. (2013). Millimeter‐level precision in a seafloor geodesy experiment at the Discovery transform fault, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 14(10), 4392–4402. https://doi.org/10.1002/ggge.20225
McGuire, Jeffrey J., Collins, J. A., Gouédard, P., Roland, E., Lizarralde, D., Boettcher, M. S., Behn, M. D., & van der Hilst, R. D. (2012). Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nature Geoscience, 5(5), 336–341. https://doi.org/10.1038/ngeo1454
Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., & Toda, S. (2019). Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10520-6
Nishimura, C. E., & Forsyth, D. W. (1988). Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneities. Geophysical Journal International, 94(3), 479–501. https://doi.org/10.1111/j.1365-246x.1988.tb02270.x
Pan, J., Antolik, M., & Dziewonski, A. M. (2002). Locations of mid‐oceanic earthquakes constrained by seafloor bathymetry. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb001588
Philibosian, B., & Meltzner, A. J. (2020). Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quaternary Science Reviews, 241, 106390. https://doi.org/10.1016/j.quascirev.2020.106390
Pockalny, R. A. (1997). Evidence of transpression along the Clipperton Transform: Implications for processes of plate boundary reorganization. Earth and Planetary Science Letters, 146(3–4), 449–464. https://doi.org/10.1016/s0012-821x(96)00253-1
Pollitz, F. F. (2019). Lithosphere and shallow asthenosphere rheology from observations of post-earthquake relaxation. Physics of the Earth and Planetary Interiors, 293, 106271. https://doi.org/10.1016/j.pepi.2019.106271
Pollitz, F. F., Wicks, C., & Thatcher, W. (2001). Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake. Science, 293(5536), 1814–1818. https://doi.org/10.1126/science.1061361
Pollitz, F. F., Wicks, C. W., Svarc, J. L., Phillips, E., Brooks, B. A., Murray, M. H., & Turner, R. C. (2021). Postseismic Relaxation Following the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 112(2), 734–749. https://doi.org/10.1785/0120210170
Roland, E., Behn, M. D., & Hirth, G. (2010). Thermal‐mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity. Geochemistry, Geophysics, Geosystems, 11(7). https://doi.org/10.1029/2010gc003034
Roland, E., Lizarralde, D., McGuire, J. J., & Collins, J. A. (2012). Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada‐Discovery‐Gofar transform faults, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 117(B11). https://doi.org/10.1029/2012jb009422
Rubinstein, J. L., Ellsworth, W. L., Chen, K. H., & Uchida, N. (2012). Fixed recurrence and slip models better predict earthquake behavior than the time‐ and slip‐predictable models: 1. Repeating earthquakes. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/10.1029/2011jb008724
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/https://doi.org/10.1029/2008GC002332
Sandwell, D., & Smith-Konter, B. (2018). Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems. Computers & Geosciences, 114, 84–97. https://doi.org/10.1016/j.cageo.2018.01.009
Savage, J. C., & Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78(5), 832–845. https://doi.org/10.1029/jb078i005p00832
Scholz, C. H. (2002a). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/cbo9780511818516
Scholz, C. H. (2002b). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/cbo9780511818516
Shan, B., Xiong, X., Wang, R., Zheng, Y., & Yang, S. (2013). Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377–378, 199–210. https://doi.org/10.1016/j.epsl.2013.06.044
Shi, P., Wei, M., & Barbot, S. (2022). Contribution of Viscoelastic Stress to the Synchronization of Earthquake Cycles on Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024069
Shi, P., Wei, M. (Matt), & Pockalny, R. A. (2021). The ubiquitous creeping segments on oceanic transform faults. Geology, 50(2), 199–204. https://doi.org/10.1130/g49562.1
Shimazaki, K., & Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4), 279–282. https://doi.org/10.1029/gl007i004p00279
Smith, B. R., & Sandwell, D. T. (2006). A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research: Solid Earth, 111(B1). https://doi.org/10.1029/2005jb003703
Smith, B., & Sandwell, D. (2003). Coulomb stress accumulation along the San Andreas Fault system. Journal of Geophysical Research: Solid Earth, 108(B6). https://doi.org/10.1029/2002jb002136
Smith, B., & Sandwell, D. (2004). A three‐dimensional semianalytic viscoelastic model for time‐dependent analyses of the earthquake cycle. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/10.1029/2004jb003185
Smith-Konter, B. R., Sandwell, D. T., & Shearer, P. (2011). Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 116(B6). https://doi.org/10.1029/2010jb008117
Smith-Konter, B. R., Thornton, G. M., & Sandwell, D. T. (2014). Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters, 41(11), 3793–3801. https://doi.org/10.1002/2014gl060091
Smith‐Konter, B., & Sandwell, D. (2009). Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth. Geophysical Research Letters, 36(13). https://doi.org/10.1029/2009gl037235
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594–604. https://doi.org/10.1111/j.1365-246x.1997.tb05321.x
Sykes, L. R., & Ekström, G. (2011). Earthquakes along Eltanin transform system, SE Pacific Ocean: Fault segments characterized by strong and poor seismic coupling and implications for long-term earthquake prediction. Geophysical Journal International, 188(2), 421–434. https://doi.org/10.1111/j.1365-246x.2011.05284.x
Ward, L. A., Guns, K. A., Smith‐Konter, B. R., Xu, X., Bock, Y., & Sandwell, D. T. (2022). Vertical Postseismic Deformation of the 2019 Ridgecrest Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2021jb023331
Ward, L. A., Smith‐Konter, B. R., Xu, X., & Sandwell, D. T. (2021). Seismic Moment Accumulation Response to Lateral Crustal Variations of the San Andreas Fault System. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb021208
Watts, A. B. (1978). An analysis of isostasy in the world’s oceans; 1. Hawaiian-Emperor Seamout Chain. Journal of Geophysical Research: Solid Earth, 83(B12), 5989–6004. https://doi.org/10.1029/jb083ib12p05989
Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113–131. https://doi.org/10.1016/s0012-821x(03)00289-9
Watts, A. B., & Zhong, S. (2000). Observations of flexure and the rheology of oceanic lithosphere. Geophysical Journal International, 142(3), 855–875. https://doi.org/10.1046/j.1365-246x.2000.00189.x
Watts, D. R., Wei, M., Tracey, K. L., Donohue, K. A., & He, B. (2021). Seafloor Geodetic Pressure Measurements to Detect Shallow Slow Slip Events: Methods to Remove Contributions From Ocean Water. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb020065
Wei, M., & Shi, P. (2021). Synchronization of Earthquake Cycles of Adjacent Segments on Oceanic Transform Faults Revealed by Numerical Simulation in the Framework of Rate‐and‐State Friction. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020jb020231
Weldon, R. J., Fumal, T. E., Biasi, G. P., & Scharer, K. M. (2005). Past and Future Earthquakes on the San Andreas Fault. Science, 308(5724), 966–967. https://doi.org/10.1126/science.1111707
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/https://doi.org/10.1029/2019GC008515
Wolfson-Schwehr, M., & Boettcher, M. S. (2019). Global Characteristics of Oceanic Transform Fault Structure and Seismicity. In Transform Plate Boundaries and Fracture Zones (pp. 21–59). Elsevier. https://doi.org/10.1016/b978-0-12-812064-4.00002-5
Wolfson-Schwehr, M., Boettcher, M. S., McGuire, J. J., & Collins, J. A. (2014). The relationship between seismicity and fault structure on the Discovery transform fault, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 15(9), 3698–3712. https://doi.org/10.1002/2014gc005445
Yamamoto, R., Kido, M., Ohta, Y., Takahashi, N., Yamamoto, Y., Pinar, A., Kalafat, D., Özener, H., & Kaneda, Y. (2019). Seafloor Geodesy Revealed Partial Creep of the North Anatolian Fault Submerged in the Sea of Marmara. Geophysical Research Letters, 46(3), 1268–1275. https://doi.org/10.1029/2018gl080984
Yao, H., Gouédard, P., Collins, J. A., McGuire, J. J., & van der Hilst, R. D. (2011). Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. Comptes Rendus. Géoscience, 343(8–9), 571–583. https://doi.org/10.1016/j.crte.2011.04.004
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Meng (Matt) Wei, Lingchao He, Bridget Smith-Konter
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers 1654416