Earthquake source inversion by integrated fiber-optic sensing
DOI:
https://doi.org/10.26443/seismica.v3i2.1405Keywords:
fiber-optic seismology, earthquake, moment tensor inversion, source inversionAbstract
We present an earthquake source inversion using a single time series produced by integrated fiber-optic sensing in a phase noise cancellation (PNC) system used for frequency metrology. Operating on a 123 km long fiber between Bern and Basel (Switzerland), the PNC system recorded the Mw3.9 Mulhouse earthquake that occurred on 10 September 2022 around 10 km north-west of the northern fiber end. A generalised least-squares inversion in the 4 - 13 s period band constrains the components of a double-couple moment tensor with an uncertainty that corresponds to around 0.2 moment magnitude units, nearly independent of prior information. Uncertainties for hypocenter location and original time are more variable, ranging between 4 - 20 km and 0.1 - 1 s, respectively, depending on whether injected prior information is realistic or almost absent. This work is a proof of concept that quantifies the resolvability of earthquake source properties under specific conditions using a single-channel stand-alone integrated (non-distributed) fiber-optic measurement. It thereby constitutes a step towards the integration of long-range phase-transmission fiber-optic sensors into existing seismic networks in order to fill significant seismic data gaps, especially in the oceans.
References
Afanasiev, M. V., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., Knepley, M. G., & Fichtner, A. (2019). Modular and flexible spectral-element waveform modelling in two and three dimensions. Geophys. J. Int., 216. https://doi.org/10.1093/gji/ggy469 DOI: https://doi.org/10.1093/gji/ggy469
BACON Collaboration, Beloy, K., Bodine, M. I., Bothwell, T., Brewer, S. M., Bromley, S. L., Chen, J.-S., Deschênes, J.-D., Diddams, S. A., Fasano, R. J., Fortier, T. M., Hassan, Y. S., Hume, D. B., Kedar, D., Kennedy, C. J., Khader, I., Koepke, A., Leibrandt, D. R., Leopardi, H., … Zhang, X. (2021). Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591(7851), 564–569. https://doi.org/10.1038/s41586-021-03253-4 DOI: https://doi.org/10.1038/s41586-021-03253-4
Bogris, A., Nikas, T., Simos, C., Simos, I., Lentas, K., Melis, N. S., Fichtner, A., Bowden, D., Smolinski, K., Mesaritakis, C., & Chochliouros, I. (2022). Sensitive seismic sensors based on microwave frequency fiber interferometry in commercially deployed cables. Sci. Rep., 12. https://doi.org/10.1038/s41598-022-18130-x DOI: https://doi.org/10.1038/s41598-022-18130-x
Bowden, D. C., Bozdag, E., Shaiksulaiman, A., Fichtner, A., & Konca, O. (2024). Telecom fibers are sensing earthquake hazards in Istanbul. EOS, 105. https://doi.org/10.1029/2024EO240219 DOI: https://doi.org/10.1029/2024EO240219
Bowden, D. C., Fichtner, A., Nikas, T., Bogris, A., Simos, C., Smolinski, K., Lentas, K., Simos, I., & Melis, N. S. (2022). Linking distributed and integrated fiber-optic sensing. Geophys. Res. Lett., 49. https://doi.org/10.1029/2022GL098727 DOI: https://doi.org/10.1029/2022GL098727
Brisbourne, A. M., Kendall, M., Kufner, S.-K., Hudson, T. S., & Smith, A. M. (2021). Downhole distributed acoustic profiling at the Skytrain Ice Rise, West Antarctica. The Cryosphere, 15. https://doi.org/10.5194/tc-15-3443-2021 DOI: https://doi.org/10.5194/egusphere-egu21-11803
Calonico, D., Bertacco, E. K., Calosso, C. E., Clivati, C., Costanzo, G. A., Frittelli, M., Godone, A., Mura, A., Poli, N., Sutyrin, D. V., Tino, G., Zucco, M. E., & F. Levi. (2014). High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B, 117, 979–986. https://doi.org/10.1007/s00340-014-5917-8 DOI: https://doi.org/10.1007/s00340-014-5917-8
Cantin, E., Tønnes, M., Targat, R. L., Amy-Klein, A., Lopez, O., & Pottie, P.-E. (2021). An accurate and robust metrological network for coherent optical frequency dissemination. New Journal of Physics, 23(5). https://doi.org/10.1088/1367-2630/abe79e DOI: https://doi.org/10.1088/1367-2630/abe79e
Cheng, F., Chi, B., Lindsey, N., Dawe, T. C., & Ajo-Franklin, J. (2021). Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Sci. Rep. https://doi.org/doi:10.1038/s41598-021-84845-y DOI: https://doi.org/10.31223/X5SP4Z
Cizek, M., Pravdova, L., Pham, T. M., Lesundak, A., Hrabina, J., Lazar, J., Pronebner, T., Pronebner, T., Aeikens, E., Premper, J., Havlis, O., Velc, R., Smotlacha, V., Altmannova, L., Schumm, T., Vojtech, J., Niessner, A., & Cip, O. (2022). Coherent fibre link for synchronization of delocalized atomic clocks. Optics Express, 30, 5450–5464. https://doi.org/10.1364/OE.447498 DOI: https://doi.org/10.1364/OE.447498
Diehl, T., Kissling, E., Husen, S., & Aldersons, F. (2009). Consistent phase picking for regional tomography models: application to the greater Alpine region. Geophys. J. Int., 176, 542–554. https://doi.org/10.1111/j.1365-246X.2008.03985.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03985.x
Donadello, S., Clivati, C., Govoni, A., Margheriti, L., Vassallo, M., Brenda, D., Hovsepyan, M., Bertacco, E. K., Concas, R., Levi, F., Mura, A., Herrero, A., Carpentieri, F., & Calonico, D. (2024). Seismic monitoring using the telecom fiber network. Comm. Earth Env., 5. https://doi.org/10.1038/s43247-024-01338-2 DOI: https://doi.org/10.1038/s43247-024-01338-2
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E., & Ajo-Franklin, J. B. (2017). Distributed Acoustic Sensing for seismic monitoring of the near surface: A traffic-noise interferometry study. Sci. Rep., 7. https://doi.org/10.1038/s41598-017-11986-4 DOI: https://doi.org/10.1038/s41598-017-11986-4
Fang, G., Li, Y. E., Zhao, Y., & Martin, E. R. (2020). Urban near-surface seismic monitoring using distributed acoustic sensing. Geophys. Res. Lett., 47. https://doi.org/10.1029/2019GL086115 DOI: https://doi.org/10.1029/2019GL086115
Fichtner, A., Bogris, A., Nikas, T., Bowden, D., Lentas, K., Melis, N. S., Simos, C., Simos, I., & Smolinski, K. (2022). Theory of phase transmission fibre-optic sensing. Geophys. J. Int., 231. https://doi.org/10.1093/gji/ggac237 DOI: https://doi.org/10.1093/gji/ggac237
Fichtner, A., Hofstede, C., Gebraad, L., Zunino, A., Zigone, D., & Eisen, O. (2023). Borehole fibre-optic seismology inside the Northeast Greenland Ice Stream. Geophys. J. Int., 235, 2430–2441. https://doi.org/10.1093/gji/ggad344 DOI: https://doi.org/10.1093/gji/ggad344
Fichtner, A., Hofstede, C., Kennett, B. L. N., Nymand, N. F., Lauritzen, M. L., Zigone, D., & Eisen, O. (2023). Fiber-optic airplane seismology on the Northeast Greenland Ice Stream. The Seismic Record, 125–133. https://doi.org/10.1785/0320230004 DOI: https://doi.org/10.1785/0320230004
Hanka, W., & Kind, R. (1994). The GEOFON program. Ann. Geophys., 37. https://doi.org/10.4401/ag-4196 DOI: https://doi.org/10.4401/ag-4196
Hartog, A. (2017). An introduction to distributed optical fibre sensors. CRC Press, Boca Raton. https://doi.org/10.1201/9781315119014 DOI: https://doi.org/10.1201/9781315119014
Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., & Clarke, A. (2021). Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica. J. Geophys. Res., 126. https://doi.org/10.1029/2020JB021493 DOI: https://doi.org/10.1029/2020JB021493
Husmann, D., Bernier, L.-G., Bertrand, M., Calonico, D., Chaloulos, K., Clausen, G., Clivati, C., Faist, J., Heiri, E., Hollenstein, U., Johnson, A., Mauchle, F., Meir, Z., Merkt, F., Mura, A., Scalari, G., Scheidegger, S., Schmutz, H., Sinhal, M., … Morel, J. (2021). SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology. Optics Express, 29, 24592–24605. https://doi.org/10.1364/OE.427921 DOI: https://doi.org/10.1364/OE.427921
Igel, J., Klaasen, S., Noe, S., Nomikou, P., Karantzalos, K., & Fichtner, A. (2024). Challenges in submarine fiber-optic earthquake monitoring. ESS Open Archive, May 2024. https://doi.org/10.22541/essoar.171691177.74747140/v1 DOI: https://doi.org/10.22541/essoar.171691177.74747140/v1
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., & Krwaczyk, C. M. (2022). Fibre optic distributed acoustic sensing of volcanic events. Nat. Comm., 13. https://doi.org/10.1038/s41467-022-29184-w DOI: https://doi.org/10.1038/s41467-022-29184-w
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Comm., 9. https://doi.org/10.1038/s41467-018-04860-y DOI: https://doi.org/10.1038/s41467-018-04860-y
Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves - III. Bull. Seis. Soc. Am., 81, 2335–2350. https://doi.org/DOI:10.1785/bssa0810062335 DOI: https://doi.org/10.1785/BSSA0810062335
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., & Fichtner, A. (2021). Distributed Acoustic Sensing in volcano-glacial environments — Mount Meager, British Columbia. J. Geophys. Res., 159. https://doi.org/10.1029/2021JB022358 DOI: https://doi.org/10.1002/essoar.10506911.1
Klaasen, S., Thrastarson, S., Cubuk-Sabuncu, Y., Jonsdottir, K., Gebraad, L., Paitz, P., & Fichtner, A. (2023). Subglacial volcano monitoring with fiber-optic sensing: Grímsvötn, Iceland. Volcanica, 6. https://doi.org/10.30909/vol.06.02.301311 DOI: https://doi.org/10.30909/vol.06.02.301311
Lindsey, N. J., Rademacher, H., & Ajo-Franklin, J. B. (2020). On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res., 125. https://doi.org/org:10.1029/2019JB018145 DOI: https://doi.org/10.1029/2019JB018145
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerill, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., & Markou, C. (2021). On the detection capabilities of underwater Distributed Acoustic Sensing. J. Geophys. Res. https://doi.org/10.1029/2020JB020925 DOI: https://doi.org/10.1002/essoar.10504330.1
Marra, G., Clivati, C., Luckett, R., Tampellini, A., Kronjäger, J., Wright, L., Mura, A., Levi, F., Robinson, S., Xuereb, A., Baptie, B., & Calonico, D. (2018). Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361, 486–490. https://doi.org/10.1126/science.aat4458 DOI: https://doi.org/10.1126/science.aat4458
Mecozzi, A., Cantono, M., Castellanos, J. C., Kamalov, V., Muller, R., & Zhan, Z. (2021). Polarization sensing using submarine optical cables. Optica, 8. https://doi.org/10.1364/OPTICA.424307 DOI: https://doi.org/10.1364/OPTICA.424307
Noe, S., Husmann, D., Müller, N., Morel, J., & Fichtner, A. (2023). Long-range fiber-optic earthquake sensing by active phase noise cancellation. Sci. Rep., 13. https://doi.org/10.1038/s41598-023-41161-x DOI: https://doi.org/10.1038/s41598-023-41161-x
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., & Fichtner, A. (2021). Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves. Bull. Seis. Soc. Am., 111, 1–10. https://doi.org/10.1785/0120200185 DOI: https://doi.org/10.1785/0120200185
Schioppo, M., Kronjäger, J., Silva, A., Ilieva, R., Paterson, J. W., Baynham, C. F. A., Bowden, W., Hill, I. R., Hobson, R., Vianello, A., Dovale-Álvarez, M., Williams, R. A., Marra, G., Margolis, H. S., Amy-Klein, A., Lopez, O., Cantin, E., Álvarez Martínez, H., Le Targat, R., … Grosche, G. (2022). Comparing ultrastable lasers at 7 × 10-17 fractional frequency instability through a 2220 km optical fibre network. Nature Communications, 13. https://doi.org/10.1038/s41467-021-27884-3 DOI: https://doi.org/10.1038/s41467-021-27884-3
SED. (2024). Swiss Seismological Service, earthquake catalog. http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/. http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/
Sladen, A., Rivet, D., Ampuero, J. P., de Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Comm., 10. https://doi.org/10.1038/s41467-019-13793-z DOI: https://doi.org/10.1038/s41467-019-13793-z
Spica, Z. J., Nishida, K., Akuhara, T., Petrelis, F., Shinohara, M., & Yamada, T. (2020). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophys. Res. Lett., 47. https://doi.org/10.1029/2020GL088360 DOI: https://doi.org/10.1029/2020GL088360
Spica, Z. J., Perton, M., Martin, E. R., Beroza, B. C., & Biondi, B. (2020). Urban seismic site characterization by fiber-optic seismology. J. Geophys. Res., 125. https://doi.org/10.1029/2019JB018656 DOI: https://doi.org/10.1029/2019JB018656
Tarantola, A., & Valette, B. (1982). Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion. Rev. Geophys., 20, 219–232. https://doi.org/10.1029/RG020i002p00219 DOI: https://doi.org/10.1029/RG020i002p00219
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., & Fichtner, A. (2020). Distributed Acoustic Sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Comm., 11. https://doi.org/10.1038/s41467-020-15824 DOI: https://doi.org/10.1038/s41467-020-15824-6
Zhan, Z., Cantono, M., Kamalov, V., Mecozzi, A., Müller, R., Yin, S., & Castellanos, J. C. (2021). Optical polarization-based seismic and water wave sensing on transoceanic cables. Science, 371, 931–936. https://doi.org/10.1126/science.abe6648 DOI: https://doi.org/10.1126/science.abe6648
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nils Müller, Sebastian Noe, Dominik Husmann, Jacques Morel, Andreas Fichtner

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020 Framework Programme
Grant numbers 955515;CRSII5_183579