Mapping finite-fault earthquake slip using spatial correlation between seismicity and point-source Coulomb failure stress change

Authors

DOI:

https://doi.org/10.26443/seismica.v4i1.1412

Keywords:

earthquake, seismicity, aftershocks, Coulomb failure stress, finite fault slip, fault geometry

Abstract

Most earthquake energy release arises during fault slip many kilometers below the Earth’s surface. Understanding earthquakes and their hazard requires mapping the geometry and distribution of this slip. Such finite-fault maps are typically derived from surface phenomena, such as seismic and geodetic ground motions. Here we introduce an imaging procedure for mapping finite-fault slip directly from seismicity and aftershocks—phenomena occurring at depth around an earthquake rupture. For specified source and receiver faults, we map source-fault slip in 3D by correlation of point-source Coulomb failure stress change (ΔCFS) kernels across the distribution of seismicity around the source. These seismicity-stress maps show relative, static fault slip compatible with the surrounding seismicity given the physics of ΔCFS; they can aid other slip inversions, aftershock forecasting, and study of early instrumental earthquakes and volcanic intrusions. We verify this procedure recovers synthetic fault slip which matches independent estimates of slip for the 2004 Mw 6.0 Parkfield and 2021 Mw 6.0 Antelope Valley California earthquakes. For the 2018 Mw 7.1 Anchorage Alaska intra-slab earthquake, seismicity-stress maps, combined with multi-scale precise hypocenter relocation, resolve the enigma of which mainshock faulting plane ruptured (the gently east-dipping plane), and clarify slab structures activated in the energetic aftershock sequence.

References

Aki, K. (1972). Earthquake mechanism. Tectonophysics, 13(1–4), 423–446. https://doi.org/10.1016/0040-1951(72)90032-7

Allmann, B. P., & Shearer, P. M. (2007). A High-Frequency Secondary Event During the 2004 Parkfield Earthquake. Science, 318(5854), 1279–1283. https://doi.org/10.1126/science.1146537

Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387

Archuleta, R. J., & Hartzell, S. H. (1981). Effects of fault finiteness on near-source ground motion. Bulletin of the Seismological Society of America, 71(4), 939–957. https://doi.org/10.1785/bssa0710040939

Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., Ji, C., Johnston, M. J. S., Langbein, J., Lienkaemper, J. J., Michael, A. J., Murray, J. R., Nadeau, R. M., Reasenberg, P. A., Reichle, M. S., Roeloffs, E. A., Shakal, A., Simpson, R. W., & Waldhauser, F. (2005). Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437(7061), 969–974. https://doi.org/10.1038/nature04067

Barchi, M. R., Carboni, F., Michele, M., Ercoli, M., Giorgetti, C., Porreca, M., Azzaro, S., & Chiaraluce, L. (2021). The influence of subsurface geology on the distribution of earthquakes during the 2016‐–2017 Central Italy seismic sequence. Tectonophysics, 807, 228797. https://doi.org/10.1016/j.tecto.2021.228797

Beresnev, I. A. (2003). Uncertainties in Finite-Fault Slip Inversions: To What Extent to Believe? (A Critical Review). Bulletin of the Seismological Society of America, 93(6), 2445–2458. https://doi.org/10.1785/0120020225

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bos, A. G., & Spakman, W. (2003). The resolving power of coseismic surface displacement data for fault slip distribution at depth. Geophysical Research Letters, 30(21). https://doi.org/10.1029/2003gl017946

Brudzinski, M. R., Thurber, C. H., Hacker, B. R., & Engdahl, E. R. (2007). Global Prevalence of Double Benioff Zones. Science, 316(5830), 1472–1474. https://doi.org/10.1126/science.1139204

Bruhat, L., Barbot, S., & Avouac, J.-P. (2011). Evidence for postseismic deformation of the lower crust following the 2004 Mw6.0 Parkfield earthquake. Journal of Geophysical Research, 116(B8). https://doi.org/10.1029/2010jb008073

Budiman, R., Sahara, D. P., & Nugraha, A. D. (2019). Determining Source Model and Aftershocks of 2006 Yogyakarta Earthquake, Indonesia using Coulomb Stress Change. IOP Conference Series: Earth and Environmental Science, 318(1), 12026. https://doi.org/10.1088/1755-1315/318/1/012026

Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting. Bulletin of the Seismological Society of America, 53(5), 921–932. https://doi.org/10.1785/bssa0530050921

Cianetti, S., Bruni, R., Gaviano, S., Keir, D., Piccinini, D., Saccorotti, G., & Giunchi, C. (2021). Comparison of Deep Learning Techniques for the Investigation of a Seismic Sequence: An Application to the 2019, Mw 4.5 Mugello (Italy) Earthquake. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb023405

Claerbout, J. F. (1992). Earth soundings analysis : processing versus inversion. Blackwell Scientific Publications. https://sepwww.stanford.edu/sep/prof/pvi.pdf

Claerbout, J. F. (2010). Basic Earth Imaging. https://sepwww.stanford.edu/sep/prof/bei11.2010.pdf

Collettini, C., Niemeijer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. Nature, 462(7275), 907–910. https://doi.org/10.1038/nature08585

Coulomb, C. A. (1773). Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a 1’architecture. Mem. Div. Sav. Acad.

Drolet, D., Bostock, M. G., Plourde, A. P., & Sammis, C. G. (2022). Aftershock distributions, moment tensors and stress evolution of the 2016 Iniskin and 2018 Anchorage Mw 7.1 Alaskan intraslab earthquakes. Geophysical Journal International, 231(1), 199–214. https://doi.org/10.1093/gji/ggac165

Ellsworth, W. L., & Beroza, G. C. (1995). Seismic Evidence for an Earthquake Nucleation Phase. Science, 268(5212), 851–855. https://doi.org/10.1126/science.268.5212.851

Fletcher, J. B., Spudich, P., & Baker, L. M. (2006). Rupture Propagation of the 2004 Parkfield, California, Earthquake from Observations at the UPSAR. Bulletin of the Seismological Society of America, 96(4B), S129–S142. https://doi.org/10.1785/0120050812

Font, Y., Kao, H., Lallemand, S., Liu, C.-S., & Chiao, L.-Y. (2004). Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method. Geophysical Journal International, 158(2), 655–675. https://doi.org/10.1111/j.1365-246x.2004.02317.x

Fountoulakis, I., & Evangelidis, C. P. (2024). SSA2py: A High-Performance Python Implementation of the Source-Scanning Algorithm for Spatiotemporal Seismic Source Imaging. Seismological Research Letters, 95(4), 2506–2518. https://doi.org/10.1785/0220230335

Freed, A. M. (2007). Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake. Geophysical Research Letters, 34(6). https://doi.org/10.1029/2006gl029155

Fukahata, Y., Yagi, Y., & Rivera, L. (2013). Theoretical relationship between back-projection imaging and classical linear inverse solutions. Geophysical Journal International, 196(1), 552–559. https://doi.org/10.1093/gji/ggt392

Gahalaut, V. K., Kalpna, & Raju, P. S. (2003). Rupture mechanism of the 1993 Killari earthquake, India: constraints from aftershocks and static stress change. Tectonophysics, 369(1–2), 71–78. https://doi.org/10.1016/s0040-1951(03)00135-5

Goldberg, D. E., Taymaz, T., Reitman, N. G., Hatem, A. E., Yolsal-Çevikbilen, S., Barnhart, W. D., Irmak, T. S., Wald, D. J., Öcalan, T., Yeck, W. L., Özkan, B., Thompson Jobe, J. A., Shelly, D. R., Thompson, E. M., DuRoss, C. B., Earle, P. S., Briggs, R. W., Benz, H., Erman, C., … Altuntaş, C. (2023). Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2), 156–167. https://doi.org/10.1785/0320230009

Guo, Y., Miyakoshi, K., & Tsurugi, M. (2020). Simultaneous rupture on conjugate faults during the 2018 Anchorage, Alaska, intraslab earthquake (MW 7.1) inverted from strong-motion waveforms. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01315-x

Haeussler, P. J., Freymueller, J. T., Wesson, R. L., & Ekström, G. (2008). An Overview of the Neotectonics of Interior Alaska: Far-Field Deformation from the Yakutat Microplate Collision. In Active Tectonics and Seismic Potential of Alaska (pp. 83–108). American Geophysical Union. https://doi.org/10.1029/179gm05

Hardebeck, J. L. (2022). Physical Properties of the Crust Influence Aftershock Locations. Journal of Geophysical Research: Solid Earth, 127(10). https://doi.org/10.1029/2022jb024727

Hardebeck, J. L., & Harris, R. A. (2022). Earthquakes in the Shadows: Why Aftershocks Occur at Surprising Locations. The Seismic Record, 2(3), 207–216. https://doi.org/10.1785/0320220023

Harris, R. A. (1998). Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10), 24347–24358. https://doi.org/10.1029/98jb01576

Harris, R. A., & Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 92(B8), 7945–7962. https://doi.org/10.1029/jb092ib08p07945

Harris, R. A., & Simpson, R. W. (1996). In the shadow of 1857‐the effect of the Great Ft. Tejon Earthquake on subsequent earthquakes in southern California. Geophysical Research Letters, 23(3), 229–232. https://doi.org/10.1029/96gl00015

Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553–1583. https://doi.org/10.1785/bssa07306a1553

Hartzell, S., Liu, P., Mendoza, C., Ji, C., & Larson, K. M. (2007). Stability and Uncertainty of Finite-Fault Slip Inversions: Application to the 2004 Parkfield, California, Earthquake. Bulletin of the Seismological Society of America, 97(6), 1911–1934. https://doi.org/10.1785/0120070080

Hasegawa, A., & Nakajima, J. (2017). Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes. Progress in Earth and Planetary Science, 4(1). https://doi.org/10.1186/s40645-017-0126-9

Hasegawa, A., Umino, N., & Takagi, A. (1978). Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophysics, 47(1–2), 43–58. https://doi.org/10.1016/0040-1951(78)90150-6

Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54(6A), 1811–1841. https://doi.org/10.1785/bssa05406a1811

Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey. https://doi.org/10.5066/F7PV6JNV

He, P., Wen, Y., Chen, Y., Xu, C., & Ding, K. (2020). Coseismic Rupture Geometry and Slip Rupture Process During the 2018 Mw 7.1 Anchorage, South‐Central Alaska Earthquake: Intraplate Normal Faulting by Slab Tear Constrained by Geodetic and Teleseismic Data. Earth and Space Science, 7(1). https://doi.org/10.1029/2019ea000924

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.-M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. https://doi.org/10.1038/s41561-020-0619-9

Hobbs, B. E., & Ord, A. (1988). Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes. Journal of Geophysical Research: Solid Earth, 93(B9), 10521–10540. https://doi.org/10.1029/jb093ib09p10521

Houlié, N., Dreger, D., & Kim, A. (2014). GPS source solution of the 2004 Parkfield earthquake. Scientific Reports, 4(1). https://doi.org/10.1038/srep03646

Ichinose, G. A., Anderson, J. G., Smith, K. D., & Zeng, Y. (2003). Source Parameters of Eastern California and Western Nevada Earthquakes from Regional Moment Tensor Inversion. Bulletin of the Seismological Society of America, 93(1), 61–84. https://doi.org/10.1785/0120020063

Ide, S. (2007). 4.07 - Slip Inversion. In G. Schubert (Ed.), Treatise on Geophysics (pp. 193–223). Elsevier. https://doi.org/10.1016/b978-044452748-6.00068-7

Johanson, I. A., Fielding, E. J., Rolandone, F., & Burgmann, R. (2006). Coseismic and Postseismic Slip of the 2004 Parkfield Earthquake from Space-Geodetic Data. Bulletin of the Seismological Society of America, 96(4B), S269–S282. https://doi.org/10.1785/0120050818

Jolivet, R., Simons, M., Agram, P. S., Duputel, Z., & Shen, Z. ‐K. (2015). Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophysical Research Letters, 42(2), 297–306. https://doi.org/10.1002/2014gl062222

Karabulut, H., Guvercin, S. E., Hollingsworth, J., & Konca, A. O. (2023). Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region. Journal of the Geological Society, 180(3). https://doi.org/10.1144/jgs2023-021

Kawakatsu, H., & Montagner, J.-P. (2008). Time-reversal seismic-source imaging and moment-tensor inversion. Geophysical Journal International, 175(2), 686–688. https://doi.org/10.1111/j.1365-246x.2008.03926.x

Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491–506. https://doi.org/https://doi.org/10.1785/BSSA0720020491

Kim, A., & Dreger, D. S. (2008). Rupture process of the 2004 Parkfield earthquake from near‐fault seismic waveform and geodetic records. Journal of Geophysical Research: Solid Earth, 113(B7). https://doi.org/10.1029/2007jb005115

King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–953. https://doi.org/10.1785/BSSA0840030935

Kirby, S., Engdahl, R. E., & Denlinger, R. (1996). Intermediate-Depth Intraslab Earthquakes and Arc Volcanism as Physical Expressions of Crustal and Uppermost Mantle Metamorphism in Subducting Slabs. In Subduction Top to Bottom (pp. 195–214). American Geophysical Union. https://doi.org/10.1029/gm096p0195

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003

Langbein, J., Borcherdt, R., Dreger, D., Fletcher, J., Hardebeck, J. L., Hellweg, M., Ji, C., Johnston, M., Murray, J. R., Nadeau, R., Rymer, M. J., & Treiman, J. A. (2005). Preliminary Report on the 28 September 2004, M 6.0 Parkfield, California Earthquake. Seismological Research Letters, 76(1), 10–26. https://doi.org/10.1785/gssrl.76.1.10

Langbein, J., Murray, J. R., & Snyder, H. A. (2006). Coseismic and Initial Postseismic Deformation from the 2004 Parkfield, California, Earthquake, Observed by Global Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters. Bulletin of the Seismological Society of America, 96(4B), S304–S320. https://doi.org/10.1785/0120050823

Liu, C., Lay, T., Xie, Z., & Xiong, X. (2019). Intraslab Deformation in the 30 November 2018 Anchorage, Alaska, MW 7.1 Earthquake. Geophysical Research Letters, 46(5), 2449–2457. https://doi.org/10.1029/2019gl082041

Liu, J., Sieh, K., & Hauksson, E. (2003). A Structural Interpretation of the Aftershock “Cloud” of the 1992 Mw 7.3 Landers Earthquake. Bulletin of the Seismological Society of America, 93(3), 1333–1344. https://doi.org/10.1785/0120020060

Liu, M., Zhang, M., Zhu, W., Ellsworth, W. L., & Li, H. (2020). Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence From Raw Seismic Data Using Machine‐Learning Phase Picker. Geophysical Research Letters, 47(4). https://doi.org/10.1029/2019gl086189

Liu, P., Custódio, S., & Archuleta, R. J. (2006). Kinematic Inversion of the 2004 M 6.0 Parkfield Earthquake Including an Approximation to Site Effects. Bulletin of the Seismological Society of America, 96(4B), S143–S158. https://doi.org/10.1785/0120050826

Lomax, A. (2005). A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake. Bulletin of the Seismological Society of America, 95(3), 861–877. https://doi.org/10.1785/0120040141

Lomax, A. (2008). Location of the Focus and Tectonics of the Focal Region of the California Earthquake of 18 April 1906. Bulletin of the Seismological Society of America, 98(2), 846–860. https://doi.org/10.1785/0120060405

Lomax, Anthony. (2020). Absolute Location of 2019 Ridgecrest Seismicity Reveals a Shallow Mw 7.1 Hypocenter, Migrating and Pulsing Mw 7.1 Foreshocks, and Duplex Mw 6.4 Ruptures. Bulletin of the Seismological Society of America, 110(4), 1845–1858. https://doi.org/10.1785/0120200006

Lomax, Anthony, & Henry, P. (2023). Major California faults are smooth across multiple scales at seismogenic depth. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.324

Lomax, Anthony, & Michelini, A. (2012). Tsunami Early Warning Within Five Minutes. Pure and Applied Geophysics, 170(9–10), 1385–1395. https://doi.org/10.1007/s00024-012-0512-6

Lomax, Anthony, Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_150-2

Lomax, Anthony, & Savvaidis, A. (2021). High‐Precision Earthquake Location Using Source‐Specific Station Terms and Inter‐Event Waveform Similarity. Journal of Geophysical Research: Solid Earth, 127(1). https://doi.org/10.1029/2021jb023190

Lomax, Anthony, & Savvaidis, A. (2024). Files and instructions for running NLL-SSST-coherence for a subset of Parkfield events. Zenodo. https://doi.org/10.5281/ZENODO.4756709

Lomax, Anthony, Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In Advances in Seismic Event Location (pp. 101–134). Springer Netherlands. https://doi.org/10.1007/978-94-015-9536-0_5

Lomax, Anthony, Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophysical Journal International, 146(2), 313–331. https://doi.org/10.1046/j.0956-540x.2001.01444.x

Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophysical Journal International, 51(3), 625–651. https://doi.org/10.1111/j.1365-246x.1977.tb04211.x

Madariaga, Raul. (1979). On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. Journal of Geophysical Research: Solid Earth, 84(B5), 2243–2250. https://doi.org/10.1029/jb084ib05p02243

Madariaga, Raul, & Ruiz, S. (2016). Earthquake dynamics on circular faults: a review 1970–2015. Journal of Seismology, 20(4), 1235–1252. https://doi.org/10.1007/s10950-016-9590-8

Mai, P. M., Schorlemmer, D., Page, M., Ampuero, J., Asano, K., Causse, M., Custodio, S., Fan, W., Festa, G., Galis, M., Gallovic, F., Imperatori, W., Käser, M., Malytskyy, D., Okuwaki, R., Pollitz, F., Passone, L., Razafindrakoto, H. N. T., Sekiguchi, H., … Zielke, O. (2016). The Earthquake‐Source Inversion Validation (SIV) Project. Seismological Research Letters, 87(3), 690–708. https://doi.org/10.1785/0220150231

Marone, C., & Scholz, C. H. (1988). The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 15(6), 621–624. https://doi.org/10.1029/gl015i006p00621

Materna, K., & Wong, J. (2023). Elastic stresses py: v1.0.0. Zenodo. https://doi.org/10.5281/ZENODO.7951979

Maurer, J., & Johnson, K. (2014). Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119(5), 4414–4428. https://doi.org/10.1002/2013jb010741

McEvilly, T. V., Bakun, W. H., & Casaday, K. B. (1967). The Parkfield, California, earthquakes of 1966. Bulletin of the Seismological Society of America, 57(6), 1221–1244. https://doi.org/10.1785/bssa0570061221

Mendoza, C., & Hartzell, S. H. (1988). Aftershock patterns and main shock faulting. Bulletin of the Seismological Society of America, 78, 1438–1449. https://pubs.geoscienceworld.org/ssa/bssa/article/78/4/1438/119043/Aftershock-patterns-and-main-shock-faulting

Mignan, A. (2014). The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4(1). https://doi.org/10.1038/srep04099

Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I—theory and algorithm. Geophysical Journal International, 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180

Nadeau, R. M., & McEvilly, T. V. (2004). Periodic Pulsing of Characteristic Microearthquakes on the San Andreas Fault. Science, 303(5655), 220–222. https://doi.org/10.1126/science.1090353

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040. https://doi.org/10.1785/bssa0820021018

Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72(6A), 1969–2001. https://doi.org/10.1785/bssa07206a1969

Oppenheimer, D. H., Reasenberg, P. A., & Simpson, R. W. (1988). Fault plane solutions for the 1984 Morgan Hill, California, Earthquake Sequence: Evidence for the state of stress on the Calaveras Fault. Journal of Geophysical Research: Solid Earth, 93(B8), 9007–9026. https://doi.org/10.1029/jb093ib08p09007

Pierce, I. K. D., Wesnousky, S. G., Owen, L. A., Bormann, J. M., Li, X., & Caffee, M. (2021). Accommodation of Plate Motion in an Incipient Strike‐Slip System: The Central Walker Lane. Tectonics, 40(2). https://doi.org/10.1029/2019tc005612

Pollitz, F. F., Wicks, C. W., & Hammond, W. C. (2022). Kinematic Slip Model of the 2021 M 6.0 Antelope Valley, California, Earthquake. The Seismic Record, 2(1), 20–28. https://doi.org/10.1785/0320210043

Raleigh, C. B., & Paterson, M. S. (1965). Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70(16), 3965–3985. https://doi.org/10.1029/jz070i016p03965

Ratchkovsky, N. A., Pujol, J., & Biswas, N. N. (1997). Stress pattern in the double seismic zone beneath Cook Inlet, south-central Alaska. Tectonophysics, 281(3–4), 163–171. https://doi.org/10.1016/s0040-1951(97)00042-5

Reid, H. F., & Lawson, A. C. (1908). The California earthquake of April 18, 1906: report of the State Earthquake Investigation Commission, in two volumes and atlas [Carnegie Institution of Washington publication ;no. 87,]. Carnegie Institution of Washington. https://catalog.hathitrust.org/Record/011812500

Richards‐Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source‐specific station terms. Journal of Geophysical Research: Solid Earth, 105(B5), 10939–10960. https://doi.org/10.1029/2000jb900014

Ruppert, N. A., Nayak, A., Thurber, C., & Richards, C. (2019). Aftershock Analysis of the 2018 Mw 7.1 Anchorage, Alaska, Earthquake: Relocations and Regional Moment Tensors. Seismological Research Letters, 91(1), 114–125. https://doi.org/10.1785/0220190199

Ruppert, N. A., & Witter, R. C. (2019). Preface to the Focus Section on the 30 November 2018 Mw 7.1 Anchorage, Alaska, Earthquake. Seismological Research Letters, 91(1), 16–18. https://doi.org/10.1785/0220190344

Sato, T., Hiratsuka, S., & Mori, J. (2012). Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake. Earth, Planets and Space, 64(12), 1239–1243. https://doi.org/10.5047/eps.2012.04.003

Savage, J. C. (1965). The stopping phase on seismograms. Bulletin of the Seismological Society of America, 55(1), 47–58. https://doi.org/10.1785/bssa0550010047

Savage, J. C., & Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78(5), 832–845. https://doi.org/10.1029/jb078i005p00832

Scholz, C. H. (2018). The Mechanics of Earthquakes and Faulting. Cambridge University Press. https://doi.org/10.1017/9781316681473

Seeber, L., & Armbruster, J. G. (2000). Earthquakes as beacons of stress change. Nature, 407(6800), 69–72. https://doi.org/10.1038/35024055

Sibson, R. H., Ghisetti, F. C., & Crookbain, R. A. (2012). Andersonian wrench faulting in a regional stress field during the 2010–2011 Canterbury, New Zealand, earthquake sequence. Geological Society, London, Special Publications, 367(1), 7–18. https://doi.org/10.1144/sp367.2

Sibson, R.H. (1982). Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bulletin of the Seismological Society of America, 72, 151–163. https://doi.org/10.1785/BSSA0720010151

Sibson, Richard H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8), 1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6

Simpson, R. W., Barall, M., Langbein, J., Murray, J. R., & Rymer, M. J. (2006). San Andreas Fault Geometry in the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96(4B), S28–S37. https://doi.org/10.1785/0120050824

Steacy, S., Marsan, D., Nalbant, S. S., & McCloskey, J. (2004). Sensitivity of static stress calculations to the earthquake slip distribution. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2002jb002365

Stein, Ross S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605–609. https://doi.org/10.1038/45144

Stein, R.S., & Lisowski, M. (1983). The 1979 Homestead Valley Earthquake Sequence, California: Control of aftershocks and postseismic deformation. Journal of Geophysical Research: Solid Earth, 88, 6477–6490. https://doi.org/10.1029/JB088iB08p06477

Steinbrugge, K. V., Zacher, E. G., Tocher, D., Whitten, C. A., & Claire, C. N. (1960). Creep on the San Andreas fault. Bulletin of the Seismological Society of America, 50(3), 389–415. https://doi.org/10.1785/bssa0500030389

Tape, C., & Lomax, A. (2022). Aftershock Regions of Aleutian‐Alaska Megathrust Earthquakes, 1938–2021. Journal of Geophysical Research: Solid Earth, 127(7). https://doi.org/10.1029/2022jb024336

Thurber, C. H., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bulletin of the Seismological Society of America, 96(4B), S38–S49. https://doi.org/10.1785/0120050825

Titus, S. J., DeMets, C., & Tikoff, B. (2006). Thirty-Five-Year Creep Rates for the Creeping Segment of the San Andreas Fault and the Effects of the 2004 Parkfield Earthquake: Constraints from Alignment Arrays, Continuous Global Positioning System, and Creepmeters. Bulletin of the Seismological Society of America, 96(4B), S250–S268. https://doi.org/10.1785/0120050811

Toda, Shingi, Stein, R. S., Sevilgen, V., & Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20111060

Toda, Shinji, Lin, J., & Ross S. (2011). Using the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7), 725–730. https://doi.org/10.5047/eps.2011.05.010

Toda, Shinji, Stein, R. S., Reasenberg, P. A., Dieterich, J. H., & Yoshida, A. (1998). Stress transferred by the 1995 Mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10), 24543–24565. https://doi.org/10.1029/98jb00765

Twardzik, C., Madariaga, R., Das, S., & Custódio, S. (2012). Robust features of the source process for the 2004 Parkfield, California, earthquake from strong-motion seismograms. Geophysical Journal International, no-no. https://doi.org/10.1111/j.1365-246x.2012.05653.x

U.S.G.S. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog. United States Geological Survey. https://doi.org/10.5066/F7MS3QZH

Villasenor, A., & Engdahl, E. R. (2007). Systematic Relocation of Early Instrumental Seismicity: Earthquakes in the International Seismological Summary for 1960–1963. Bulletin of the Seismological Society of America, 97(6), 1820–1832. https://doi.org/10.1785/0120060118

Wang, J., Xu, C., Freymueller, J. T., Li, Z., & Shen, W. (2014). Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 119(4), 3371–3392. https://doi.org/10.1002/2012jb009860

Wang, K., Dreger, D. S., Burgmann, R., & Taira, T. (2023). Finite-Source Model of the 8 July 2021 M 6.0 Antelope Valley, California, Earthquake. Seismological Research Letters. https://doi.org/10.1785/0220220262

Wang, K., Dreger, D. S., Tinti, E., Bürgmann, R., & Taira, T. (2020). Rupture Process of the 2019 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and Geodetic Data. Bulletin of the Seismological Society of America, 110(4), 1603–1626. https://doi.org/10.1785/0120200108

Wang, L., Hainzl, S., Zöller, G., & Holschneider, M. (2012). Stress- and aftershock-constrained joint inversions for coseismic and postseismic slip applied to the 2004 M6.0 Parkfield earthquake. Journal of Geophysical Research: Solid Earth, 117(B7). https://doi.org/10.1029/2011jb009017

Weiss, J., Pellissier, V., Marsan, D., Arnaud, L., & Renard, F. (2016). Cohesion versus friction in controlling the long-term strength of a self-healing experimental fault. Journal of Geophysical Research: Solid Earth, 121(12), 8523–8547. https://doi.org/10.1002/2016jb013110

Wesnousky, S. G. (2005). Active faulting in the Walker Lane. Tectonics, 24(3). https://doi.org/10.1029/2004tc001645

Wesnousky, S. G., Bormann, J. M., Kreemer, C., Hammond, W. C., & Brune, J. N. (2012). Neotectonics, geodesy, and seismic hazard in the Northern Walker Lane of Western North America: Thirty kilometers of crustal shear and no strike-slip? Earth and Planetary Science Letters, 329–330, 133–140. https://doi.org/10.1016/j.epsl.2012.02.018

West, M. E., Bender, A., Gardine, M., Gardine, L., Gately, K., Haeussler, P., Hassan, W., Meyer, F., Richards, C., Ruppert, N., Tape, C., Thornley, J., & Witter, R. (2019). The 30 November 2018 Mw 7.1 Anchorage Earthquake. Seismological Research Letters, 91(1), 66–84. https://doi.org/10.1785/0220190176

Wong, J. W. C., Fan, W., & Gabriel, A. (2024). A Quantitative Comparison and Validation of Finite‐Fault Models: The 2011 Tohoku‐Oki Earthquake. Journal of Geophysical Research: Solid Earth, 129(10). https://doi.org/10.1029/2024jb029212

Zhou, H. (1994). Rapid three‐dimensional hypocentral determination using a master station method. Journal of Geophysical Research: Solid Earth, 99(B8), 15439–15455. https://doi.org/10.1029/94jb00934

Downloads

Published

2025-03-03

How to Cite

Lomax, A. (2025). Mapping finite-fault earthquake slip using spatial correlation between seismicity and point-source Coulomb failure stress change. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1412

Issue

Section

Articles