On single-station, six degree-of-freedom observations of local to regional seismicity at the Piñon Flat Observatory in Southern California

Authors

  • Andreas Brotzer Ludwig-Maximilians University Munich
  • Heiner Igel Ludwig-Maximilians Universtität München (LMU)
  • Felix Bernauer Ludwig-Maximilians Universtität München (LMU)
  • Joachim Wassermann Ludwig-Maximilians Universtität München (LMU)
  • Robert Mellors Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, San Diego, USA
  • Frank Vernon Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, San Diego, USA

DOI:

https://doi.org/10.26443/seismica.v4i1.1416

Keywords:

Pinon Flat Observatory, rotational seismology, seismicity california, six degree of freedom, 6DoF, rotational ground motion

Abstract

In September 2022, a portable, three-component rotational rate sensor, namely a blueSeis-3A gyroscope, has been deployed at the underground vault of the Pinon Flat Observatory (PFO) in southern California. A three-component, broadband seismometer is co-located, jointly forming a six degree-of-freedom (DoF) station for long-term observations of local and regional seismicity and multi-component wavefield studies. The seismic recordings are available online via IRIS FDSN services as PY.BSPF (BlueSeis at Pinon Flat).  The instrumentation at PFO additionally provides high-quality strain observations, allowing now to study translation, rotations and strain of the seismic wavefield in a low noise and high seismicity area (e.g. San Andreas fault zone). The seismic array at PFO is used to compute array derived rotations and validate the direct observations of rotational ground motions. We show results of 6-DoF processing applied to a local Mw 4.1 and a regional Mw 6.2 event to obtain backazimuth estimates, which we validate with array beamforming, and estimates of local seismic phase velocities. For observed events between October 2022 and October 2023, we detect more than 400 events of which 118 are triggered on all six components. Peak rotation rate amplitudes are used to derive empirical peak amplitude relations for vertical and horizontal rotation rates to provide valuable insights towards resolvability for comparable 6~DoF campaigns. We find the dominating limitations for rotational motion observations currently to be set by the self-noise level of the blueSeis-3A rotation sensor and encourage further instrumental development.

References

Abreu, R., Durand, S., Rost, S., & Thomas, C. (2023). Deep Earth rotational seismology. Geophysical Journal International, 234(3), 2365–2374. https://doi.org/10.1093/gji/ggad245

Agnew, D. C., & Wyatt, F. K. (2003). Long-Base Laser Strainmeters: A Review. https://escholarship.org/uc/item/21z72167

Aki, K., & Richards, P. G. (2002). Quantitative Seismology, 2nd Ed.

Belfi, J., Beverini, N., Bosi, F., Carelli, G., Cuccato, D., De Luca, G., Di Virgilio, A., Gebauer, A., Maccioni, E., Ortolan, A., Porzio, A., Saccorotti, G., Simonelli, A., & Terreni, G. (2017). Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso. Review of Scientific Instruments, 88(3), 34502. https://doi.org/10.1063/1.4977051

Bernauer, F., Behnen, K., Wassermann, J., Egdorf, S., Igel, H., Donner, S., Stammler, K., Hoffmann, M., Edme, P., Sollberger, D., Schmelzbach, C., Robertsson, J., Paitz, P., Igel, J., Smolinski, K., Fichtner, A., Rossi, Y., Izgi, G., Vollmer, D., … Brokesova, J. (2021). Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources. Sensors, 21(1), 264. https://doi.org/10.3390/s21010264

Bernauer, F., Wassermann, J., Guattari, F., Frenois, A., Bigueur, A., Gaillot, A., de Toldi, E., Ponceau, D., Schreiber, U., & Igel, H. (2018). BlueSeis3A: Full characterization of a 3C broadband rotational seismometer. Seismological Research Letters, 89(2A), 620–629. https://doi.org/10.1785/0220170143

Bernauer, F., Wassermann, J., & Igel, H. (2012). Rotational sensors—A comparison of different sensor types. Journal of Seismology, 16, 595–602. https://doi.org/10.1007/s10950-012-9298-3

Bernauer, F., Wassermann, J., & Igel, H. (2020). Dynamic tilt correction using direct rotational motion measurements. Seismological Research Letters, 91(5), 2872–2880. https://doi.org/10.1785/0220200132

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bońkowski, P. A., Bobra, P., Zembaty, Z., & Jędraszak, B. (2023). Experimental Analysis of Stiffness Identification of Damaged Reinforced Concrete Beams with Directly Measured Rotational Modes (preprint). https://doi.org/10.2139/ssrn.4552257

Brotzer, A., Igel, H., Stutzmann, E., Montagner, J., Bernauer, F., Wassermann, J., Widmer‐Schnidrig, R., Lin, C., Kiselev, S., Vernon, F., & Schreiber, K. U. (2023). Characterizing the Background Noise Level of Rotational Ground Motions on Earth. Seismological Research Letters. https://doi.org/10.1785/0220230202

Chen, C., Wang, Y., Sun, L., Lin, C., Wei, Y., Liao, C., Lin, B., & Qin, L. (2023). Six‐Component Earthquake Synchronous Observations Across Taiwan Strait: Phase Velocity and Source Location. Earth and Space Science, 10(12). https://doi.org/10.1029/2023ea003040

Chow, B., Wassermann, J., Schuberth, B. S. A., Hadziioannou, C., Donner, S., & Igel, H. (2019). Love wave amplitude decay from rotational ground motions. Geophysical Journal International, 218(2), 1336–1347. https://doi.org/10.1093/gji/ggz213

Cochard, A., Igel, H., Schuberth, B., Suryanto, W., Velikoseltsev, A., Schreiber, U., Wassermann, J., Scherbaum, F., & Vollmer, D. (2006). Rotational Motions in Seismology: Theory, Observation, Simulation. In R. Teisseyre, E. Majewski, & M. Takeo (Eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects (pp. 391–411). Springer-Verlag. https://doi.org/10.1007/3-540-31337-0_30

Donner, S, Mustać, M., Hejrani, B., Tkalčić, H., & Igel, H. (2020). Seismic moment tensors from synthetic rotational and translational ground motion: Green’s functions in 1-D versus 3-D. Geophysical Journal International, 223(1), 161–179. https://doi.org/10.1093/gji/ggaa305

Donner, Stefanie. (2021). Rotational ground motion measurements for regional seismic moment tensors: A review. In Advances in Geophysics (pp. 141–186). Elsevier. https://doi.org/10.1016/bs.agph.2021.06.002

Donner, Stefanie, Igel, H., Hadziioannou, C., & the Romy group. (2018). Retrieval of the Seismic Moment Tensor from Joint Measurements of Translational and Rotational Ground Motions: Sparse Networks and Single Stations. In Moment Tensor Solutions (pp. 263–280). Springer International Publishing. https://doi.org/10.1007/978-3-319-77359-9_12

Donner, Stefanie, Lin, C., Hadziioannou, C., Gebauer, A., Vernon, F., Agnew, D. C., Igel, H., Schreiber, U., & Wassermann, J. (2017). Comparing Direct Observation of Strain, Rotation, and Displacement with Array Estimates at Piñon Flat Observatory, California. Seismological Research Letters, 88(4), 1107–1116. https://doi.org/10.1785/0220160216

Donner, Steffanie, Bernauer, M., & Igel, H. (2016). Inversion for seismic moment tensors combining translational and rotational ground motions. Geophysical Journal International, 207, 562–570. https://doi.org/10.1093/gji/ggw298

Eibl, E. P., Rosskopf, M., Sciotto, M., Currenti, G., Di Grazia, G., Jousset, P., Krüger, F., & Weber, M. (2022). Performance of a rotational sensor to decipher volcano seismic signals on Etna, Italy. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023617. https://doi.org/10.1029/2021JB023617

Fletcher, J. B., Fumal, T., Liu, H.-P., & Carroll, L. C. (1990). Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data. Bulletin of the Seismological Society of America, 80(4), 807–831. https://doi.org/10.1785/BSSA0800040807

Guéguen, P., & Astorga, A. (2021). The Torsional Response of Civil Engineering Structures during Earthquake from an Observational Point of View. Sensors, 21(2), 342. https://doi.org/10.3390/s21020342

Guéguen, P., Guattari, F., Aubert, C., & Laudat, T. (2020). Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors, 21(1), 142. https://doi.org/10.3390/s21010142

Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J., & Igel, H. (2012). Examining ambient noise using colocated measurements of rotational and translational motion. Journal of Seismology, 16(4), 787–796. https://doi.org/10.1007/s10950-012-9288-5

Ichinose, G. A., Ford, S. R., & Mellors, R. J. (2021). Regional Moment Tensor Inversion Using Rotational Observations. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020827. https://doi.org/10.1029/2020JB020827

Igel, H., Bernauer, M., Wassermann, J., & Schreiber, K. U. (2014). Seismology, Rotational, Complexity. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 1–26). Springer. https://doi.org/10.1007/978-3-642-27737-5_608-1

Igel, H., Cochard, A., Wassermann, J., Flaws, A., Schreiber, U., Velikoseltsev, A., & Pham Dinh, N. (2007). Broad-band observations of earthquake-induced rotational ground motions. Geophysical Journal International, 168(1), 182–196. https://doi.org/10.1111/j.1365-246X.2006.03146.x

Igel, H., Schreiber, K. U., Gebauer, A., Bernauer, F., Egdorf, S., Simonelli, A., Lin, C.-J., Wassermann, J., Donner, S., Hadziioannou, C., Yuan, S., Brotzer, A., Kodet, J., Tanimoto, T., Hugentobler, U., & Wells, J.-P. R. (2021). ROMY: a multicomponent ring laser for geodesy and geophysics. Geophysical Journal International, 225(1), 684–698. https://doi.org/10.1093/gji/ggaa614

Igel, H., Schreiber, U., Flaws, A., Schuberth, B., Velikoseltsev, A., & Cochard, A. (2005). Rotational motions induced by the M8. 1 Tokachi-oki earthquake, September 25, 2003. Geophysical Research Letters, 32(8). https://doi.org/10.1029/2004GL022336

Keil, S., Wassermann, J., & Igel, H. (2021). Single-station seismic microzonation using 6C measurements. Journal of Seismology, 25(1), 103–114. https://doi.org/10.1007/s10950-020-09944-1

Kurrle, D., Igel, H., Ferreira, A., Wassermann, J., & Schreiber, K. (2010). Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophysical Research Letters, 37(L04307), 1–5. https://doi.org/10.1029/2009GL042215

Lin, C.-J., Ku, C.-S., Chi, T.-C., Huang, B.-S., Huang, H.-H., & Liu, C.-C. (2022). Correcting the Background Tilt Signal of the Horizontal Seismometer Using a Rotation Sensor. Seismological Research Letters, 93(3), 1564–1572. https://doi.org/10.1785/0220210185

Lindner, F., Wassermann, J., Schmidt‐Aursch, M. C., Schreiber, K. U., & Igel, H. (2016). Seafloor Ground Rotation Observations: Potential for Improving Signal‐to‐Noise Ratio on Horizontal OBS Components. Seismological Research Letters, 88(1), 32–38. https://doi.org/10.1785/0220160051

McCann, J. J., Winterflood, J., Ju, L., & Zhao, C. (2021). A multi-orientation low-frequency rotational accelerometer. Review of Scientific Instruments, 92(6), 64503. https://doi.org/10.1063/5.0047069

Pancha, A., Webb, T. H., Stedman, G. E., McLeod, D. P., & Schreiber, K. U. (2000). Ring laser detection of rotations from teleseismic waves. Geophysical Research Letters, 27(21), 3553–3556. https://doi.org/10.1029/2000GL011734

Patterson, N. V., Tom. Kelso. (2012). World Urban Areas, LandScan, 1:10 million. North American Cartographic Information Society. https://doi.org/https://geo.nyu.edu/catalog/stanford-yk247bg4748

Perron, V., Hollender, F., Mariscal, A., Theodoulidis, N., Andreou, C., Bard, P., Cornou, C., Cottereau, R., Cushing, E. M., Frau, A., Hok, S., Konidaris, A., Langlaude, P., Laurendeau, A., Savvaidis, A., & Svay, A. (2018). Accelerometer, Velocimeter Dense‐Array, and Rotation Sensor Datasets from the Sinaps@ Postseismic Survey (Cephalonia 2014–2015 Aftershock Sequence). Seismological Research Letters, 89(2A), 678–687. https://doi.org/10.1785/0220170125

Poppeliers, C., & Evans, E. V. (2015). The effects of measurement uncertainties in seismic-wave gradiometry. Bulletin of the Seismological Society of America, 105(6), 3143–3155. https://doi.org/10.1785/0120150043

Ross, M. P., van Dongen, J., Huang, Y., Zhou, H., Chowdhury, Y., Apple, S. K., Mow-Lowry, C. M., Mitchell, A. L., Holland, N. A., Lantz, B., Bonilla, E., Engl, A., Pele, A., Griffith, D., Sanchez, E., Shaw, E. A., Gettings, C., & Gundlach, J. (2023). A vacuum-compatible cylindrical inertial rotation sensor with picoradian sensitivity. Review of Scientific Instruments, 94(9). https://doi.org/10.1063/5.0167283

Ross, M. P., Venkateswara, K., Hagedorn, C. A., Gundlach, J. H., Kissel, J. S., Warner, J., Radkins, H., Shaffer, T. J., Coughlin, M. W., & Bodin, P. (2017). Low-Frequency Tilt Seismology with a Precision Ground-Rotation Sensor. Seismological Research Letters, 89(1), 67–76. https://doi.org/10.1785/0220170148

Ross, Z. E., Hauksson, E., & Ben-Zion, Y. (2017). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3(3), e1601946. https://doi.org/10.1126/sciadv.1601946

Salvermoser, J., Hadziioannou, C., Hable, S., Krischer, L., Chow, B., Ramos, C., Wassermann, J., Schreiber, U., Gebauer, A., & Igel, H. (2017). An Event Database for Rotational Seismology. Seismological Research Letters, 88(3), 935–941. https://doi.org/10.1785/0220160184

Sbaa, S., Hollender, F., Perron, V., Imtiaz, A., Bard, P.-Y., Mariscal, A., Cochard, A., & Dujardin, A. (2017). Analysis of rotation sensor data from the SINAPS@ Kefalonia (Greece) post-seismic experiment—link to surface geology and wavefield characteristics. Earth, Planets and Space, 69(1), 124. https://doi.org/10.1186/s40623-017-0711-6

Schmelzbach, C., Donner, S., Igel, H., Sollberger, D., Taufiqurrahman, T., Bernauer, F., Häusler, M., Van Renterghem, C., Wassermann, J., & Robertsson, J. (2018). Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology. GEOPHYSICS, 83(3), WC53–WC69. https://doi.org/10.1190/geo2017-0492.1

Schreiber, K. U., Hautmann, J. N., Velikoseltsev, A., Wassermann, J., Igel, H., Otero, J., Vernon, F., & Wells, J.-P. R. (2009). Ring Laser Measurements of Ground Rotations for Seismology. Bulletin of the Seismological Society of America, 99(2B), 1190–1198. https://doi.org/10.1785/0120080171

Singh, S., Capdeville, Y., & Igel, H. (2020). Correcting wavefield gradients for the effects of local small-scale heterogeneities. Geophysical Journal International, 220(2), 996–1011. https://doi.org/10.1093/gji/ggz479

Sollberger, D. (2023). solldavid/TwistPy: TwistPy - First release. https://doi.org/10.5281/zenodo.8124030

Sollberger, D., Greenhalgh, S. A., Schmelzbach, C., Van Renterghem, C., & Robertsson, J. O. (2018). 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International, 213(1), 77–97. https://doi.org/10.3390/s20236904

Sollberger, D., Heimann, S., Bernauer, F., Eibl, E. P., Donner, S., Hadziioannou, C., Igel, H., Yuan, S., & Wassermann, J. (2023). TwistPy: An open-source Python toolbox for wavefield inertial sensing techniques. EGU General Assembly Conference Abstracts, EGU-7563. https://doi.org/10.5194/egusphere-egu23-7563

Sollberger, D., Igel, H., Schmelzbach, C., Edme, P., Van Manen, D.-J., Bernauer, F., Yuan, S., Wassermann, J., Schreiber, U., & Robertsson, J. O. A. (2020). Seismological Processing of Six Degree-of-Freedom Ground-Motion Data. Sensors, 20(23), 6904. https://doi.org/10.3390/s20236904

Spudich, P., & Fletcher, J. B. (2009). Software for Inference of Dynamic Ground Strains and Rotations and Their Errors from Short Baseline Array Observations of Ground Motions. Bulletin of the Seismological Society of America, 99(2B), 1480–1482. https://doi.org/10.1785/0120080230

Spudich, Paul, & Fletcher, J. B. (2008). Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations. Bulletin of the Seismological Society of America, 98(4), 1898–1914. https://doi.org/10.1785/0120070157

Spudich, Paul, & Fletcher, J. B. (2009). Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions. Bulletin of the Seismological Society of America, 99(2B), 1480–1482. https://doi.org/10.1785/0120080230

Suryanto, W., Igel, H., Wassermann, J., Cochard, A., Schuberth, B., Vollmer, D., Scherbaum, F., Schreiber, U., & Velikoseltsev, A. (2006). First comparison of array-derived rotational ground motions with direct ring laser measurements. Bulletin of the Seismological Society of America, 96(6), 2059–2071. https://doi.org/10.1785/0120060004

Takeo, M. (2009). Rotational Motions Observed during an Earthquake Swarm in April 1998 Offshore Ito, Japan. Bulletin of the Seismological Society of America, 99(2B), 1457–1467. https://doi.org/10.1785/0120080173

Trifunac, M. D. (2009). The role of strong motion rotations in the response of structures near earthquake faults. Soil Dynamics and Earthquake Engineering, 29(2), 382–393. https://doi.org/10.1016/j.soildyn.2008.04.001

UC San Diego. (2014). Piñon Flats Observatory Array. https://doi.org/10.7914/sn/py

van Driel, M., Wassermann, J., Nader, M. F., Schuberth, B. S. A., & Igel, H. (2012). Strain rotation coupling and its implications on the measurement of rotational ground motions. Journal of Seismology, 16(4), 657–668. https://doi.org/10.1007/s10950-012-9296-5

Venkateswara, K., Hagedorn, C. A., Gundlach, J. H., Kissel, J., Warner, J., Radkins, H., Shaffer, T., Lantz, B., Mittleman, R., Matichard, F., & Schofield, R. (2017). Subtracting Tilt from a Horizontal Seismometer Using a Ground-Rotation Sensor. Bulletin of the Seismological Society of America, 709–717. https://doi.org/10.1785/0120160310

Vernon, F. L., Pavlis, G. L., Owens, T. J., McNamara, D. E., & Anderson, P. N. (1998). Near-surface scattering effects observed with a high-frequency phased array at Pinyon Flats, California. Bulletin of the Seismological Society of America, 88(6), 1548–1560. https://doi.org/10.1785/BSSA0880061548

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wassermann, J., Bernauer, F., Shiro, B., Johanson, I., Guattari, F., & Igel, H. (2020). Six-Axis Ground Motion Measurements of Caldera Collapse at Kı̄lauea Volcano, Hawai’i—More Data, More Puzzles? Geophysical Research Letters, 47(5). https://doi.org/10.1029/2019GL085999

Yuan, S., Simonelli, A., Lin, C.-J., Bernauer, F., Donner, S., Braun, T., Wassermann, J., & Igel, H. (2020). Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing. Bulletin of the Seismological Society of America, 110(3), 953–969. https://doi.org/10.1785/0120190277

Zembaty, Z., Kokot, S., & Bobra, P. (2016). Application of rotation rate sensors in measuring beam flexure and structural health monitoring. Seismic Behaviour and Design of Irregular and Complex Civil Structures II, 65–76. https://doi.org/10.1007/978-3-319-14246-3_6

Downloads

Published

2025-05-06

How to Cite

Brotzer, A., Igel, H., Bernauer, F., Wassermann, J., Mellors, R., & Vernon, F. (2025). On single-station, six degree-of-freedom observations of local to regional seismicity at the Piñon Flat Observatory in Southern California. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1416

Issue

Section

Articles