Source characterization of the 20th May 2024 MD 4.4 Campi Flegrei caldera earthquake through a joint source-propagation probabilistic inversion

Authors

DOI:

https://doi.org/10.26443/seismica.v3i2.1394

Keywords:

source inversion, Campi Flegrei caldera earthquake

Abstract

On May 20th, 2024, an earthquake of magnitude MD 4.4 nucleated at shallow depth (2.6 km) in the Campi Flegrei caldera (Southern Italy), a densely populated area where an increase in seismic activity has been observed since 2019 attributable to an on-going unrest episode. While the magnitude was moderate, the event produced a strong ground shaking with an observed maximum peak ground acceleration of 3.58 m s-2, and several buildings were damaged. Here, we characterize the earthquake source using a probabilistic joint source-propagation spectral inversion in the Fourier space. We estimate a moment magnitude Mw = 3.70 ± 0.13 and a corner frequency fc = 1.11 ± 0.19 Hz. Assuming a circular rupture model, we estimate a source radius r = 400 ± 70 m and a stress drop Δσ = 3.2 ± 2.2 MPa. The estimated stress drop suggests that future earthquakes in the hypocentral region, considering a possible rupture length of 3 km suggested by previous studies, can have magnitude increased by 1.2 ± 0.3 units with respect to May 20th event. A systematic source characterization of the recent seismicity in the caldera would hep in estimating the expected ground motions from future large-magnitude events.

References

Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131 DOI: https://doi.org/10.1098/rsta.2020.0131

Baltay, A., Abercrombie, R., Chu, S., & Taira, T. (2024). The SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1009 DOI: https://doi.org/10.26443/seismica.v3i1.1009

Bindi, D., Luzi, L., Massa, M., & Pacor, F. (2009). Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bulletin of Earthquake Engineering, 8(5), 1209–1230. https://doi.org/10.1007/s10518-009-9130-9 DOI: https://doi.org/10.1007/s10518-009-9130-9

Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., & Paolucci, R. (2011). Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9(6), 1899–1920. https://doi.org/10.1007/s10518-011-9313-z DOI: https://doi.org/10.1007/s10518-011-9313-z

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997

Colavitti, L., Lanzano, G., Sgobba, S., Pacor, F., & Gallovič, F. (2022). Empirical Evidence of Frequency‐Dependent Directivity Effects From Small‐To‐Moderate Normal Fault Earthquakes in Central Italy. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2021jb023498 DOI: https://doi.org/10.1029/2021JB023498

Danesi, S., Pino, N. A., Carlino, S., & Kilburn, C. R. J. (2024). Evolution in unrest processes at Campi Flegrei caldera as inferred from local seismicity. Earth and Planetary Science Letters, 626, 118530. https://doi.org/10.1016/j.epsl.2023.118530 DOI: https://doi.org/10.1016/j.epsl.2023.118530

Drouet, S., Bouin, M.-P., & Cotton, F. (2011). New moment magnitude scale, evidence of stress drop magnitude scaling and stochastic ground motion model for the French West Indies. Geophysical Journal International, 187(3), 1625–1644. https://doi.org/10.1111/j.1365-246x.2011.05219.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05219.x

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences, 241(1226). DOI: https://doi.org/10.1098/rspa.1957.0133

Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/jb084ib05p02348 DOI: https://doi.org/10.1029/JB084iB05p02348

Hanks, T. C., & Wyss, M. (1972). The use of body-wave spectra in the determination of seismic-source parameters. Bulletin of the Seismological Society of America, 62(2), 561–589. https://doi.org/10.1785/bssa0620020561 DOI: https://doi.org/10.1785/BSSA0620020561

Holt, J., Whidden, K. M., Koper, K. D., Pankow, K. L., Mayeda, K., Pechmann, J. C., Edwards, B., Gök, R., & Walter, W. R. (2021). Toward Robust and Routine Determination of Mw for Small Earthquakes: Application to the 2020 Mw 5.7 Magna, Utah, Seismic Sequence. Seismological Research Letters, 92(2A), 725–740. https://doi.org/10.1785/0220200320 DOI: https://doi.org/10.1785/0220200320

I.N.G.V.-O.V. (2024). Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano May 2024 report. https://www.ov.ingv.it/index.php/monitoraggio-e-infrastrutture/bollettini-tutti/bollett-mensili-cf/anno-2024-3/1640-bollettino-mensile-campi-flegrei-2024-05/file,

Jayaram, N., & Baker, J. W. (2010). Considering Spatial Correlation in Mixed-Effects Regression and the Impact on Ground-Motion Models. Bulletin of the Seismological Society of America, 100(6), 3295–3303. https://doi.org/10.1785/0120090366 DOI: https://doi.org/10.1785/0120090366

Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2), 1002–1015. https://doi.org/10.1093/gji/ggu030 DOI: https://doi.org/10.1093/gji/ggu030

Lee, W. H. K., & Stewart, S. W. (1981). Principles and applications of microearthquake networks (Vol. 2). Academic press.

Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666. https://doi.org/10.1785/bssa0660030639 DOI: https://doi.org/10.1785/BSSA0660030639

Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M. A., Isaia, R., Petrazzuoli, S. M., Ricciardi, G. P., & Ricco, C. (1999). Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. Journal of Volcanology and Geothermal Research, 91(2–4), 415–451. https://doi.org/10.1016/s0377-0273(99)00050-5 DOI: https://doi.org/10.1016/S0377-0273(99)00050-5

Orsi, Giovanni, Di Vito, M. A., & Isaia, R. (2004). Volcanic hazard assessment at the restless Campi Flegrei caldera. Bulletin of Volcanology, 66(6), 514–530. https://doi.org/10.1007/s00445-003-0336-4 DOI: https://doi.org/10.1007/s00445-003-0336-4

Pacor, F., Gallovič, F., Puglia, R., Luzi, L., & D’Amico, M. (2016). Diminishing high‐frequency directivity due to a source effect: Empirical evidence from small earthquakes in the Abruzzo region, Italy. Geophysical Research Letters, 43(10), 5000–5008. https://doi.org/10.1002/2016gl068546 DOI: https://doi.org/10.1002/2016GL068546

Petrosino, S., De Siena, L., & Del Pezzo, E. (2008). Recalibration of the Magnitude Scales at Campi Flegrei, Italy, on the Basis of Measured Path and Site and Transfer Functions. Bulletin of the Seismological Society of America, 98(4), 1964–1974. https://doi.org/10.1785/0120070131 DOI: https://doi.org/10.1785/0120070131

Strumia, C., Trabattoni, A., Supino, M., Baillet, M., Rivet, D., & Festa, G. (2024). Sensing Optical Fibers for Earthquake Source Characterization Using Raw DAS Records. Journal of Geophysical Research: Solid Earth, 129(1). https://doi.org/10.1029/2023jb027860 DOI: https://doi.org/10.1029/2023JB027860

Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of low-frequency earthquakes. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63584-6 DOI: https://doi.org/10.1038/s41598-020-63584-6

Supino, Mariano, Festa, G., & Zollo, A. (2019). A probabilistic method for the estimation of earthquake source parameters from spectral inversion: application to the 2016–2017 Central Italy seismic sequence. Geophysical Journal International, 218(2), 988–1007. https://doi.org/10.1093/gji/ggz206 DOI: https://doi.org/10.1093/gji/ggz206

Tramelli, A., Godano, C., Ricciolino, P., Giudicepietro, F., Caliro, S., Orazi, M., De Martino, P., & Chiodini, G. (2021). Statistics of seismicity to investigate the Campi Flegrei caldera unrest. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86506-6 DOI: https://doi.org/10.1038/s41598-021-86506-6

Trugman, D. T. (2022). Resolving Differences in the Rupture Properties of M5 Earthquakes in California Using Bayesian Source Spectral Analysis. Journal of Geophysical Research: Solid Earth, 127(4). https://doi.org/10.1029/2021jb023526 DOI: https://doi.org/10.1029/2021JB023526

Werner, M. J., & Sornette, D. (2008). Magnitude uncertainties impact seismic rate estimates, forecasts, and predictability experiments. Journal of Geophysical Research: Solid Earth, 113(B8). https://doi.org/10.1029/2007jb005427 DOI: https://doi.org/10.1029/2007JB005427

Published

2024-08-05

How to Cite

Supino, M., Scognamiglio, L., Chiaraluce, L., Doglioni, C., & Herrero, A. (2024). Source characterization of the 20th May 2024 MD 4.4 Campi Flegrei caldera earthquake through a joint source-propagation probabilistic inversion. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1394

Issue

Section

Fast Reports