Do large earthquakes start with a precursory phase of slow slip?

Authors

  • Quentin Bletery Observatoire de la Côte d’Azur, Université Côte d’Azur, IRD, CNRS, Géoazur, France https://orcid.org/0000-0002-9796-5487
  • Jean-Mathieu Nocquet Observatoire de la Côte d’Azur, Université Côte d’Azur, IRD, CNRS, Géoazur, France & Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, France https://orcid.org/0000-0002-3436-9354

DOI:

https://doi.org/10.26443/seismica.v3i2.1383

Keywords:

earthquake, precursory signal, GPS

Abstract

In a recent publication, we showed that a stack of all GPS time series recorded before Magnitude ≥ 7.0 earthquakes suggests that large earthquakes start with a precursory phase of accelerating slow slip (Bletery and Nocquet, 2023). While no peer-reviewed comment or publication has formally contradicted this result, informal discussion has emerged on various platforms. We present here the different elements of discussion and address them through a series of tests. In particular, it has been proposed that correcting GPS time series from network common-mode noise makes the signal vanish. We confirm this result, but we show that this common-mode filtering procedure may inadvertently remove an existing tectonic signal. Moreover, the analysis of past records indicate that the likelihood that common-mode noise produces the signal we observe is well below 1 %. Additionally, we find that the signal is maximum at the location of the impending earthquakes, and for a slip direction (rake angle) close to the one of the upcoming events. The collective outcomes of these tests make very unlikely that the signal solely arises from noise. Even though the results of our tests do not irrefutably demonstrate the existence of a precursory phase of slow slip, they do support its existence. We hope that this study will motivate further work by others to provide a definite answer to the question of the tectonic origin of the observed signal and confirm or refute that large earthquakes start with a precursory phase of slow slip.

References

Acosta, M., Passelègue, F. X., Schubnel, A., Madariaga, R., & Violay, M. (2019). Can precursory moment release scale with earthquake magnitude? A view from the laboratory. Geophysical Research Letters, 46(22), 12927–12937. https://doi.org/10.1029/2019GL084744

Amiri-Simkooei, A. (2009). Noise in multivariate GPS position time-series. Journal of Geodesy, 83, 175–187. https://doi.org/10.1007/s00190-008-0251-8

Beaucé, E., Poli, P., Waldhauser, F., Holtzman, B., & Scholz, C. (2023). Enhanced tidal sensitivity of seismicity before the 2019 magnitude 7.1 Ridgecrest, California earthquake. Geophysical Research Letters, 50(14), e2023GL104375. https://doi.org/10.1029/2023GL104375

Bedford, J. R., Moreno, M., Deng, Z., Oncken, O., Schurr, B., John, T., Báez, J. C., & Bevis, M. (2020). Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature, 580(7805), 628–635. https://doi.org/10.1038/s41586-020-2212-1

Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A, 379(2193), 20200218. https://doi.org/10.1098/rsta.2020.0218

Bisnath, S., & Gao, Y. (2009). Precise point positioning. GPS World, 20(4), 43–50.

Bletery, Q., & Nocquet, J.-M. (2020). Slip bursts during coalescence of slow slip events in Cascadia. Nature Communications, 11(1), 1–6. https://doi.org/10.1038/s41467-020-15494-4

Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg256

Blewitt, G., Hammond, W. C., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99(10.1029), 485. https://doi.org/10.1029/2018eo104623

Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 299–302. https://doi.org/10.1038/ngeo1770

Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended nucleation of the 1999 M w 7.6 Izmit earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341

Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., & Gardonio, B. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), 380–383. https://doi.org/10.1038/ngeo2701

Bradley, K., & Hubbard, J. (2023a). Earthquake precursors? Not so fast. Earthquake Insights. https://doi.org/10.62481/310cc439

Bradley, K., & Hubbard, J. (2023b). Update on apparent GPS detection of earthquake precursors. Earthquake Insights. https://doi.org/10.62481/479c2ea4

Brodsky, E. E., & Lay, T. (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344(6185), 700–702. https://doi.org/10.1126/science.1255202

Bürgmann, R. (2023). Reliable earthquake precursors? Science, 381(6655), 266–267. https://doi.org/10.1126/science.adi803

Caballero, E., Chounet, A., Duputel, Z., Jara, J., Twardzik, C., & Jolivet, R. (2021). Seismic and aseismic fault slip during the initiation phase of the 2017 MW= 6.9 Valparaı́so earthquake. Geophysical Research Letters, 48(6), e2020GL091916. https://doi.org/10.1029/2020GL091916

Chanard, K., Fleitout, L., Calais, E., Rebischung, P., & Avouac, J.-P. (2018). Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series. Journal of Geophysical Research: Solid Earth, 123(4), 3225–3237. https://doi.org/10.1002/2017JB015245

Choi, K., Bilich, A., Larson, K. M., & Axelrad, P. (2004). Modified sidereal filtering: Implications for high-rate GPS positioning. Geophysical Research Letters, 31(22). https://doi.org/10.1029/2004GL021621

Dieterich, J. H., & Kilgore, B. (1996). Implications of fault constitutive properties for earthquake prediction. Proceedings of the National Academy of Sciences, 93(9), 3787–3794. https://doi.org/10.1073/pnas.93.9.3787

Dong, D, Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., & Jamason, P. (2006). Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.1029/2005JB003806

Dong, Danan, Fang, P., Bock, Y., Cheng, M., & Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research: Solid Earth, 107(B4), ETG-9. https://doi.org/10.1029/2001JB000573

Ellsworth, W. L., & Bulut, F. (2018). Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7), 531–535. https://doi.org/10.1038/s41561-018-0145-1

Faillettaz, J., Funk, M., & Vincent, C. (2015). Avalanching glacier instabilities: Review on processes and early warning perspectives. Reviews of Geophysics, 53(2), 203–224. https://doi.org/10.1002/2014RG000466

Geller, R. J. (1997). Earthquake prediction: a critical review. Geophysical Journal International, 131(3), 425–450. https://doi.org/10.1111/j.1365-246X.1997.tb06588.x

Gobron, K., Rebischung, P., Chanard, K., & Altamimi, Z. (2024). Anatomy of the spatiotemporally correlated noise in GNSS station position time series. Journal of Geodesy, 98(5), 34. https://doi.org/10.1007/s00190-024-01848-z

Gomberg, J., 2007, C., & Group, B. W. (2010). Slow-slip phenomena in Cascadia from 2007 and beyond: A review. Bulletin, 122(7–8), 963–978. https://doi.org/10.1130/B30287.1

Gualandi, A., Serpelloni, E., & Belardinelli, M. E. (2016). Blind source separation problem in GPS time series. Journal of Geodesy, 90(4), 323–341. https://doi.org/10.1007/s00190-015-0875-4

Helmstetter, A., & Sornette, D. (2003). Foreshocks explained by cascades of triggered seismicity. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2003JB002409

Hirose, H., Kato, A., & Kimura, T. (2024). Did short-term preseismic crustal deformation precede the 2011 great Tohoku-oki earthquake? An examination of stacked tilt records. Geophysical Research Letters, 51(12), e2024GL109384. https://doi.org/10.1029/2024GL109384

Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., & Marone, C. (2019). Similarity of fast and slow earthquakes illuminated by machine learning. Nature Geoscience, 12(1), 69–74. https://doi.org/10.1038/s41561-018-0272-8

Jones, L. M., & Molnar, P. (1979). Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. Journal of Geophysical Research: Solid Earth, 84(B7), 3596–3608. https://doi.org/10.1029/JB084iB07p03596

Kagan, Y. Y. (1997). Are earthquakes predictable? Geophysical Journal International, 131(3), 505–525. https://doi.org/10.1111/j.1365-246X.1997.tb06595.x

Kaneko, Y., Nielsen, S. B., & Carpenter, B. M. (2016). The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault. Journal of Geophysical Research: Solid Earth, 121(8), 6071–6091. https://doi.org/10.1002/2016JB013143

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku-Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Kato, N. (2022). Propagation of a precursory detachment front along a seismogenic plate interface in a rate–state friction model of earthquake cycles. Geophysical Journal International, 228(1), 17–38. https://doi.org/10.1093/gji/ggab331

Kreemer, C., & Blewitt, G. (2021). Robust estimation of spatially varying common-mode components in GPS time-series. Journal of Geodesy, 95(1), 13. https://doi.org/10.1007/s00190-020-01466-5

Larson, K. M., Bilich, A., & Axelrad, P. (2007). Improving the precision of high-rate GPS. Journal of Geophysical Research: Solid Earth, 112(B5). https://doi.org/10.1029/2006JB004367

Latour, S., Schubnel, A., Nielsen, S., Madariaga, R., & Vinciguerra, S. (2013). Characterization of nucleation during laboratory earthquakes. Geophysical Research Letters, 40(19), 5064–5069. https://doi.org/10.1002/grl.50974

Lebihain, M., Roch, T., Violay, M., & Molinari, J.-F. (2021). Earthquake nucleation along faults with heterogeneous weakening rate. Geophysical Research Letters, 48(21), e2021GL094901. https://doi.org/10.1029/2021GL094901

Mansinha, L., & Smylie, D. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61(5), 1433–1440. https://doi.org/10.1785/BSSA0610051433

Mao, A., Harrison, C. G., & Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth, 104(B2), 2797–2816. https://doi.org/10.1029/1998JB900033

Martı́nez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5(1), 120. https://doi.org/10.1038/s43247-024-01285-y

Mavrommatis, A. P., Segall, P., & Johnson, K. M. (2014). A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophysical Research Letters, 41(13), 4486–4494. https://doi.org/10.1002/2014GL060139

Moutote, L., Marsan, D., Lengliné, O., & Duputel, Z. (2021). Rare occurrences of non-cascading foreshock activity in southern California. Geophysical Research Letters, 48(7), e2020GL091757. https://doi.org/10.1029/2020GL091757

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512

Ohnaka, M., & Shen, L. (1999). Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. Journal of Geophysical Research: Solid Earth, 104(B1), 817–844. https://doi.org/10.1029/1998JB900007

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/BSSA0750041135

Passelègue, F. X., Latour, S., Schubnel, A., Nielsen, S., Bhat, H. S., & Madariaga, R. (2017). Influence of fault strength on precursory processes during laboratory earthquakes. Fault Zone Dynamic Processes: Evolution of Fault Properties during Seismic Rupture, 229–242. https://doi.org/10.1002/9781119156895.ch12

Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walpersdorf, A., Cabral Cano, E., & Campillo, M. (2016). Triggering of the 2014 Mw7. 3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829–833. https://doi.org/10.1038/ngeo2817

Rubin, A. M., & Ampuero, J.-P. (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research: Solid Earth, 110(B11). https://doi.org/10.1029/2005JB003686

Ruiz, S, Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique M w 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074

Ruiz, Sergio, Aden-Antoniow, F., Baez, J., Otarola, C., Potin, B., Del Campo, F., Poli, P., Flores, C., Satriano, C., Leyton, F., & others. (2017). Nucleation phase and dynamic inversion of the Mw 6.9 Valparaı́so 2017 earthquake in Central Chile. Geophysical Research Letters, 44(20), 10–290. https://doi.org/10.1002/2017GL075675

Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake Prediction: A Physical Basis: Rock dilatancy and water diffusion may explain a large class of phenomena precursory to earthquakes. Science, 181(4102), 803–810. https://doi.org/10.1126/science.181.4102.803

Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M., Bartsch, M., Zhang, Y., & others. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512(7514), 299–302. https://doi.org/10.1038/nature13681

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics, 45(3). https://doi.org/10.1029/2006RG000208

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017GL073023

Tape, C., Holtkamp, S., Silwal, V., Hawthorne, J., Kaneko, Y., Ampuero, J. P., Ji, C., Ruppert, N., Smith, K., & West, M. E. (2018). Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nature Geoscience, 11(7), 536–541. https://doi.org/10.1038/s41561-018-0144-2

Tian, Y., & Shen, Z.-K. (2016). Extracting the regional common-mode component of GPS station position time series from dense continuous network. Journal of Geophysical Research: Solid Earth, 121(2), 1080–1096. https://doi.org/10.1002/2015JB012253

Vallée, M., & Douet, V. (2016). A new database of source time functions (STFs) extracted from the SCARDEC method. Physics of the Earth and Planetary Interiors, 257, 149–157. https://doi.org/10.1016/j.pepi.2016.05.012

van den Ende, M. P., & Ampuero, J.-P. (2020). On the statistical significance of foreshock sequences in Southern California. Geophysical Research Letters, 47(3), e2019GL086224. https://doi.org/10.1029/2019GL086224

Voosen, P. (2023). Warning signs detected hours ahead of big earthquakes. Science. https://doi.org/10.1126/science.adj8753

Wallace, L. M. (2020). Slow slip events in New Zealand. Annual Review of Earth and Planetary Sciences, 48, 175–203. https://doi.org/10.1146/annurev-earth-071719-055104

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057–18070. https://doi.org/10.1029/97JB01378

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/BSSA0840040974

Williams, S. D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller, M., & Johnson, D. J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research. https://doi.org/10.1029/2003JB002741

Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski, S., & Behr, J. (1997). Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research: Solid Earth, 102(B8), 18035–18055. https://doi.org/10.1029/97JB01380

Additional Files

Published

2025-01-02

How to Cite

Bletery, Q., & Nocquet, J.-M. (2025). Do large earthquakes start with a precursory phase of slow slip?. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1383

Issue

Section

Articles

Funding data