A model of the earthquake cycle along the Gofar oceanic transform faults

Authors

DOI:

https://doi.org/10.26443/seismica.v3i2.1382

Keywords:

Earthquake Cycle, Gofar Transform Fault, Coulomb Stress

Abstract

The Gofar oceanic transform fault at the East Pacific Rise has one of the best seismic cycles recorded by modern instruments. The timing, location, and magnitude of major earthquakes (Mw>5.5) have been well constrained by data from global seismic networks for the past 30 years. The earthquake interval is short, about 3-5 years. Several segments have already experienced 5 cycles since 1995, when the seismic network was good enough for surface wave relocation. Two ocean bottom seismometer deployments (2008-2009, 2021-2023) also provide constraints on the seismic properties on the fault. This makes Gofar an ideal place to study earthquake cycles. Here, we developed a model for the seismic cycle along the Gofar transform fault using a semi-analytical approach for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations embedded within an elastic layer overlying a Maxwell viscoelastic half-space. The 160-km long fault is divided into three major segments with six asperities. Our model simulates the earthquake pattern on this fault for the past 30 years. Most of the time, each asperity ruptured as a large earthquake every 3-5 years. Most segments have a nearly constant Coulomb stress threshold of 2-3 MPa, providing optimal conditions for the forecasting of future earthquakes along Gofar. For three cases that deviated from this simple regular pattern, a large earthquake occurred with a centroid location between two asperities. This is likely due to concurrent rupture that involved both asperities. We also modeled surface deformation with different elastic layer thicknesses and mantle viscosities. Even though most deformation is in the horizontal direction, the difference in both horizontal and vertical directions between models can be as large as a few centimeters per year. Several seafloor geodesy methods can be used to differentiate between models, and seafloor pressure might be the most appropriate one at this remote location.

References

Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005821

Barbot, S., Moore, J. D. P., & Lambert, V. (2017). Displacement and Stress Associated with Distributed Anelastic Deformation in a Half‐Space. Bulletin of the Seismological Society of America, 107(2), 821–855. https://doi.org/10.1785/0120160237

Barnhoorn, A., van der Wal, W., & Drury, M. R. (2011). Upper mantle viscosity and lithospheric thickness under Iceland. Journal of Geodynamics, 52(3–4), 260–270. https://doi.org/10.1016/j.jog.2011.01.002

Boettcher, M. S., & McGuire, J. J. (2009). Scaling relations for seismic cycles on mid‐ocean ridge transform faults. Geophysical Research Letters, 36(21). https://doi.org/10.1029/2009gl040115

Bufe, C. G., Harsh, P. W., & Burford, R. O. (1977). Steady‐state seismic slip – A precise recurrence model. Geophysical Research Letters, 4(2), 91–94. https://doi.org/10.1029/gl004i002p00091

Bürgmann, R., & Chadwell, D. (2014). Seafloor Geodesy. Annual Review of Earth and Planetary Sciences, 42(1), 509–534. https://doi.org/10.1146/annurev-earth-060313-054953

Bürgmann, R., & Dresen, G. (2008). Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36(1), 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326

Calmant, S., Francheteau, J., & Cazenave, A. (1990). Elastic Layer Thickening With Age of the Oceanic Lithosphere: A Tool For Prediction of the Age of Volcanoes Or Oceanic Crust. Geophysical Journal International, 100(1), 59–67. https://doi.org/10.1111/j.1365-246x.1990.tb04567.x

Castellanos, J. C., Zhan, Z., & Wu, W. (2020). Absolute Centroid Location of Submarine Earthquakes from 3D Waveform Modeling of Water Reverberations. Journal of Geophysical Research: Solid Earth, 125(5). https://doi.org/10.1029/2019jb018941

Chadwell, C. D., & Sweeney, A. D. (2010). Acoustic Ray-Trace Equations for Seafloor Geodesy. Marine Geodesy, 33(2–3), 164–186. https://doi.org/10.1080/01490419.2010.492283

Cleveland, K. M., & Ammon, C. J. (2015). Precise Relative Earthquake Magnitudes from Cross Correlation. Bulletin of the Seismological Society of America, 105(3), 1792–1796. https://doi.org/10.1785/0120140329

Cox, S., Fagereng, A., & MacLeod, C. J. (2021). Shear Zone Development in Serpentinized Mantle: Implications for the Strength of Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020jb020763

Decriem, J., & Árnadóttir, T. (2012). Transient crustal deformation in the South Iceland Seismic Zone observed by GPS and InSAR during 2000–2008. Tectonophysics, 581, 6–18. https://doi.org/10.1016/j.tecto.2011.09.028

DeSanto, J. B., Webb, S. C., Nooner, S. L., Schmidt, D. A., Crowell, B. W., Brooks, B. A., Ericksen, T. L., & Chadwell, C. D. (2023). Limited shallow slip for the 2020 Simeonof earthquake, Alaska, constrained by GNSS-Acoustic. Geophysical Research Letters, 50(16). https://doi.org/10.1029/2023gl105045

Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., & Brocher, T. (1987). Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature, 326(6108), 35–41. https://doi.org/10.1038/326035a0

Dobashi, Y., & Inazu, D. (2021). Improving Detectability of Seafloor Deformation From Bottom Pressure Observations Using Numerical Ocean Models. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.598270

Fischer, K. M., Rychert, C. A., Dalton, C. A., Miller, M. S., Beghein, C., & Schutt, D. L. (2020). A comparison of oceanic and continental mantle lithosphere. Physics of the Earth and Planetary Interiors, 309, 106600. https://doi.org/10.1016/j.pepi.2020.106600

Fredrickson, E. K., Gomberg, J. S., Wilcock, W. S. D., Hautala, S. L., Hermann, A. J., & Johnson, H. P. (2023). Slow Slip Detectability in Seafloor Pressure Records Offshore Alaska. Journal of Geophysical Research: Solid Earth, 128(2). https://doi.org/10.1029/2022jb024767

Fredrickson, E. K., Wilcock, W. S. D., Schmidt, D. A., MacCready, P., Roland, E., Kurapov, A. L., Zumberge, M. A., & Sasagawa, G. S. (2019). Optimizing Sensor Configurations for the Detection of Slow‐Slip Earthquakes in Seafloor Pressure Records, Using the Cascadia Subduction Zone as a Case Study. Journal of Geophysical Research: Solid Earth, 124(12), 13504–13531. https://doi.org/10.1029/2019jb018053

Froment, B., McGuire, J. J., van der Hilst, R. D., Gouédard, P., Roland, E. C., Zhang, H., & Collins, J. A. (2014). Imaging along‐strike variations in mechanical properties of the Gofar transform fault, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 119(9), 7175–7194. https://doi.org/10.1002/2014jb011270

Gong, J., Fan, W., Boettcher, M. S., McGuire, J. J., Warren, J. M., Behn, M. D., Roland, E. C., & Liu, Y. (2023). Ridge-transform fault interaction controls earthquake swarm activity at the Gofar transform fault. AGU Fall Meeting Abstracts, 2023(39), 13–039.

Gong, Jianhua, & Fan, W. (2022). Seismicity, Fault Architecture, and Slip Mode of the Westernmost Gofar Transform Fault. Journal of Geophysical Research: Solid Earth, 127(11). https://doi.org/10.1029/2022jb024918

Gregory, E. P. M., Singh, S. C., Marjanović, M., & Wang, Z. (2021). Serpentinized peridotite versus thick mafic crust at the Romanche oceanic transform fault. Geology, 49(9), 1132–1136. https://doi.org/10.1130/g49097.1

Guo, H., Zhang, H., & Froment, B. (2018). Structural control on earthquake behaviors revealed by high-resolution Vp/Vs imaging along the Gofar transform fault, East Pacific Rise. Earth and Planetary Science Letters, 499, 243–255. https://doi.org/10.1016/j.epsl.2018.07.037

Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9

Howe, M., Ekström, G., & Nettles, M. (2019). Improving relative earthquake locations using surface-wave source corrections. Geophysical Journal International, 219(1), 297–312. https://doi.org/10.1093/gji/ggz291

Howell, S., Smith-Konter, B., Frazer, N., Tong, X., & Sandwell, D. (2016). The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience, 9(8), 611–614. https://doi.org/10.1038/ngeo2741

Johnson, K. M., & Segall, P. (2004). Viscoelastic earthquake cycle models with deep stress‐driven creep along the San Andreas fault system. Journal of Geophysical Research: Solid Earth, 109(B10). https://doi.org/10.1029/2004jb003096

Johnson, K., Villani, M., Bayliss, K., Brooks, C., Chandrasekhar, S., Chartier, T., Chen, Y.-S., Garcia-Pelaez, J., Gee, R., Styron, R., Rood, A., Simionato, M., & Pagani, M. (2023). Global Earthquake Model (GEM) Seismic Hazard Map. Zenodo. https://doi.org/10.5281/ZENODO.8409647

Kato, N. (2002). Seismic cycle on a strike-slip fault with rate- and state-dependent strength in an elastic layer overlying a viscoelastic half-space. Earth, Planets and Space, 54(11), 1077–1083. https://doi.org/10.1186/bf03353305

Kato, N. (2020). Complexity in the Earthquake Cycle Increases with the Number of Interacting Patches. Pure and Applied Geophysics, 177(10), 4657–4676. https://doi.org/10.1007/s00024-020-02555-4

King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935

Kohli, A. H., & Warren, J. M. (2020). Evidence for a Deep Hydrologic Cycle on Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb017751

Kohli, A., Wolfson-Schwehr, M., Prigent, C., & Warren, J. M. (2021). Oceanic transform fault seismicity and slip mode influenced by seawater infiltration. Nature Geoscience, 14(8), 606–611. https://doi.org/10.1038/s41561-021-00778-1

Lambert, V., & Barbot, S. (2016). Contribution of viscoelastic flow in earthquake cycles within the lithosphere‐asthenosphere system. Geophysical Research Letters, 43(19). https://doi.org/10.1002/2016gl070345

Lange, D., Kopp, H., Royer, J.-Y., Henry, P., Çakir, Z., Petersen, F., Sakic, P., Ballu, V., Bialas, J., Özeren, M. S., Ergintav, S., & Géli, L. (2019). Interseismic strain build-up on the submarine North Anatolian Fault offshore Istanbul. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11016-z

Li, S., Grapenthin, R., Sigmundsson, F., Drouin, V., Hreinsdóttir, S., & Ófeigsson, B. G. (2022). Post-rifting relaxation during 2015–2020 following the Bárðarbunga-Holuhraun dike intrusion and eruption in Iceland. Geophysical Research Letters, 49(13). https://doi.org/10.1029/2022gl098977

Liu, T., Gong, J., Fan, W., & Lin, G. (2023). In‐Situ Vp/Vs Reveals Fault‐Zone Material Variation at the Westernmost Gofar Transform Fault, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025310

Liu, Y., McGuire, J. J., & Behn, M. D. (2020). Aseismic transient slip on the Gofar transform fault, East Pacific Rise. Proceedings of the National Academy of Sciences, 117(19), 10188–10194. https://doi.org/10.1073/pnas.1913625117

Lowry, A. R., Ribe, N. M., & Smith, R. B. (2000). Dynamic elevation of the Cordillera, western United States. Journal of Geophysical Research: Solid Earth, 105(B10), 23371–23390. https://doi.org/10.1029/2000jb900182

Lu, Z., Audet, P., Li, C., Zhu, S., & Wu, Z. (2021). What Controls Effective Elastic Thickness of the Lithosphere in the Pacific Ocean? Journal of Geophysical Research: Solid Earth, 126(3). https://doi.org/10.1029/2020jb021074

Lynch, J. C., Burgmann, R., & Richards, M. A. (2003). When faults communicate: Viscoelastic coupling and earthquake clustering in a simple two‐fault system. Geophysical Research Letters, 30(6). https://doi.org/10.1029/2002gl016765

McGuire, J. J. (2008). Seismic Cycles and Earthquake Predictability on East Pacific Rise Transform Faults. Bulletin of the Seismological Society of America, 98(3), 1067–1084. https://doi.org/10.1785/0120070154

McGuire, Jeffrey J., & Collins, J. A. (2013). Millimeter‐level precision in a seafloor geodesy experiment at the Discovery transform fault, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 14(10), 4392–4402. https://doi.org/10.1002/ggge.20225

McGuire, Jeffrey J., Collins, J. A., Gouédard, P., Roland, E., Lizarralde, D., Boettcher, M. S., Behn, M. D., & van der Hilst, R. D. (2012). Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nature Geoscience, 5(5), 336–341. https://doi.org/10.1038/ngeo1454

Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., & Toda, S. (2019). Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10520-6

Nishimura, C. E., & Forsyth, D. W. (1988). Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneities. Geophysical Journal International, 94(3), 479–501. https://doi.org/10.1111/j.1365-246x.1988.tb02270.x

Pan, J., Antolik, M., & Dziewonski, A. M. (2002). Locations of mid‐oceanic earthquakes constrained by seafloor bathymetry. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb001588

Philibosian, B., & Meltzner, A. J. (2020). Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quaternary Science Reviews, 241, 106390. https://doi.org/10.1016/j.quascirev.2020.106390

Pockalny, R. A. (1997). Evidence of transpression along the Clipperton Transform: Implications for processes of plate boundary reorganization. Earth and Planetary Science Letters, 146(3–4), 449–464. https://doi.org/10.1016/s0012-821x(96)00253-1

Pollitz, F. F. (2019). Lithosphere and shallow asthenosphere rheology from observations of post-earthquake relaxation. Physics of the Earth and Planetary Interiors, 293, 106271. https://doi.org/10.1016/j.pepi.2019.106271

Pollitz, F. F., Wicks, C., & Thatcher, W. (2001). Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake. Science, 293(5536), 1814–1818. https://doi.org/10.1126/science.1061361

Pollitz, F. F., Wicks, C. W., Svarc, J. L., Phillips, E., Brooks, B. A., Murray, M. H., & Turner, R. C. (2021). Postseismic Relaxation Following the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 112(2), 734–749. https://doi.org/10.1785/0120210170

Roland, E., Behn, M. D., & Hirth, G. (2010). Thermal‐mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity. Geochemistry, Geophysics, Geosystems, 11(7). https://doi.org/10.1029/2010gc003034

Roland, E., Lizarralde, D., McGuire, J. J., & Collins, J. A. (2012). Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada‐Discovery‐Gofar transform faults, East Pacific Rise. Journal of Geophysical Research: Solid Earth, 117(B11). https://doi.org/10.1029/2012jb009422

Rubinstein, J. L., Ellsworth, W. L., Chen, K. H., & Uchida, N. (2012). Fixed recurrence and slip models better predict earthquake behavior than the time‐ and slip‐predictable models: 1. Repeating earthquakes. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/10.1029/2011jb008724

Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/https://doi.org/10.1029/2008GC002332

Sandwell, D., & Smith-Konter, B. (2018). Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems. Computers & Geosciences, 114, 84–97. https://doi.org/10.1016/j.cageo.2018.01.009

Savage, J. C., & Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78(5), 832–845. https://doi.org/10.1029/jb078i005p00832

Scholz, C. H. (2002a). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/cbo9780511818516

Scholz, C. H. (2002b). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/cbo9780511818516

Shan, B., Xiong, X., Wang, R., Zheng, Y., & Yang, S. (2013). Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377–378, 199–210. https://doi.org/10.1016/j.epsl.2013.06.044

Shi, P., Wei, M., & Barbot, S. (2022). Contribution of Viscoelastic Stress to the Synchronization of Earthquake Cycles on Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024069

Shi, P., Wei, M. (Matt), & Pockalny, R. A. (2021). The ubiquitous creeping segments on oceanic transform faults. Geology, 50(2), 199–204. https://doi.org/10.1130/g49562.1

Shimazaki, K., & Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes. Geophysical Research Letters, 7(4), 279–282. https://doi.org/10.1029/gl007i004p00279

Smith, B. R., & Sandwell, D. T. (2006). A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research: Solid Earth, 111(B1). https://doi.org/10.1029/2005jb003703

Smith, B., & Sandwell, D. (2003). Coulomb stress accumulation along the San Andreas Fault system. Journal of Geophysical Research: Solid Earth, 108(B6). https://doi.org/10.1029/2002jb002136

Smith, B., & Sandwell, D. (2004). A three‐dimensional semianalytic viscoelastic model for time‐dependent analyses of the earthquake cycle. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/10.1029/2004jb003185

Smith-Konter, B. R., Sandwell, D. T., & Shearer, P. (2011). Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 116(B6). https://doi.org/10.1029/2010jb008117

Smith-Konter, B. R., Thornton, G. M., & Sandwell, D. T. (2014). Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters, 41(11), 3793–3801. https://doi.org/10.1002/2014gl060091

Smith‐Konter, B., & Sandwell, D. (2009). Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth. Geophysical Research Letters, 36(13). https://doi.org/10.1029/2009gl037235

Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594–604. https://doi.org/10.1111/j.1365-246x.1997.tb05321.x

Sykes, L. R., & Ekström, G. (2011). Earthquakes along Eltanin transform system, SE Pacific Ocean: Fault segments characterized by strong and poor seismic coupling and implications for long-term earthquake prediction. Geophysical Journal International, 188(2), 421–434. https://doi.org/10.1111/j.1365-246x.2011.05284.x

Ward, L. A., Guns, K. A., Smith‐Konter, B. R., Xu, X., Bock, Y., & Sandwell, D. T. (2022). Vertical Postseismic Deformation of the 2019 Ridgecrest Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2021jb023331

Ward, L. A., Smith‐Konter, B. R., Xu, X., & Sandwell, D. T. (2021). Seismic Moment Accumulation Response to Lateral Crustal Variations of the San Andreas Fault System. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb021208

Watts, A. B. (1978). An analysis of isostasy in the world’s oceans; 1. Hawaiian-Emperor Seamout Chain. Journal of Geophysical Research: Solid Earth, 83(B12), 5989–6004. https://doi.org/10.1029/jb083ib12p05989

Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113–131. https://doi.org/10.1016/s0012-821x(03)00289-9

Watts, A. B., & Zhong, S. (2000). Observations of flexure and the rheology of oceanic lithosphere. Geophysical Journal International, 142(3), 855–875. https://doi.org/10.1046/j.1365-246x.2000.00189.x

Watts, D. R., Wei, M., Tracey, K. L., Donohue, K. A., & He, B. (2021). Seafloor Geodetic Pressure Measurements to Detect Shallow Slow Slip Events: Methods to Remove Contributions From Ocean Water. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb020065

Wei, M., & Shi, P. (2021). Synchronization of Earthquake Cycles of Adjacent Segments on Oceanic Transform Faults Revealed by Numerical Simulation in the Framework of Rate‐and‐State Friction. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020jb020231

Weldon, R. J., Fumal, T. E., Biasi, G. P., & Scharer, K. M. (2005). Past and Future Earthquakes on the San Andreas Fault. Science, 308(5724), 966–967. https://doi.org/10.1126/science.1111707

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/https://doi.org/10.1029/2019GC008515

Wolfson-Schwehr, M., & Boettcher, M. S. (2019). Global Characteristics of Oceanic Transform Fault Structure and Seismicity. In Transform Plate Boundaries and Fracture Zones (pp. 21–59). Elsevier. https://doi.org/10.1016/b978-0-12-812064-4.00002-5

Wolfson-Schwehr, M., Boettcher, M. S., McGuire, J. J., & Collins, J. A. (2014). The relationship between seismicity and fault structure on the Discovery transform fault, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 15(9), 3698–3712. https://doi.org/10.1002/2014gc005445

Yamamoto, R., Kido, M., Ohta, Y., Takahashi, N., Yamamoto, Y., Pinar, A., Kalafat, D., Özener, H., & Kaneda, Y. (2019). Seafloor Geodesy Revealed Partial Creep of the North Anatolian Fault Submerged in the Sea of Marmara. Geophysical Research Letters, 46(3), 1268–1275. https://doi.org/10.1029/2018gl080984

Yao, H., Gouédard, P., Collins, J. A., McGuire, J. J., & van der Hilst, R. D. (2011). Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. Comptes Rendus. Géoscience, 343(8–9), 571–583. https://doi.org/10.1016/j.crte.2011.04.004

Additional Files

Published

2024-11-06

How to Cite

Wei, M. (Matt), He, L., & Smith-Konter, B. (2024). A model of the earthquake cycle along the Gofar oceanic transform faults. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1382

Issue

Section

Articles

Funding data