Putting faults in the northern Chilean subduction margin into motion: evidence for remote dynamic earthquake triggering on the plate interface and within the forearc
DOI:
https://doi.org/10.26443/seismica.v3i2.1384Keywords:
earthquake triggering, Seismicity and TectonicsAbstract
Dynamic stresses on the order of ~1 kPa from passing waves of mainshock earthquakes can trigger aftershocks at remote distances. Here, we investigate the prevalence of remote earthquake triggering in northern Chile, where aseismic-slip triggering has been documented. Our twofold approach to quantify triggerability includes a statistical difference-of-means test to quantify seismicity-rate changes bracketing candidate mainshock times, and a waveform-based approach to look for triggered earthquakes missing from the local catalog. We find no persistent, statistically-significant seismicity-rate increases associated with any of the candidate mainshocks when considering the local catalog in aggregate. However, catalog statistics reveal evidence for localized triggering both on the subduction interface and within the shallower forearc faults. Waveforms reveal local, uncataloged earthquakes only visible using a high-pass filter that removes the mainshock signal that otherwise overprints the local signals. Based on Japan mainshocks, we cannot rule out antipodal triggering. Areas showing higher triggerability are consistent with regions of low locking inferred from GNSS models and regions of observed aseismic slip. The spatial coincidence of triggering and low-locking, combined with the absence of a stress-triggering threshold, requires non-linear triggering mechanisms, such as altered frictional strength or aseismic-slip triggering, to be consistent with the observations.
References
Aiken, C., & Peng, Z. (2014). Dynamic triggering of microearthquakes in three geothermal/volcanic regions of California. J. Geophys. Res., 119, 6992–7009. https://doi.org/10.1002/2014JB011218. DOI: https://doi.org/10.1002/2014JB011218
Aki, K., & Richards, P. G. (2002). Quantitative seismology.
Alfaro-Diaz, R., Velasco, A. A., Pankow, K. L., & Kilb, D. (2020). Optimally oriented remote triggering in the Coso geothermal region. Journal of Geophysical Research: Solid Earth, 125(8), e2019JB019131. https://doi.org/10.1029/2019JB019131 DOI: https://doi.org/10.1029/2019JB019131
Bansal, A. R., & Ghods, A. (2021). Remote triggering in Iran: large peak dynamic stress is not the main driver of triggering. Geophys. J. Int., 225(1), 456–476. https://doi.org/https://doi.org/10.1093/gji/ggaa573 DOI: https://doi.org/10.1093/gji/ggaa573
Brodsky, E. E., & Prejean, S. G. (2005). New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera. J. Geophys. Res., 110(B04302). https://doi.org/10.1029/2004JB003211 DOI: https://doi.org/10.1029/2004JB003211
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., & Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res., 108(B8). https://doi.org/10.1029/2002JB002321 DOI: https://doi.org/10.1029/2002JB002321
Brodsky, E. E., & van der Elst, N. J. (2014). The Uses of Dynamic Earthquake Triggering. Ann. Rev. of Earth and Planet. Sci., 42(1), 317–339. https://doi.org/10.1146/annurev-earth-060313-054648 DOI: https://doi.org/10.1146/annurev-earth-060313-054648
Butler, R., & Tsuboi, S. (2010). Antipodal seismic observations of temporal and global variation at Earth’s inner-outer core boundary. Geophys. Res. Lett., 37(11). https://doi.org/10.1029/2010GL042908 DOI: https://doi.org/10.1029/2010GL042908
Candela, T., Brodsky, E. E., Marone, C., & Elsworth, D. (2014). Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing. Earth Planet. Sci. Lett., 392, 279–291. https://doi.org/10.1016/j.epsl.2014.02.025 DOI: https://doi.org/10.1016/j.epsl.2014.02.025
Candela, T., Brodsky, E. E., Marone, C., & Elsworth, D. (2015). Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments. J. Geophys. Res., 120, 2037–2055. https://doi.org/10.1002/ 2014JB011511 DOI: https://doi.org/10.1002/2014JB011511
DeSalvio, N. D., & Fan, W. (2023). Ubiquitous earthquake dynamic triggering in Southern California. Journal of Geophysical Research: Solid Earth, 128(6), e2023JB026487. https://doi.org/10.1029/2023JB026487 DOI: https://doi.org/10.1029/2023JB026487
Dixit, M., Bansal, A. R., Kumar, M. R., Kumar, S., & Teotia, S. S. (2023). The sensitivity of the intraplate Kachchh Rift Basin, NW India to the direction of incoming seismic waves of teleseismic earthquakes. Geophys. J. Int., 232(1), 17–36. https://doi.org/https://doi.org/10.1093/gji/ggac289 DOI: https://doi.org/10.1093/gji/ggac289
Dobson, D. P., Meredith, P. G., & Boon, S. A. (2002). Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298, 1407–1410. https://doi.org/10.1126/science.1075390 DOI: https://doi.org/10.1126/science.1075390
Dong, P., Chen, K., Xia, W., Yao, Z., Peng, Z., & Elsworth, D. (2022). Earthquake Delay and Rupture Velocity in Near-Field Dynamic Triggering Dictated by Stress-Controlled Nucleation. Seismol. Res. Lett., 94, 913–924. https://doi.org/10.1785/0220220264 DOI: https://doi.org/10.1785/0220220264
Enescu, B., Shimojo, K., Opris, A., & Yagi, Y. (2016). Remote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake. Earth, Planets and Space, 68(165). https://doi.org/10.1186/s40623-016-0539-5 DOI: https://doi.org/10.1186/s40623-016-0539-5
Eyre, T. S., Samsonov, S., Feng, W., Kao, H., & Eaton, D. W. (2022). InSAR data reveal that the largest hydraulic fracturing-induced earthquake in Canada, to date, is a slow-slip event. Sci. Rep., 12(2043), 579–582. https://doi.org/10.1038/s41598-022-06129-3 DOI: https://doi.org/10.1038/s41598-022-06129-3
Fan, W., Barbour, A. J., Cochran, E. S., & Lin, G. (2021). Characteristics of frequent dynamic triggering of microearthquakes in Southern California. J. Geophys. Res., 126(e2020JB02082). https://doi.org/10.1029/2020JB020820 DOI: https://doi.org/10.1029/2020JB020820
Felzer, K. R., & Brodsky, E. E. (2005). Testing the stress shadow hypothesis. J. Geophys. Res., 110(B05S09). https://doi.org/10.1029/2004JB003277 DOI: https://doi.org/10.1029/2004JB003277
Ferdowsi, B., Griffa, M., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2015). Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophys. Res. Lett., 42, 9750–9757. https://doi.org/10.1002/2015GL066096 DOI: https://doi.org/10.1002/2015GL066096
Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci., 33, 335–367. https://doi.org/10.1146/annurev.earth.33.092203.122505 DOI: https://doi.org/10.1146/annurev.earth.33.092203.122505
Gomberg, J., Bodin, P., Larson, K., & Drager, H. (2004). Earthquake nucleation by transient deformations caused by the M= 7.9 Denali, Alaska, earthquake. Nature, 427, 621–624. https://doi.org/10.1038/nature02335 DOI: https://doi.org/10.1038/nature02335
Gomberg, J., Reasenberg, P., Bodin, P., & Harris, R. A. (2001). Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Tectonophysics, 745, 462–466. https://doi.org/10.1038/35078053 DOI: https://doi.org/10.1038/35078053
Gombert, B., & Hawthorne, J. C. (2023). Rapid tremor migration during few minute-long slow earthquakes in Cascadia. J. Geophys. Res., 128(e2022JB025034), 115–125. https://doi.org/10.1029/2022JB025034 DOI: https://doi.org/10.1029/2022JB025034
González, G., Pasten-Araya, P., Victor, P., González, Y., Valenzuela, J., & Shrivastava. (2021). The role of interplate locking on the seismic reactivation of upper plate faults on the subduction margin of northern Chile. Sci. Reports, 11. https://doi.org/10.1038/s41598-021-00875-6 Gosselin, J. M., Audet, P., Estève, McLellan, M., Mosher, S. G., & Scaeffer, A. J. (2020). Seismic evidence for megathrust fault-valve behavior during episodic tremor and slip. Bull. Seismol. Soc. Am., 109(eaay5174), 372–386. https://doi.org/10.1126/sciadv.aay5174 DOI: https://doi.org/10.1126/sciadv.aay5174
Guglielmi, A. (2015). The cumulative effect of convergent seismic waves. Izvestiya, Physics of the Solid Earth, 51, 915–919. https://doi.org/10.1134/S1069351315060038 DOI: https://doi.org/10.1134/S1069351315060038
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476 DOI: https://doi.org/10.1126/science.aab0476
Hainzl, S., Sippl, C., & Schurr, B. (2019). Linear relationship between aftershock productivit and seismic coupling in the northern Chile subduction zone. J. Geophys. Res., 124, 8726–8738. https://doi.org/10.1029/ 2019JB017764 DOI: https://doi.org/10.1029/2019JB017764
Hardebeck, J. L., & Harris, R. A. (2022). Earthquakes in the shadows: Why aftershocks occur at surprising locations. The Seismic Record, 2(3), 207–216. https://doi.org/10.1785/0320220023 DOI: https://doi.org/10.1785/0320220023
Hernandez, S., Brodsky, E. E., & van der Elst N. J. (2014). The magnitude distribution of dynamically triggered earthquakes. Geochem. Geophys. Geosyst., 15. https://doi.org/0.1002/ 2014GC005404 DOI: https://doi.org/10.1002/2014GC005404
Hill, D. P. (2015). On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by Coulomb failure. Bull. Seismol. Soc. Am., 105(3). https://doi.org/10.1785/0120140292 DOI: https://doi.org/10.1785/0120140292
Hill, D. P., Reasenberg, P. A., Michael, A., Arabaz, W. J., Beroza, G., Brumbaugh, D., Brune, J. N., Castro, R., Davis, S., dePolo, D., Ellsworth, W. L., Gomberg, J., Harmsen, S., House, L., Jackson, S. M., Johnston, M. J. S., Jones, L., Keller, R., Malone, S., … Zollweg, J. (1993). Seismicity remotely triggered by the Magnitude 7.3 Landers, California, earthquake. Science, 260, 1617–1623. https://doi.org/10.1126/science.260.5114.1617 DOI: https://doi.org/10.1126/science.260.5114.1617
Husen, S., Wismer, S., & Smith, R. R. (2004). Remotely triggered seismicity in the Yellowstone National Park Region by the 2002 J = 7.9 Denali, Alaska earthquake. Bull. Seismol. Soc. Am., 94, S317–S331. https://doi.org/0.1785/0120040617 DOI: https://doi.org/10.1785/0120040617
Hyndman, R. D., & Peacock, S. (2003). Serpentinization of the forearc mantle. Earth Planet. Sci. Lett., 212(3–4), 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2 DOI: https://doi.org/10.1016/S0012-821X(03)00263-2
Jin, Y., Dyaur, N., & Zheng, Y. (2021). Laboratory evidence of transient pressure surge in a fluid-filled fracture as a potential driver of remote dynamic earthquake triggering. The Seismic Record, 1(2), 66–74. https://doi.org/10.1785/0320210015 DOI: https://doi.org/10.1785/0320210015
Johnson, C. W., Bürgmann, R., & Pollitz, F. F. (2015). Rare dynamic triggering of remote M ge 5.5 earthquakes from global catalog analysis. Journal of Geophysical Research: Solid Earth, 120(3), 1748–1761. https://doi.org/10.1002/2014JB011788 DOI: https://doi.org/10.1002/2014JB011788
Johnson, C. W., Kilb, D., Baltay, A., & Vernon, F. (2020). Peak ground velocity spatial variability revealed by dense seismic array in southern California. Journal of Geophysical Research: Solid Earth, 125(6), e2019JB019157. https://doi.org/10.1029/2019JB019157 DOI: https://doi.org/10.1029/2019JB019157
Johnson, P. A., Carmeliet, J., M., S. H., Scuderi, M., Carpenter, B. M., Guyer, R. A., Daub, E. G., & Marone, C. (2016). Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions. Geophys. Res. Lett., 43, 1559–1565. https://doi.org/10.1002/2015GL067056 DOI: https://doi.org/10.1002/2015GL067056
Kaila, K., Krishna, V., & Khandekar, G. (1999). Preliminary models of upper mantle P and S wave velocity structure in the western South America region. Journal of Geodynamics, 27(4–5), 567–583. https://doi.org/10.1016/S0264-3707(98)00016-7 DOI: https://doi.org/10.1016/S0264-3707(98)00016-7
Kane, D. L., Kilb, D., Berg, A. S., & Martynov, V. G. (2007). Quantifying the remote triggering capabilities of large earthquakes using data from the ANZA Seismic Network catalog southern California. Journal of Geophysical Research: Solid Earth, 112(B11). https://doi.org/10.1029/2006JB004714 DOI: https://doi.org/10.1029/2006JB004714
Kilb, Debi, Martynov, V. G., & Vernon, F. L. (2007). Aftershock detection thresholds as a function of time: Results from the ANZA seismic network following the 31 October 2001 ML 5.1 Anza, California, earthquake. Bulletin of the Seismological Society of America, 97(3), 780–792. https://doi.org/10.1785/0120060116 DOI: https://doi.org/10.1785/0120060116
Kilb, Deborah, Gomberg, J., & Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812), 570–574. https://doi.org/10.1038/35046046 DOI: https://doi.org/10.1038/35046046
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935
Lay, T., & Wallace, T. C. (1995). Modern Global Seismology. Elsevier Science. https://books.google.de/books?id=CSCuMPt5CTcC
Li, C., Peng, Z., Yao, D., Meng, X., & Zhai, Q. (2023). Temporal changes of seismicity in Salton Sea Geothermal Field due to distant earthquakes and geothermal productions. Geophysical Journal International, 232(1), 287–299. https://doi.org/10.1093/gji/ggac324 DOI: https://doi.org/10.1093/gji/ggac324
Li, L., Wang, B., Peng, Z., & Li, D. (2019). Dynamic triggering of microseismicity in Southwest China following the 2004 Sumatra and 2012 Indian Ocean earthquakes. Journal of Asian Earth Sciences, 176, 129–140. https://doi.org/10.1016/j.jseaes.2019.02.010 DOI: https://doi.org/10.1016/j.jseaes.2019.02.010
Luo, Y., & Wiens, D. A. (2020). High rates of deep earthquake dynamic triggering in the thermal halos of subducting slabs. Geophysical Research Letters, 47(8), e2019GL086125. https://doi.org/10.1029/2019GL086125 DOI: https://doi.org/10.1029/2019GL086125
Marsan, D., Reverso, T., & Soquet, A. (2013). Earthquake swarms along the Chilean subduction zone, 2003–2020. Geophys. J. Int., 235, 2758–2777. https://doi.org/10.1093/gji/ggad359 DOI: https://doi.org/10.1093/gji/ggad359
MATLAB version: 9.13.0 (R2022b), T. M. Inc. (2022). MATLAB version: 9.13.0 (R2022b). The MathWorks Inc. https://www.mathworks.com Meng, X., & Peng, Z. (2014). Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Geophys. J. Int., 197(3). https://doi.org/10.1029/2004JB003277 DOI: https://doi.org/10.1093/gji/ggu085
Mètois, M., Socquet, A., Vigny, D., C. Carrizon, Peyrat, S., Delorme, A., Maureira, E., Valderas-Bermejo, M.-C., & Orteg, I. (2013). Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys. J. Int., 194, 1283–1294. https://doi.org/10.1093/gji/ggt183 DOI: https://doi.org/10.1093/gji/ggt183
Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310
Miyazawa, M. (2011). Propagation of an earthquake triggering front from the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(L23307). https://doi.org/10.1029/2011GL049795 DOI: https://doi.org/10.1029/2011GL049795
Nakajima, J., & Uchida, N. (2018). Repeated drainage from megathrusts during episodic slow slip. Nature Geoscience, 11(5), 351–356. https://doi.org/10.1038/s41561-018-0090-z DOI: https://doi.org/10.1038/s41561-018-0090-z
Ogata, Y. (1999). Seismicity analysis through point-process modeling: A review. Pure and App. Geophys., 155(2), 471–507. https://doi.org/10.1007/s000240050275 DOI: https://doi.org/10.1007/s000240050275
O’Malley, R. T., Mondal, D., Goldfinger, C., & Behrenfeld, M. J. (2018). Evidence of systematic triggering at teleseismic distances following large earthquakes. Scientific Reports, 8(1), 11611. https://doi.org/10.1038/s41598-018-30019-2 DOI: https://doi.org/10.1038/s41598-018-30019-2
Opris, A., Enescu, B., Yagi, Y., & Zhuang, J. (2018). Triggering and decay characteristics of dynamically activated seismicity in Southwest Japan. Geophys. J. Int., 212(2), 1010–1021. https://doi.org/10.1093/gji/ggx456 DOI: https://doi.org/10.1093/gji/ggx456
Pankow, K. L., & Kilb, D. (2020). Going beyond rate changes as the sole indicator for dynamic triggering of earthquakes. Sci. Reports, 10(4120). https://doi.org/10.1038/s41598-020-60988-2 DOI: https://doi.org/10.1038/s41598-020-60988-2
Pankow, Kris L, Arabasz, W. J., Pechmann, J. C., & Nava, S. J. (2004). Triggered seismicity in Utah from the 3 November 2002 Denali fault earthquake. Bulletin of the Seismological Society of America, 94(6B), S332–S347. https://doi.org/10.1785/0120040609 DOI: https://doi.org/10.1785/0120040609
Peacock, S. (2001). Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299–302. https://doi.org/10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2
Peña Castro, A., Dougherty, S. L., Harrington, R., & Cochran, E. S. (2019). Delayed dynamic triggering of disposal-induced earthquakes observed by a dense array in northern Oklahoma. Journal of Geophysical Research: Solid Earth, 124(4), 3766–3781. https://doi.org/10.1029/2018JB017150 DOI: https://doi.org/10.1029/2018JB017150
Peyrat, S., Campos, J., de Chabalier J. B., Perez, A., Bonvalot, S., Bouin, M.-P., Legrand, D., Nercessian, A., Charade, O., Patau, G., Clévédé, E., Kausel, E., Bernard, P., & Vilotte, J. P. (2006). Tarapacá intermediate-depth earthquake (Mw 7.7, 2005, northern Chile): A slab-pull event with horizontal fault plane constrained from seismological and geodetic observations. Geophys. Res. Lett., 33(L22308). https://doi.org/10.1029/2006GL027710 DOI: https://doi.org/10.1029/2006GL027710
Pignalberi, F., Giorgetti, C., Noël, C., Marone, C., Collettini, C., & Scuderi, M. M. (2024). The effect of normal stress oscillations on fault slip behavior near the stability transition from stable to unstable motion. Journal of Geophysical Research: Solid Earth, 129(2), e2023JB027470. https://doi.org/10.1029/2023JB027470 DOI: https://doi.org/10.1029/2023JB027470
Pollitz, F. F., Stein, R. S., Sevilgen, V., & Bürgmann, R. (2012). The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 490(7419), 250–253. https://doi.org/10.1038/nature11504 DOI: https://doi.org/10.1038/nature11504
Prejean, S. G., & Hill, D. P. (2018). The influence of tectonic environment on dynamic earthquake triggering: A review and case study on Alaskan volcanoes. Tectonophysics, 745, 293–304. https://doi.org/10.1016/j.tecto.2018.08.007 DOI: https://doi.org/10.1016/j.tecto.2018.08.007
Prejean, S. G., Hill, D. P., Brodsky, E. E., Hough, S. E., Johnston, M. J. S., Malone, S. D., Oppenheimer, D. H., Pitt, A. M., & Richards-Dinger, K. B. (2004). Remotely triggered seismicity on the United States west coast following the M w 7.9 Denali fault earthquake. Bull. Seismol. Soc. Am., 94(6B), S348–S359. https://doi.org/10.1785/0120040610 DOI: https://doi.org/10.1785/0120040610
Prejean, Stephanie G, Hill, D. P., & Myers, R. (2010). Earthquakes dynamic triggering of. Springer Heidelberg. https://doi.org/10.1007/978-0-387-30440-3 DOI: https://doi.org/10.1007/978-1-4419-7695-6_25
Reasenberg, P. (1985). Second-order moment of Central California seismicity, 1969-1982. J. Geophys. Res., 90(B7), 5479–5495. https://doi.org/10.1029/JB090iB07p05479 DOI: https://doi.org/10.1029/JB090iB07p05479
Retailleau, L., Shapiro, N., Guilbert, J., Campillo, M., & Roux, P. (2014). Antipodal focusing of seismic waves observed with the USArray. Geophysical Journal International, 199(2), 1030–1042. https://doi.org/10.1093/gji/ggu309 DOI: https://doi.org/10.1093/gji/ggu309
Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019). Searching for hidden earthquakes in Southern California. Science, 364(6442), 767–771. https://doi.org/10.1126/science.aaw6888 DOI: https://doi.org/10.1126/science.aaw6888
Rubenstein, J. L., Vidale, J. E., Gomberg, J., Bodin, P., Creager, K. C., & Malone, S. D. (2007). Non-volcanic tremor driven by large transient shear stresses. Nature, 448, 579–582. https://doi.org/10.1038/nature06017 DOI: https://doi.org/10.1038/nature06017
Rüpke, L. H., Morgan, J. P., Hort, M., & Connolly, J. (2004). Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett., 223(1–2), 17–34. https://doi.org/10.1016/j.epsl.2004.04.018 DOI: https://doi.org/10.1016/j.epsl.2004.04.018
Saini, T., Bansal, A. R., Rao, N. P., Pasricha, R., & Vempati, V. (2023). Tiny stresses are capable of triggering earthquakes and tremors in Arunachal Himalaya. Sci. Reports, 13(22223). https://doi.org/https://doi.org/10.1038/s41598-023-49068-3 DOI: https://doi.org/10.1038/s41598-023-49068-3
Shelly, D., Peng, Z., Hill, D., & Aiken, C. (2011). Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geosci., 4, 384–388. https://doi.org/10.1038/ngeo1141 DOI: https://doi.org/10.1038/ngeo1141
Sippl, C., Schurr, B., Münchmeyer, J., Barrientos, S., & Oncken, O. (2023). The Northern Chile forearc constrained by 15 years of permanent seismic monitoring. J. of S. Am. Earth Sci., 126(104326). https://doi.org/10.1016/j.jsames.2023.104326 DOI: https://doi.org/10.1016/j.jsames.2023.104326
Sippl, Christian, Schurr, B., Asch, G., & Kummerow, J. (2018). Seismicity structure of the northern Chile forearc from> 100,000 double-difference relocated hypocenters. Journal of Geophysical Research: Solid Earth, 123(5), 4063–4087. https://doi.org/10.1002/2017JB015384 Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609. https://doi.org/10.1038/45144 DOI: https://doi.org/10.1002/2017JB015384
Sullivan, B. (2012). Delayed triggering of early aftershocks by multiple surface waves circling the earth. Georgia Institute of Technology. Tape, C., West, M., Silwal, V., & Ruppert, N. (2013). Earthquake nucleation and triggering on an optimally oriented fault. Earth Planet. Sci. Lett., 363, 231–241. https://doi.org/10.1016/j.epsl.2012.11.060 DOI: https://doi.org/10.1016/j.epsl.2012.11.060
U. S. Geological Survey. (2024). Earthquake Hazards Program, 2017, Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products [Techreport]. U. S. Geological Survey. https://doi.org/10.5066/F7MS3QZH
van der Elst, N. J., & Brodsky, E. E. (2010). Connecting near-field and far-field earthquake triggering to dynamic strain. J. Geophys. Res., 119(9), 6992–7009. https://doi.org/10.1029/2009JB006681 DOI: https://doi.org/10.1029/2009JB006681
Velasco, A. A., Alfaro-Diaz, R., Kilb, D., & Pankow, K. L. (2016). A time-domain detection approach to identify small earthquakes within the continental United States recorded by the USArray and regional networks. Bulletin of the Seismological Society of America, 106(2), 512–525. https://doi.org/10.1785/0120150156 DOI: https://doi.org/10.1785/0120150156
Velasco, A. A., Hernandez, S., Parsons, T., & Pankow, K. (2008). Global ubiquity of dynamic earthquake triggering. Nature Geoscience, 1(6), 375–379. https://doi.org/10.1038/ngeo204 Victor, P., Oncken, O., Sobiesiak, M., Kemter, M., Gonzalez, G., & Ziegenhagen, T. (2018). Dynamic triggering of shallow slip on forearc faults constrained by monitoring surface displacement with the IPOC Creepmeter Array. Earth Planet. Sci. Lett., 502, 57–73. https://doi.org/10.1016/j.epsl.2018.08.046 DOI: https://doi.org/10.1016/j.epsl.2018.08.046
Victor, P., Sobiesiak, M., Nielson, S., Glodny, J., & Oncken, O. (2011). Long-term persistence of subduction earthquake segment boundaries: Evidenc from Mejillones Peninsula, northern Chile. J. Geophys. Res., 116(B02402). https://doi.org/10.1029/2010JB007771 DOI: https://doi.org/10.1029/2010JB007771
Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D’Anastasio, E., & Fry, B. (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geosci., 10, 765–770. https://doi.org/10.1038/ngeo3021 DOI: https://doi.org/10.1038/ngeo3021
Wang, B., Harrington, R. M., Liu, Y., Kao, H., & Yu, H. (2018). Remote dynamic triggering of earthquakes in three unconventional Canadian hydrocarbon regions based on a multiple-station matched-filter approach. Bull. Seismol. Soc. Am., 109(1), 372–386. https://doi.org/10.1785/0120180164
Wang, B., Harrington, R. M., Liu, Y., Yu, H., Carey, A., & van der Elst, N. J. (2015). Isolated cases of remote dynamic triggering in Canada detected using cataloged earthquakes combined with a matched-filter approach. Geophys. Res. Lett., 42. https://doi.org/10.1002/2015GL064377 DOI: https://doi.org/10.1002/2015GL064377
Wang, Bei, Harrington, R. M., Liu, Y., Kao, H., & Yu, H. (2019). Remote dynamic triggering of earthquakes in three unconventional Canadian hydrocarbon regions based on a multiple-station matched-filter approach. Bulletin of the Seismological Society of America, 109(1), 372–386. https://doi.org/10.1785/0120180164 DOI: https://doi.org/10.1785/0120180164
Wei, S., Avouac, J.-P., Hudnut, K. W., Donnellan, A., Parker, J. W., Graves, R. W., Helmberger, D., Fielding, E., Liu, Z., Cappa, F., & Eneva, M. (2015). The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet. Sci. Lett., 415, 115–125. https://doi.org/10.1016/j.epsl.2015.03.054 DOI: https://doi.org/10.1016/j.epsl.2015.03.054
Yao, D., Peng, Z., Kaneko, Y., Fry, B., & Meng, X. (2021). Dynamic triggering of earthquakes in the North Island of New Zealand following the 2016 Mw 7.8 Kaikōura earthquake. Earth and Planetary Science Letters, 557, 116723. https://doi.org/10.1016/j.epsl.2020.116723 DOI: https://doi.org/10.1016/j.epsl.2020.116723
Yu, H., Harrington, R. M., Kao, H., Liu, Y., & Wang, B. (2021). Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip. Nat. Comm., 12(6862). https://doi.org/10.1038/s41467-021-26961-x Zaliapin, I., & Ben-Zion, Y. (2020). Earthquake declustering using the nearest‐neighbor approach in space‐time‐magnitude domain. J. Geophys. Res., 125(e2018JB017120). https://doi.org/10.1029/2018JB017120 DOI: https://doi.org/10.1029/2018JB017120
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rebecca Harrington, Debi Kilb, Marco Roth, Pia Victor, Alessandro Verdecchia
This work is licensed under a Creative Commons Attribution 4.0 International License.