On single-station, six degree-of-freedom observations of local to regional seismicity at the Piñon Flat Observatory in Southern California
DOI:
https://doi.org/10.26443/seismica.v4i1.1416Keywords:
Pinon Flat Observatory, rotational seismology, seismicity california, six degree of freedom, 6DoF, rotational ground motionAbstract
In September 2022, a portable, three-component rotational rate sensor, namely a blueSeis-3A gyroscope, has been deployed at the underground vault of the Pinon Flat Observatory (PFO) in southern California. A three-component, broadband seismometer is co-located, jointly forming a six degree-of-freedom (DoF) station for long-term observations of local and regional seismicity and multi-component wavefield studies. The seismic recordings are available online via IRIS FDSN services as PY.BSPF (BlueSeis at Pinon Flat). The instrumentation at PFO additionally provides high-quality strain observations, allowing now to study translation, rotations and strain of the seismic wavefield in a low noise and high seismicity area (e.g. San Andreas fault zone). The seismic array at PFO is used to compute array derived rotations and validate the direct observations of rotational ground motions. We show results of 6-DoF processing applied to a local Mw 4.1 and a regional Mw 6.2 event to obtain backazimuth estimates, which we validate with array beamforming, and estimates of local seismic phase velocities. For observed events between October 2022 and October 2023, we detect more than 400 events of which 118 are triggered on all six components. Peak rotation rate amplitudes are used to derive empirical peak amplitude relations for vertical and horizontal rotation rates to provide valuable insights towards resolvability for comparable 6~DoF campaigns. We find the dominating limitations for rotational motion observations currently to be set by the self-noise level of the blueSeis-3A rotation sensor and encourage further instrumental development.
References
Abreu, R., Durand, S., Rost, S., & Thomas, C. (2023). Deep Earth rotational seismology. Geophysical Journal International, 234(3), 2365–2374. https://doi.org/10.1093/gji/ggad245
Agnew, D. C., & Wyatt, F. K. (2003). Long-Base Laser Strainmeters: A Review. https://escholarship.org/uc/item/21z72167
Aki, K., & Richards, P. G. (2002). Quantitative Seismology, 2nd Ed.
Belfi, J., Beverini, N., Bosi, F., Carelli, G., Cuccato, D., De Luca, G., Di Virgilio, A., Gebauer, A., Maccioni, E., Ortolan, A., Porzio, A., Saccorotti, G., Simonelli, A., & Terreni, G. (2017). Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso. Review of Scientific Instruments, 88(3), 34502. https://doi.org/10.1063/1.4977051
Bernauer, F., Behnen, K., Wassermann, J., Egdorf, S., Igel, H., Donner, S., Stammler, K., Hoffmann, M., Edme, P., Sollberger, D., Schmelzbach, C., Robertsson, J., Paitz, P., Igel, J., Smolinski, K., Fichtner, A., Rossi, Y., Izgi, G., Vollmer, D., … Brokesova, J. (2021). Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources. Sensors, 21(1), 264. https://doi.org/10.3390/s21010264
Bernauer, F., Wassermann, J., Guattari, F., Frenois, A., Bigueur, A., Gaillot, A., de Toldi, E., Ponceau, D., Schreiber, U., & Igel, H. (2018). BlueSeis3A: Full characterization of a 3C broadband rotational seismometer. Seismological Research Letters, 89(2A), 620–629. https://doi.org/10.1785/0220170143
Bernauer, F., Wassermann, J., & Igel, H. (2012). Rotational sensors—A comparison of different sensor types. Journal of Seismology, 16, 595–602. https://doi.org/10.1007/s10950-012-9298-3
Bernauer, F., Wassermann, J., & Igel, H. (2020). Dynamic tilt correction using direct rotational motion measurements. Seismological Research Letters, 91(5), 2872–2880. https://doi.org/10.1785/0220200132
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
Bońkowski, P. A., Bobra, P., Zembaty, Z., & Jędraszak, B. (2023). Experimental Analysis of Stiffness Identification of Damaged Reinforced Concrete Beams with Directly Measured Rotational Modes (preprint). https://doi.org/10.2139/ssrn.4552257
Brotzer, A., Igel, H., Stutzmann, E., Montagner, J., Bernauer, F., Wassermann, J., Widmer‐Schnidrig, R., Lin, C., Kiselev, S., Vernon, F., & Schreiber, K. U. (2023). Characterizing the Background Noise Level of Rotational Ground Motions on Earth. Seismological Research Letters. https://doi.org/10.1785/0220230202
Chen, C., Wang, Y., Sun, L., Lin, C., Wei, Y., Liao, C., Lin, B., & Qin, L. (2023). Six‐Component Earthquake Synchronous Observations Across Taiwan Strait: Phase Velocity and Source Location. Earth and Space Science, 10(12). https://doi.org/10.1029/2023ea003040
Chow, B., Wassermann, J., Schuberth, B. S. A., Hadziioannou, C., Donner, S., & Igel, H. (2019). Love wave amplitude decay from rotational ground motions. Geophysical Journal International, 218(2), 1336–1347. https://doi.org/10.1093/gji/ggz213
Cochard, A., Igel, H., Schuberth, B., Suryanto, W., Velikoseltsev, A., Schreiber, U., Wassermann, J., Scherbaum, F., & Vollmer, D. (2006). Rotational Motions in Seismology: Theory, Observation, Simulation. In R. Teisseyre, E. Majewski, & M. Takeo (Eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects (pp. 391–411). Springer-Verlag. https://doi.org/10.1007/3-540-31337-0_30
Donner, S, Mustać, M., Hejrani, B., Tkalčić, H., & Igel, H. (2020). Seismic moment tensors from synthetic rotational and translational ground motion: Green’s functions in 1-D versus 3-D. Geophysical Journal International, 223(1), 161–179. https://doi.org/10.1093/gji/ggaa305
Donner, Stefanie. (2021). Rotational ground motion measurements for regional seismic moment tensors: A review. In Advances in Geophysics (pp. 141–186). Elsevier. https://doi.org/10.1016/bs.agph.2021.06.002
Donner, Stefanie, Igel, H., Hadziioannou, C., & the Romy group. (2018). Retrieval of the Seismic Moment Tensor from Joint Measurements of Translational and Rotational Ground Motions: Sparse Networks and Single Stations. In Moment Tensor Solutions (pp. 263–280). Springer International Publishing. https://doi.org/10.1007/978-3-319-77359-9_12
Donner, Stefanie, Lin, C., Hadziioannou, C., Gebauer, A., Vernon, F., Agnew, D. C., Igel, H., Schreiber, U., & Wassermann, J. (2017). Comparing Direct Observation of Strain, Rotation, and Displacement with Array Estimates at Piñon Flat Observatory, California. Seismological Research Letters, 88(4), 1107–1116. https://doi.org/10.1785/0220160216
Donner, Steffanie, Bernauer, M., & Igel, H. (2016). Inversion for seismic moment tensors combining translational and rotational ground motions. Geophysical Journal International, 207, 562–570. https://doi.org/10.1093/gji/ggw298
Eibl, E. P., Rosskopf, M., Sciotto, M., Currenti, G., Di Grazia, G., Jousset, P., Krüger, F., & Weber, M. (2022). Performance of a rotational sensor to decipher volcano seismic signals on Etna, Italy. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023617. https://doi.org/10.1029/2021JB023617
Fletcher, J. B., Fumal, T., Liu, H.-P., & Carroll, L. C. (1990). Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data. Bulletin of the Seismological Society of America, 80(4), 807–831. https://doi.org/10.1785/BSSA0800040807
Guéguen, P., & Astorga, A. (2021). The Torsional Response of Civil Engineering Structures during Earthquake from an Observational Point of View. Sensors, 21(2), 342. https://doi.org/10.3390/s21020342
Guéguen, P., Guattari, F., Aubert, C., & Laudat, T. (2020). Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors, 21(1), 142. https://doi.org/10.3390/s21010142
Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J., & Igel, H. (2012). Examining ambient noise using colocated measurements of rotational and translational motion. Journal of Seismology, 16(4), 787–796. https://doi.org/10.1007/s10950-012-9288-5
Ichinose, G. A., Ford, S. R., & Mellors, R. J. (2021). Regional Moment Tensor Inversion Using Rotational Observations. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020827. https://doi.org/10.1029/2020JB020827
Igel, H., Bernauer, M., Wassermann, J., & Schreiber, K. U. (2014). Seismology, Rotational, Complexity. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 1–26). Springer. https://doi.org/10.1007/978-3-642-27737-5_608-1
Igel, H., Cochard, A., Wassermann, J., Flaws, A., Schreiber, U., Velikoseltsev, A., & Pham Dinh, N. (2007). Broad-band observations of earthquake-induced rotational ground motions. Geophysical Journal International, 168(1), 182–196. https://doi.org/10.1111/j.1365-246X.2006.03146.x
Igel, H., Schreiber, K. U., Gebauer, A., Bernauer, F., Egdorf, S., Simonelli, A., Lin, C.-J., Wassermann, J., Donner, S., Hadziioannou, C., Yuan, S., Brotzer, A., Kodet, J., Tanimoto, T., Hugentobler, U., & Wells, J.-P. R. (2021). ROMY: a multicomponent ring laser for geodesy and geophysics. Geophysical Journal International, 225(1), 684–698. https://doi.org/10.1093/gji/ggaa614
Igel, H., Schreiber, U., Flaws, A., Schuberth, B., Velikoseltsev, A., & Cochard, A. (2005). Rotational motions induced by the M8. 1 Tokachi-oki earthquake, September 25, 2003. Geophysical Research Letters, 32(8). https://doi.org/10.1029/2004GL022336
Keil, S., Wassermann, J., & Igel, H. (2021). Single-station seismic microzonation using 6C measurements. Journal of Seismology, 25(1), 103–114. https://doi.org/10.1007/s10950-020-09944-1
Kurrle, D., Igel, H., Ferreira, A., Wassermann, J., & Schreiber, K. (2010). Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophysical Research Letters, 37(L04307), 1–5. https://doi.org/10.1029/2009GL042215
Lin, C.-J., Ku, C.-S., Chi, T.-C., Huang, B.-S., Huang, H.-H., & Liu, C.-C. (2022). Correcting the Background Tilt Signal of the Horizontal Seismometer Using a Rotation Sensor. Seismological Research Letters, 93(3), 1564–1572. https://doi.org/10.1785/0220210185
Lindner, F., Wassermann, J., Schmidt‐Aursch, M. C., Schreiber, K. U., & Igel, H. (2016). Seafloor Ground Rotation Observations: Potential for Improving Signal‐to‐Noise Ratio on Horizontal OBS Components. Seismological Research Letters, 88(1), 32–38. https://doi.org/10.1785/0220160051
McCann, J. J., Winterflood, J., Ju, L., & Zhao, C. (2021). A multi-orientation low-frequency rotational accelerometer. Review of Scientific Instruments, 92(6), 64503. https://doi.org/10.1063/5.0047069
Pancha, A., Webb, T. H., Stedman, G. E., McLeod, D. P., & Schreiber, K. U. (2000). Ring laser detection of rotations from teleseismic waves. Geophysical Research Letters, 27(21), 3553–3556. https://doi.org/10.1029/2000GL011734
Patterson, N. V., Tom. Kelso. (2012). World Urban Areas, LandScan, 1:10 million. North American Cartographic Information Society. https://doi.org/https://geo.nyu.edu/catalog/stanford-yk247bg4748
Perron, V., Hollender, F., Mariscal, A., Theodoulidis, N., Andreou, C., Bard, P., Cornou, C., Cottereau, R., Cushing, E. M., Frau, A., Hok, S., Konidaris, A., Langlaude, P., Laurendeau, A., Savvaidis, A., & Svay, A. (2018). Accelerometer, Velocimeter Dense‐Array, and Rotation Sensor Datasets from the Sinaps@ Postseismic Survey (Cephalonia 2014–2015 Aftershock Sequence). Seismological Research Letters, 89(2A), 678–687. https://doi.org/10.1785/0220170125
Poppeliers, C., & Evans, E. V. (2015). The effects of measurement uncertainties in seismic-wave gradiometry. Bulletin of the Seismological Society of America, 105(6), 3143–3155. https://doi.org/10.1785/0120150043
Ross, M. P., van Dongen, J., Huang, Y., Zhou, H., Chowdhury, Y., Apple, S. K., Mow-Lowry, C. M., Mitchell, A. L., Holland, N. A., Lantz, B., Bonilla, E., Engl, A., Pele, A., Griffith, D., Sanchez, E., Shaw, E. A., Gettings, C., & Gundlach, J. (2023). A vacuum-compatible cylindrical inertial rotation sensor with picoradian sensitivity. Review of Scientific Instruments, 94(9). https://doi.org/10.1063/5.0167283
Ross, M. P., Venkateswara, K., Hagedorn, C. A., Gundlach, J. H., Kissel, J. S., Warner, J., Radkins, H., Shaffer, T. J., Coughlin, M. W., & Bodin, P. (2017). Low-Frequency Tilt Seismology with a Precision Ground-Rotation Sensor. Seismological Research Letters, 89(1), 67–76. https://doi.org/10.1785/0220170148
Ross, Z. E., Hauksson, E., & Ben-Zion, Y. (2017). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3(3), e1601946. https://doi.org/10.1126/sciadv.1601946
Salvermoser, J., Hadziioannou, C., Hable, S., Krischer, L., Chow, B., Ramos, C., Wassermann, J., Schreiber, U., Gebauer, A., & Igel, H. (2017). An Event Database for Rotational Seismology. Seismological Research Letters, 88(3), 935–941. https://doi.org/10.1785/0220160184
Sbaa, S., Hollender, F., Perron, V., Imtiaz, A., Bard, P.-Y., Mariscal, A., Cochard, A., & Dujardin, A. (2017). Analysis of rotation sensor data from the SINAPS@ Kefalonia (Greece) post-seismic experiment—link to surface geology and wavefield characteristics. Earth, Planets and Space, 69(1), 124. https://doi.org/10.1186/s40623-017-0711-6
Schmelzbach, C., Donner, S., Igel, H., Sollberger, D., Taufiqurrahman, T., Bernauer, F., Häusler, M., Van Renterghem, C., Wassermann, J., & Robertsson, J. (2018). Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology. GEOPHYSICS, 83(3), WC53–WC69. https://doi.org/10.1190/geo2017-0492.1
Schreiber, K. U., Hautmann, J. N., Velikoseltsev, A., Wassermann, J., Igel, H., Otero, J., Vernon, F., & Wells, J.-P. R. (2009). Ring Laser Measurements of Ground Rotations for Seismology. Bulletin of the Seismological Society of America, 99(2B), 1190–1198. https://doi.org/10.1785/0120080171
Singh, S., Capdeville, Y., & Igel, H. (2020). Correcting wavefield gradients for the effects of local small-scale heterogeneities. Geophysical Journal International, 220(2), 996–1011. https://doi.org/10.1093/gji/ggz479
Sollberger, D. (2023). solldavid/TwistPy: TwistPy - First release. https://doi.org/10.5281/zenodo.8124030
Sollberger, D., Greenhalgh, S. A., Schmelzbach, C., Van Renterghem, C., & Robertsson, J. O. (2018). 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International, 213(1), 77–97. https://doi.org/10.3390/s20236904
Sollberger, D., Heimann, S., Bernauer, F., Eibl, E. P., Donner, S., Hadziioannou, C., Igel, H., Yuan, S., & Wassermann, J. (2023). TwistPy: An open-source Python toolbox for wavefield inertial sensing techniques. EGU General Assembly Conference Abstracts, EGU-7563. https://doi.org/10.5194/egusphere-egu23-7563
Sollberger, D., Igel, H., Schmelzbach, C., Edme, P., Van Manen, D.-J., Bernauer, F., Yuan, S., Wassermann, J., Schreiber, U., & Robertsson, J. O. A. (2020). Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors, 20(23), 6904. https://doi.org/10.3390/s20236904
Spudich, P., & Fletcher, J. B. (2009). Software for Inference of Dynamic Ground Strains and Rotations and Their Errors from Short Baseline Array Observations of Ground Motions. Bulletin of the Seismological Society of America, 99(2B), 1480–1482. https://doi.org/10.1785/0120080230
Spudich, Paul, & Fletcher, J. B. (2008). Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations. Bulletin of the Seismological Society of America, 98(4), 1898–1914. https://doi.org/10.1785/0120070157
Spudich, Paul, & Fletcher, J. B. (2009). Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions. Bulletin of the Seismological Society of America, 99(2B), 1480–1482. https://doi.org/10.1785/0120080230
Suryanto, W., Igel, H., Wassermann, J., Cochard, A., Schuberth, B., Vollmer, D., Scherbaum, F., Schreiber, U., & Velikoseltsev, A. (2006). First comparison of array-derived rotational ground motions with direct ring laser measurements. Bulletin of the Seismological Society of America, 96(6), 2059–2071. https://doi.org/10.1785/0120060004
Takeo, M. (2009). Rotational Motions Observed during an Earthquake Swarm in April 1998 Offshore Ito, Japan. Bulletin of the Seismological Society of America, 99(2B), 1457–1467. https://doi.org/10.1785/0120080173
Trifunac, M. D. (2009). The role of strong motion rotations in the response of structures near earthquake faults. Soil Dynamics and Earthquake Engineering, 29(2), 382–393. https://doi.org/10.1016/j.soildyn.2008.04.001
UC San Diego. (2014). Piñon Flats Observatory Array. https://doi.org/10.7914/sn/py
van Driel, M., Wassermann, J., Nader, M. F., Schuberth, B. S. A., & Igel, H. (2012). Strain rotation coupling and its implications on the measurement of rotational ground motions. Journal of Seismology, 16(4), 657–668. https://doi.org/10.1007/s10950-012-9296-5
Venkateswara, K., Hagedorn, C. A., Gundlach, J. H., Kissel, J., Warner, J., Radkins, H., Shaffer, T., Lantz, B., Mittleman, R., Matichard, F., & Schofield, R. (2017). Subtracting Tilt from a Horizontal Seismometer Using a Ground-Rotation Sensor. Bulletin of the Seismological Society of America, 709–717. https://doi.org/10.1785/0120160310
Vernon, F. L., Pavlis, G. L., Owens, T. J., McNamara, D. E., & Anderson, P. N. (1998). Near-surface scattering effects observed with a high-frequency phased array at Pinyon Flats, California. Bulletin of the Seismological Society of America, 88(6), 1548–1560. https://doi.org/10.1785/BSSA0880061548
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2
Wassermann, J., Bernauer, F., Shiro, B., Johanson, I., Guattari, F., & Igel, H. (2020). Six-Axis Ground Motion Measurements of Caldera Collapse at Kı̄lauea Volcano, Hawai’i—More Data, More Puzzles? Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019GL085999
Yuan, S., Simonelli, A., Lin, C.-J., Bernauer, F., Donner, S., Braun, T., Wassermann, J., & Igel, H. (2020). Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing. Bulletin of the Seismological Society of America, 110(3), 953–969. https://doi.org/10.1785/0120190277
Zembaty, Z., Kokot, S., & Bobra, P. (2016). Application of rotation rate sensors in measuring beam flexure and structural health monitoring. Seismic Behaviour and Design of Irregular and Complex Civil Structures II, 65–76. https://doi.org/10.1007/978-3-319-14246-3_6
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andreas Brotzer, Heiner Igel, Felix Bernauer, Joachim Wassermann, Robert Mellors, Frank Vernon

This work is licensed under a Creative Commons Attribution 4.0 International License.