The InSAR lookbook: an illustrated guide to earthquake interferograms

Authors

  • Israporn Sethanant University of Victoria
  • Edwin Nissen University of Victoria

DOI:

https://doi.org/10.26443/seismica.v4i1.1413

Keywords:

InSAR, Earthquake interferograms

Abstract

Interferometric Synthetic Aperture Radar (InSAR) is the prevalent method for mapping earthquake deformation and is seeing ever-increasing popularity through a new generation of satellite missions. Nowadays, following any large onshore earthquake, InSAR images (interferograms) are quickly disseminated across the community and media, but outside of InSAR specialists there remains a lack of general understanding of how to interpret them. We begin our study by describing how InSAR fringe patterns are determined by the combination of horizontal and vertical ground motions and ascending or descending satellite viewing geometries. In our "lookbook", we synthesize interferograms for a comprehensive suite of faulting styles, including strike-slip, reverse, normal, low-angle thrust, low-angle normal, and oblique-slip faults. This highlights the most common InSAR fringe patterns and demonstrates how strike-slip, dip-slip, and oblique-slip earthquakes produce distinct fringe patterns controlled primarily by their strike angles. We offer guidelines for utilizing the lookbook to assess earthquake mechanisms visually and to pick the causative fault plane from two nodal planes. Lastly, by comparing modelled interferograms and real-world earthquakes, we showcase the broad applicability of the lookbook, even for complex multiple segment ruptures.

References

Barnhart, W. D., Hayes, G. P., & Wald, D. J. (2019). Global Earthquake Response with Imaging Geodesy: Recent Examples from the USGS NEIC. Remote Sensing, 11(11), 1357. https://doi.org/10.3390/rs11111357

Berberian, M., Jackson, J. A., Fielding, E., Parsons, B. E., Priestley, K., Qorashi, M., Talebian, M., Walker, R., Wright, T. J., & Baker, C. (2001). The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophysical Journal International, 146(2), 371–398. https://doi.org/10.1046/j.1365-246x.2001.01459.x

Biggs, J., Bergman, E., Emmerson, B., Funning, G. J., Jackson, J., Parsons, B., & Wright, T. J. (2006). Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophysical Journal International, 166(3), 1347–1362. https://doi.org/10.1111/j.1365-246x.2006.03071.x

Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169–209. https://doi.org/10.1146/annurev.earth.28.1.169

Cheloni, D., Famiglietti, N. A., Tolomei, C., Caputo, R., & Vicari, A. (2024). The 8 September 2023, MW 6.8, Morocco Earthquake: A Deep Transpressive Faulting Along the Active High Atlas Mountain Belt. Geophysical Research Letters, 51(2). https://doi.org/10.1029/2023gl106992

Collettini, C., & Sibson, R. H. (2001). Normal faults, normal friction? Geology, 29(10), 927. https://doi.org/10.1130/0091-7613(2001)029<0927:nfnf>2.0.co;2

Cui, Y., Ma, Z., Aoki, Y., Liu, J., Yue, D., Hu, J., Zhou, C., & Li, Z. (2021). Refining slip distribution in moderate earthquakes using Sentinel-1 burst overlap interferometry: a case study over 2020 May 15 Mw 6.5 Monte Cristo Range Earthquake. Geophysical Journal International, 229(1), 472–486. https://doi.org/10.1093/gji/ggab492

Delbridge, B. G., Bürgmann, R., Fielding, E., Hensley, S., & Schulz, W. H. (2016). Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide. Journal of Geophysical Research: Solid Earth, 121(5), 3951–3977. https://doi.org/10.1002/2015jb012559

Dolan, J. F., & Haravitch, B. D. (2014). How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth and Planetary Science Letters, 388, 38–47. https://doi.org/10.1016/j.epsl.2013.11.043

Elliott, J. R., Nissen, E. K., England, P. C., Jackson, J. A., Lamb, S., Li, Z., Oehlers, M., & Parsons, B. (2012). Slip in the 2010-2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008868

Elliott, J. R., Parsons, B., Jackson, J. A., Shan, X., Sloan, R. A., & Walker, R. T. (2011). Depth segmentation of the seismogenic continental crust: The 2008 and 2009 Qaidam earthquakes. Geophysical Research Letters, 38(6). https://doi.org/10.1029/2011gl046897

Elliott, John R., Elliott, A. J., Hooper, A., Larsen, Y., Marinkovic, P., & Wright, T. J. (2015). Earthquake monitoring gets boost from new satellite. Eos, 96. https://doi.org/10.1029/2015eo023967

Elliott, J.R., Walters, R. J., & Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7(1). https://doi.org/10.1038/ncomms13844

European Space Agency. Sentinel-1, S1 Mission. https:// sentiwiki.copernicus.eu/web/s1-mission

Fang, J., Houseman, G. A., Wright, T. J., Evans, L. A., Craig, T. J., Elliott, J. R., & Hooper, A. (2024). The Dynamics of the India-Eurasia Collision: Faulted Viscous Continuum Models Constrained by High-Resolution Sentinel-1 InSAR and GNSS Velocities. Journal of Geophysical Research: Solid Earth, 129(6). https://doi.org/10.1029/2023jb028571

Fialko, Y., Sandwell, D., Simons, M., & Rosen, P. (2005). Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295–299. https://doi.org/10.1038/nature03425

Fielding, E. J., Talebian, M., Rosen, P. A., Nazari, H., Jackson, J. A., Ghorashi, M., & Walker, R. (2005). Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004jb003299

Funning, G. J., & Cockett, R. (2012). Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data. AGU Fall Meeting Abstracts, 2012, ED43E-06.

Funning, G. J., & Garcia, A. (2019). A systematic study of earthquake detectability using Sentinel-1 Interferometric Wide-Swath data. Geophysical Journal International, 216(1), 332–349. https://doi.org/10.1093/gji/ggy42610.31223/osf.io/9wg8s

Funning, Gareth J., Parsons, B., Wright, T. J., Jackson, J. A., & Fielding, E. J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research: Solid Earth, 110(B9). https://doi.org/10.1029/2004jb003338

Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small evaluation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183–9191. https://doi.org/10.1029/jb094ib07p09183

Gao, H., Liao, M., Liang, X., Feng, G., & Wang, G. (2022). Coseismic and Postseismic Fault Kinematics of the July 22, 2020, Nima (Tibet) Ms6.6 Earthquake: Implications of the Forming Mechanism of the Active N-S-Trending Grabens in Qiangtang, Tibet. Tectonics, 41(3). https://doi.org/10.1029/2021tc006949

Gaudreau, É., Hollingsworth, J., Nissen, E., & Funning, G. J. (2023). Complex 3-D Surface Deformation in the 1971 San Fernando, California Earthquake Reveals Static and Dynamic Controls on Off-Fault Deformation. Journal of Geophysical Research: Solid Earth, 128(3), e2022JB024985. https://doi.org/10.1029/2022JB024985

Golshadi, Z., Famiglietti, N. A., Caputo, R., SoltaniMoghadam, S., Karimzadeh, S., Memmolo, A., Falco, L., & Vicari, A. (2023). Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran. Remote Sensing, 15(12), 2981. https://doi.org/10.3390/rs15122981

Guo, N., Wu, Y., Zhu, S., & Chen, C. (2024). Coseismic deformation and interseismic strain accumulation of the 2024 MS 7.1 Wushi earthquake in Xinjiang, China. Advances in Space Research, 74(4), 1586–1594. https://doi.org/10.1016/j.asr.2024.05.028

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science, 356(6334). https://doi.org/10.1126/science.aam7194

He, Y., Wang, T., & Zhao, L. (2022). The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault. Remote Sensing, 14(18), 4553. https://doi.org/10.3390/rs14184553

Huang, M., Fielding, E. J., Liang, C., Milillo, P., Bekaert, D., Dreger, D., & Salzer, J. (2017). Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy. Geophysical Research Letters, 44(3), 1266–1274. https://doi.org/10.1002/2016gl071687

Institute of Electrical and Electronics Engineers. (2020). IEEE Standard Letter Designations for Radar-Frequency Bands. IEEE Std 521-2019 (Revision of IEEE Std 521-2002).

Ishitsuka, K., Tsuji, T., & Matsuoka, T. (2012). Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake using SAR interferometry. Earth, Planets and Space, 64(12), 1267–1276. https://doi.org/10.5047/eps.2012.11.002

Jafari, M., Aflaki, M., Mousavi, Z., Walpersdorf, A., & Motaghi, K. (2023). Coseismic and post-seismic characteristics of the 2021 Ganaveh earthquake along the Zagros foredeep fault based on InSAR data. Geophysical Journal International, 234(2), 1125–1142. https://doi.org/10.1093/gji/ggad127

Jamalreyhani, M., Pousse-Beltran, L., Hassanzadeh, M., Sadat Arabi, S., A. Bergman, E., Shamszadeh, A., Arvin, S., Fariborzi, N., & Songhori, A. (2023). Co-seismic slip of the 18 April 2021 Mw 5.9 Genaveh earthquake in the South Dezful Embayment of Zagros (Iran) and its aftershock sequence. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.246

Karasözen, E., Nissen, E., Büyükakpınar, P., Cambaz, M. D., Kahraman, M., Kalkan Ertan, E., Abgarmi, B., Bergman, E., Ghods, A., & Özacar, A. A. (2018). The 2017 July 20 Mw 6.6 Bodrum-Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophysical Journal International, 214(1), 185–199. https://doi.org/10.1093/gji/ggy114

Kennedy, J., Anderson, R., Biessel, R., Chase, T., Ellis, O., Fairbanks, K., Fleming, C., Horn, W., Johnston, A., Kristenson, H., Logan, T., Meyer, F., Miller, R., Rine, J., Showalter, C., Short, G., Zhu, J., & Player, A. (2021). Skip the Processing: On Demand Analysis-Ready InSAR from ASF. AGU Fall Meeting Abstracts, 2021, G45B-0395.

Kim, T., & Han, H. (2023). Coseismic displacement fields and the slip mechanism of the 2021 Mw 6.7 Hovsgol earthquake in Mongolia constrained by Sentinel-1 and ALOS-2 InSAR. GIScience and Remote Sensing, 60(1). https://doi.org/10.1080/15481603.2023.2180026

Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., Elliott, J., Greenall, N., Hatton, E., Hooper, A., Juncu, D., McDougall, A., Walters, R. J., Watson, C. S., Weiss, J. R., & Wright, T. J. (2020). LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430

Li, B., Li, Y., Jiang, W., Su, Z., & Shen, W. (2020). Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data. International Journal of Applied Earth Observation and Geoinformation, 90, 102127. https://doi.org/10.1016/j.jag.2020.102127

Li, K., Li, Y., Tapponnier, P., Xu, X., Li, D., & He, Z. (2021). Joint InSAR and Field Constraints on Faulting During the Mw 6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. Journal of Geophysical Research: Solid Earth, 126(9). https://doi.org/10.1029/2021jb022212

Li, K., Tapponnier, P., Xu, X., & Kang, W. (2023). The 2022, Ms 6.9 Menyuan earthquake: Surface rupture, Paleozoic suture re-activation, slip-rate and seismic gap along the Haiyuan fault system, NE Tibet. Earth and Planetary Science Letters, 622, 118412. https://doi.org/10.1016/j.epsl.2023.118412

Li, S., Tao, T., Chen, Y., He, P., Gao, F., Qu, X., & Zhu, Y. (2021). Geodetic Observation and Modeling of the Coseismic and Postseismic Deformations Associated With the 2020 Mw 6.5 Monte Cristo Earthquake. Earth and Space Science, 8(6). https://doi.org/10.1029/2021ea001696

Liu, C., Lay, T., Pollitz, F. F., Xu, J., & Xiong, X. (2021). Seismic and Geodetic Analysis of Rupture Characteristics of the 2020 Mw 6.5 Monte Cristo Range, Nevada, Earthquake. Bulletin of the Seismological Society of America, 111(6), 3226–3236. https://doi.org/10.1785/0120200327

Liu, G., Qiao, X., Yu, P., Zhou, Y., Zhao, B., & Xiong, W. (2021). Rupture Kinematics of the 11 January 2021 Mw 6.7 Hovsgol, Mongolia, Earthquake and Implications in the Western Baikal Rift Zone. Seismological Research Letters, 92(6), 3318–3326. https://doi.org/10.1785/0220210061

Liu, Xiaoge, Xu, W., Radziminovich, N. A., Fang, N., & Xie, L. (2022). Transtensional coseismic fault slip of the 2021 Mw 6.7 Turt Earthquake and heterogeneous tectonic stress surrounding the Hovsgol Basin, Northwest Mongolia. Tectonophysics, 836, 229407. https://doi.org/10.1016/j.tecto.2022.229407

Liu, Xiaoli, Xia, T., Liu-Zeng, J., Deng, D., Jia, Z., Wang, P., Yu, P., & Wang, W. (2023). Coseismic and early postseismic deformation of the 2020 Nima Mw 6.4 earthquake, central Tibet, from InSAR and GNSS observations. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1012773

Liu, Z., Li, Z., Yu, C., Zhang, X., & Peng, J. (2024). Stress triggering and future seismic hazards implied by four large earthquakes in the Pamir from 2015 to 2023 revealed by Sentinel-1 radar interferometry. Geophysical Journal International, 237(2), 887–901. https://doi.org/10.1093/gji/ggae079

Lohman, R. B., & Barnhart, W. D. (2010). Evaluation of earthquake triggering during the 2005-2008 earthquake sequence on Qeshm Island, Iran. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010jb007710

Magen, Y., Ziv, A., Inbal, A., Baer, G., & Hollingsworth, J. (2020). Fault Rerupture during the July 2019 Ridgecrest Earthquake Pair from Joint Slip Inversion of InSAR, Optical Imagery, and GPS. Bulletin of the Seismological Society of America, 110(4), 1627–1643. https://doi.org/10.1785/0120200024

Mai, P. M., & Thingbaijam, K. K. S. (2014). SRCMOD: An Online Database of Finite-Fault Rupture Models. Seismological Research Letters, 85(6), 1348–1357. https://doi.org/10.1785/0220140077

Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4), 441–500. https://doi.org/10.1029/97rg03139

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138–142. https://doi.org/10.1038/364138a0

Meyer, F. J., Arko, S. A., Hogenson, K., McAlpin, D. B., & Whitley, M. A. (2017). A Cloud-Based System for Automatic Hazard Monitoring from Sentinel-1 SAR Data. AGU Fall Meeting Abstracts, 2017, G33A-03.

Middleton, T. A., & Copley, A. (2013). Constraining fault friction by re-examining earthquake nodal plane dips. Geophysical Journal International, 196(2), 671–680. https://doi.org/10.1093/gji/ggt427

Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., Ayoub, F., & Sammis, C. G. (2015). Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochemistry, Geophysics, Geosystems, 16(5), 1577–1598. https://doi.org/10.1002/2014gc005693

Namdarsehat, P., Milczarek, W., Bugajska-Jędraszek, N., Motavalli-Anbaran, S.-H., & Khaledzadeh, M. (2024). Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021. Remote Sensing, 16(13), 2318. https://doi.org/10.3390/rs16132318

Nissen, E., Cambaz, M. D., Gaudreau, É., Howell, A., Karasözen, E., & Savidge, E. (2022). A reappraisal of active tectonics along the Fethiye-Burdur trend, southwestern Turkey. Geophysical Journal International, 230(2), 1030–1051. https://doi.org/10.1093/gji/ggac09610.31223/x5zc99

Nissen, E., Elliott, J. R., Sloan, R. A., Craig, T. J., Funning, G. J., Hutko, A., Parsons, B. E., & Wright, T. J. (2016). Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nature Geoscience, 9(4), 330–336. https://doi.org/10.1038/ngeo2653

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135

Owen, S. E., Hua, H., Rosen, P. A., Agram, P. S., Webb, F., Simons, M., Yun, S. H., Sacco, G. F., Liu, Z., Fielding, E. J., Lundgren, P., & Moore, A. W. (2017). The Advanced Rapid Imaging and Analysis (ARIA) Project: Providing Standard and On-Demand SAR products for Hazard Science and Hazard Response. AGU Fall Meeting Abstracts, 2017, IN53B-0089.

Rezapour, M., & Jamalreyhani, M. R. (2023). Source fault analyses from InSAR data and aftershocks for the Fin doublet earthquakes on 14 November 2021 in Hormozgan province, South Iran. Journal of the Earth and Space Physics, 48(4), 87–97. https://doi.org/10.22059/jesphys.2022.337959.1007399

Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382. https://doi.org/10.1109/5.838084

Scott, C., Champenois, J., Klinger, Y., Nissen, E., Maruyama, T., Chiba, T., & Arrowsmith, R. (2019). The 2016 M7 Kumamoto, Japan, Earthquake Slip Field Derived From a Joint Inversion of Differential Lidar Topography, Optical Correlation, and InSAR Surface Displacements. Geophysical Research Letters, 46(12), 6341–6351. https://doi.org/10.1029/2019gl082202

Sethanant, I., Nissen, E., Pousse-Beltran, L., Bergman, E., & Pierce, I. (2023). The 2020 Mw 6.5 Monte Cristo Range, Nevada, Earthquake: Anatomy of a Crossing-Fault Rupture through a Region of Highly Distributed Deformation. Bulletin of the Seismological Society of America, 113(3), 948–975. https://doi.org/10.1785/0120220166

Shi, Y., Wang, Y., & Bian, Y. (2023). Coseismic Source Model of the February 2023 Mw 6.8 Tajikistan Earthquake from Sentinel-1A InSAR Observations and Its Associated Earthquake Hazard. Remote Sensing, 15(12), 3010. https://doi.org/10.3390/rs15123010

Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B., Parsons, B., Priestley, K., & Saiidi, A. (2006). The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault. Geophysical Journal International, 164(1), 137–148. https://doi.org/10.1111/j.1365-246x.2005.02839.x

Tong, X., Sandwell, D. T., & Fialko, Y. (2010). Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2009jb006625

U.S. Geological Survey. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products: Various. U.S. Geological Survey. https://doi.org/10.5066/F7MS3QZH

Walker, R., & Jackson, J. (2002). Offset and evolution of the Gowk fault, S.E. Iran: a major intra-continental strike-slip system. Journal of Structural Geology, 24(11), 1677–1698. https://doi.org/10.1016/s0191-8141(01)00170-5

Wan, Y., Shen, Z.-K., Bürgmann, R., Sun, J., & Wang, M. (2016). Fault geometry and slip distribution of the 2008 Mw 7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements. Geophysical Journal International, 208(2), 748–766. https://doi.org/10.1093/gji/ggw421

Wang, S., Nissen, E., Pousse-Beltran, L., Craig, T. J., Jiao, R., & Bergman, E. A. (2022). Structural controls on coseismic rupture revealed by the 2020 Mw 6.0 Jiashi earthquake (Kepingtag belt, SW Tian Shan, China). Geophysical Journal International, 230(3), 1895–1910. https://doi.org/10.1093/gji/ggac15910.31223/x58w4c

Watson, C. S., Elliott, J. R., Ebmeier, S. K., Biggs, J., Albino, F., Brown, S. K., Burns, H., Hooper, A., Lazecký, M., Maghsoudi, Y., Rigby, R., & and Wright, T. J. (2023). Strategies for improving the communication of satellite-derived InSAR data for geohazards through the analysis of Twitter and online data portals. Geoscience Communication, 6(2), 75–96. https://doi.org/10.5194/gc-6-75-2023

Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J.-P., Helmberger, D., Hauksson, E., Chu, R., Simons, M., Hudnut, K., Herring, T., & Briggs, R. (2011). Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 4(9), 615–618. https://doi.org/10.1038/ngeo1213

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515

Weston, J., Ferreira, A. M. G., & Funning, G. J. (2011). Global compilation of interferometric synthetic aperture radar earthquake source models: 1. Comparisons with seismic catalogs. Journal of Geophysical Research, 116(B8). https://doi.org/10.1029/2010jb008131

Weston, Jennifer, Ferreira, A. M. G., & Funning, G. J. (2012). Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics, 532–535, 61–81. https://doi.org/10.1016/j.tecto.2012.02.001

Wright, Tim J., Elliott, J. R., Wang, H., & Ryder, I. (2013). Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere. Tectonophysics, 609, 504–523. https://doi.org/10.1016/j.tecto.2013.07.029

Wright, T.J., Parsons, B. E., Jackson, J. A., Haynes, M., Fielding, E. J., England, P. C., & Clarke, P. J. (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth and Planetary Science Letters, 172(1–2), 23–37. https://doi.org/10.1016/s0012-821x(99)00186-7

Wu, C., Zheng, W., Zhang, P., Zhang, Z., Jia, Q., Yu, J., Zhang, H., Yao, Y., Liu, J., Han, G., & Chen, J. (2019). Oblique Thrust of the Maidan Fault and Late Quaternary Tectonic Deformation in the Southwestern Tian Shan, Northwestern China. Tectonics, 38(8), 2625–2645. https://doi.org/10.1029/2018tc005248

Xiong, W., Yu, P., Chen, W., Liu, G., Zhao, B., Nie, Z., & Qiao, X. (2021). The 2020 Mw 6.4 Petrinja earthquake: a dextral event with large coseismic slip highlights a complex fault system in northwestern Croatia. Geophysical Journal International, 228(3), 1935–1945. https://doi.org/10.1093/gji/ggab440

Xu, X., Sandwell, D. T., Ward, L. A., Milliner, C. W. D., Smith-Konter, B. R., Fang, P., & Bock, Y. (2020). Surface deformation associated with fractures near the 2019 Ridgecrest earthquake sequence. Science, 370(6516), 605–608. https://doi.org/10.1126/science.abd1690

Xu, X., Tong, X., Sandwell, D. T., Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., & Ayoub, F. (2016). Refining the shallow slip deficit. Geophysical Journal International, 204(3), 1843–1862. https://doi.org/10.1093/gji/ggv563

Yang, J., Xu, C., Wen, Y., & Xu, G. (2022). Complex Coseismic and Postseismic Faulting During the 2021 Northern Thessaly (Greece) Earthquake Sequence Illuminated by InSAR Observations. Geophysical Research Letters, 49(8). https://doi.org/10.1029/2022gl098545

Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017jb015305

Yu, J., Wang, D., Zhao, B., & Li, Q. (2021). Normal Faulting Movement During the 2020 Mw 6.4 Yutian Earthquake: A Shallow Rupture in NW Tibet Revealed by Geodetic Measurements. Pure and Applied Geophysics, 178(5), 1563–1578. https://doi.org/10.1007/s00024-021-02735-w

Zebker, H.A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959. https://doi.org/10.1109/36.175330

Zebker, Howard A., & Lu, Y. (1998). Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms. Journal of the Optical Society of America A, 15(3), 586. https://doi.org/10.1364/josaa.15.000586

Zhang, Y., Shan, X., Gong, W., & Zhang, G. (2021). The ambiguous fault geometry derived from InSAR measurements of buried thrust earthquakes: a synthetic data based study. Geophysical Journal International, 225(3), 1799–1811. https://doi.org/10.1093/gji/ggab021

Zhao, L., Nissen, E., Xu, W., Jamalreyhani, M., Bergman, E. A., Zhao, D., & Xie, L. (2025). Variable fault geometry controls the cascading 2023 Herat, Afghanistan multiplet sequence. Communications Earth & Environment, 6(1). https://doi.org/10.1038/s43247-025-02113-7

Zhu, C., Wang, C., Zhang, B., Qin, X., & Shan, X. (2021). Differential Interferometric Synthetic Aperture Radar data for more accurate earthquake catalogs. Remote Sensing of Environment, 266, 112690. https://doi.org/10.1016/j.rse.2021.112690

Downloads

Published

2025-04-23

How to Cite

Sethanant, I., & Nissen, E. (2025). The InSAR lookbook: an illustrated guide to earthquake interferograms. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1413

Issue

Section

Articles