Effects of Energy Dissipation on Precursory Seismicity During Earthquake Preparation
DOI:
https://doi.org/10.26443/seismica.v3i2.1417Abstract
The b-value of the magnitude distribution of natural earthquakes appears to be closely influenced by the faulting style. We investigate this in the laboratory for the first time by analyzing the moment tensor solutions of acoustic emissions detected during a triaxial compression test on Berea sandstone. We observe systematic patterns showing that faulting style influences the b-value and differential stress. Similar trends are observed in a complementary physics-based numerical model that captures mechanical energy dissipation. Both the differential stress and dissipation are found to be inversely correlated to the b-value. The results indicate that, at late stages of the test, the dissipation increases and is linked to a change in AE faulting style and drop in b-value. The patterns observed in the laboratory Frohlich diagrams could be explained by the integrated earthquake model: damaged rock regions form as microcracks coalesce, leading to strain localization and runaway deformation. The modeling results also align with the micromechanics responsible for dissipation at various stages of the experiment and agrees with moment tensor solutions and petrographic investigations. The integration of physics-based models that can capture dissipative processes of the earthquake cycle could assist researchers in constraining seismic hazard in both natural and anthropogenic settings.
References
Aki, K. (1965). Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo, 43, 237–239. https://cir.nii.ac.jp/crid/1573387450038851840
Aki, K., & Richards, P. (2002). Quantitative seismology (2nd ed.). University Science Books.
Amitrano, D. (2003). Brittle‐ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research: Solid Earth, 108(B1). https://doi.org/10.1029/2001jb000680
Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
Baud, P., Klein, E., & Wong, T. (2004). Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. Journal of Structural Geology, 26(4), 603–624. https://doi.org/10.1016/j.jsg.2003.09.002
Ben-Zion, Y., & Ampuero, J.-P. (2009). Seismic radiation from regions sustaining material damage. Geophysical Journal International, 178(3), 1351–1356. https://doi.org/10.1111/j.1365-246x.2009.04285.x
Ben-Zion, Y., & Lyakhovsky, V. (2019). Representation of seismic sources sustaining changes of elastic moduli. Geophysical Journal International, 217(1), 135–139. https://doi.org/10.1093/gji/ggz018
Ben-Zion, Y., & Zaliapin, I. (2020). Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 223(1), 561–583. https://doi.org/10.1093/gji/ggaa315
Bernabe, Y., & Brace, W. F. (1990). Deformation and fracture of Berea sandstone. In The Brittle‐Ductile Transition in Rocks (pp. 91–101). American Geophysical Union. https://doi.org/10.1029/gm056p0091
Bianchi, P. (2024). Dataset for the article “Effects of Energy Dissipation on Precursory Seismicity During Earthquake Preparation.” ETH Zurich. https://doi.org/10.3929/ETHZ-B-000699560
Bianchi, P., Selvadurai, P. A., Dal Zilio, L., Salazar Vásquez, A., Madonna, C., Gerya, T., & Wiemer, S. (2024). Pre-failure strain localization in siliclastic rocks: A comparative study of laboratory and numerical approaches. Rock Mechanics and Rock Engineering, 57(8), 5371–5395. https://doi.org/10.1007/s00603-024-04025-y
Bolton, D. C., Shreedharan, S., Rivière, J., & Marone, C. (2021). Frequency‐magnitude statistics of laboratory foreshocks vary with shear Velocity, fault slip rate, and shear stress. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022175
Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended nucleation of the 1999 Mw 7.6 Izmit Earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341
Brantut, N. (2018). Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction. Geophysical Journal International, 213(3), 2177–2192. https://doi.org/10.1093/gji/ggy068
Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science, 321(5895), 1478–1481. https://doi.org/10.1126/science.1160943
Brodsky, E. E., & Lay, T. (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344(6185), 700–702. https://doi.org/10.1126/science.1255202
Bürgmann, R. (2014). Warning signs of the Iquique earthquake. Nature, 512(7514), 258–259. https://doi.org/10.1038/nature13655
Curran, J. H., & Carroll, M. M. (1979). Shear stress enhancement of void compaction. Journal of Geophysical Research: Solid Earth, 84(B3), 1105–1112. https://doi.org/10.1029/jb084ib03p01105
Dal Zilio, L., Hegyi, B., Behr, W., & Gerya, T. (2022). Hydro-mechanical earthquake cycles in a poro-visco-elasto-plastic fluid-bearing fault structure. Tectonophysics, 838, 229516. https://doi.org/10.1016/j.tecto.2022.229516
Diehl, T., Kraft, T., Kissling, E., & Wiemer, S. (2017). The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity. Journal of Geophysical Research: Solid Earth, 122(9), 7272–7290. https://doi.org/10.1002/2017jb014473
Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1995). Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. Journal of Geophysical Research: Solid Earth, 100(B6), 9865–9880. https://doi.org/10.1029/95jb00871
Dresen, G., Kwiatek, G., Goebel, T., & Ben-Zion, Y. (2020). Seismic and Aseismic Preparatory Processes Before Large Stick–Slip Failure. Pure and Applied Geophysics, 177(12), 5741–5760. https://doi.org/10.1007/s00024-020-02605-x
Fakhimi, A., Riedel, J. J., & Labuz, J. F. (2006). Shear banding in sandstone: Physical and numerical studies. International Journal of Geomechanics, 6(3), 185–194. https://doi.org/10.1061/(asce)1532-3641(2006)6:3(185)
Fortin, J., Schubnel, A., & Guéguen, Y. (2005). Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 873–889. https://doi.org/10.1016/j.ijrmms.2005.05.002
Fortin, Jérôme, Stanchits, S., Dresen, G., & Guéguen, Y. (2006). Acoustic emission and velocities associated with the formation of compaction bands in sandstone. Journal of Geophysical Research: Solid Earth, 111(B10). https://doi.org/10.1029/2005jb003854
Frohlich, C. (1994). Earthquakes with non—double-couple mechanisms. Science, 264(5160), 804–809. https://doi.org/10.1126/science.264.5160.804
Frohlich, C. (2001). Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophysical Journal International, 144(2), 300–308. https://doi.org/10.1046/j.1365-246x.2001.00341.x
Frohlich, C., & Apperson, K. D. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11(2), 279–296. https://doi.org/10.1029/91tc02888
Gerya, T. (2019). Introduction to numerical geodynamic Modelling. Cambridge University Press. https://doi.org/10.1017/9781316534243
Glaser, S. D., Weiss, G. G., & Johnson, L. R. (1998). Body waves recorded inside an elastic half-space by an embedded, wideband velocity sensor. The Journal of the Acoustical Society of America, 104(3), 1404–1412. https://doi.org/10.1121/1.424350
Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick‐slip experiments. Geophysical Research Letters, 40(10), 2049–2054. https://doi.org/10.1002/grl.50507
Goebel, Thomas H. W., Schuster, V., Kwiatek, G., Pandey, K., & Dresen, G. (2024). A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49959-7
Griffiths, L., Dautriat, J., Vera Rodriguez, I., Iranpour, K., Sauvin, G., Park, J., Sarout, J., Soldal, M., Grande, L., Oye, V., Dewhurst, D. N., Haque Mondol, N., & Choi, J. C. (2019). Inferring microseismic source mechanisms and in situ stresses during triaxial deformation of a North-Sea-analogue sandstone. Advances in Geosciences, 49, 85–93. https://doi.org/10.5194/adgeo-49-85-2019
Gulia, L. (2023). Time–space evolution of the Groningen Gas Field in terms of b‐value: Insights and implications for seismic hazard. Seismological Research Letters. https://doi.org/10.1785/0220220396
Gulia, L., Tormann, T., Wiemer, S., Herrmann, M., & Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophysical Research Letters, 43(3), 1100–1108. https://doi.org/10.1002/2015gl066686
Gulia, L., & Wiemer, S. (2010). The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophysical Research Letters, 37(10). https://doi.org/10.1029/2010gl043066
Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199. https://doi.org/10.1038/s41586-019-1606-4
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.
Hamiel, Y., Lyakhovsky, V., & Agnon, A. (2005). Poroelastic damage rheology: Dilation, compaction, and failure of rocks. Geochemistry, Geophysics, Geosystems, 6(1). https://doi.org/10.1029/2004gc000813
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/jb084ib05p02348
Heap, M. J., Brantut, N., Baud, P., & Meredith, P. G. (2015). Time‐dependent compaction band formation in sandstone. Journal of Geophysical Research: Solid Earth, 120(7), 4808–4830. https://doi.org/10.1002/2015jb012022
Hudson, J. A., Pearce, R. G., & Rogers, R. M. (1989). Source type plot for inversion of the moment tensor. Journal of Geophysical Research: Solid Earth, 94(B1), 765–774. https://doi.org/10.1029/jb094ib01p00765
Julian, B. R., Ross, A., Foulger, G. R., & Evans, J. R. (1996). Three‐dimensional seismic image of a geothermal reservoir: The Geysers, California. Geophysical Research Letters, 23(6), 685–688. https://doi.org/10.1029/95gl03321
Kagan, Y. Y. (2004). Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94(4), 1207–1228. https://doi.org/10.1785/012003098
Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w
Kato, A., & Nakagawa, S. (2014). Multiple slow‐slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), 5420–5427. https://doi.org/10.1002/2014gl061138
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141
Katz, O., & Reches, Z. (2004). Microfracturing, damage, and failure of brittle granites. Journal of Geophysical Research: Solid Earth, 109(B1). https://doi.org/10.1029/2002jb001961
Knopoff, L., Kagan, Y. Y., & Knopoff, R. (1982). b Values for foreshocks and aftershocks in real and simulated earthquake sequences. Bulletin of the Seismological Society of America, 72(5), 1663–1676. https://doi.org/10.1785/bssa0720051663
Knopoff, L., & Randall, M. J. (1970). The compensated linear-vector dipole: A possible mechanism for deep earthquakes. Journal of Geophysical Research, 75(26), 4957–4963. https://doi.org/10.1029/jb075i026p04957
Kranz, R. L. (1983). Microcracks in rocks: A review. Tectonophysics, 100(1–3), 449–480. https://doi.org/10.1016/0040-1951(83)90198-1
Kwiatek, G., Charalampidou, E.-M., Dresen, G., & Stanchits, S. (2014). An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle. International Journal of Rock Mechanics and Mining Sciences, 65, 153–161. https://doi.org/10.1016/j.ijrmms.2013.11.005
Kwiatek, G., Martínez‐Garzón, P., & Bohnhoff, M. (2016). HybridMT: A MATLAB/Shell environment package for Seismic Moment Tensor Inversion and Refinement. Seismological Research Letters, 87(4), 964–976. https://doi.org/10.1785/0220150251
Lei, X., & Ma, S. (2014). Laboratory acoustic emission study for earthquake generation process. Earthquake Science, 27(6), 627–646. https://doi.org/10.1007/s11589-014-0103-y
Lei, X., Nishizawa, O., Kusunose, K., & Satoh, T. (1992). Fractal structure of the hypocenter Distributions and Focal Mechanism Solutions of Acoustic Emission in Two Granites of Different Grain Sizes. Journal of Physics of the Earth, 40(6), 617–634. https://doi.org/10.4294/jpe1952.40.617
Lockner, D. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 883–899. https://doi.org/10.1016/0148-9062(93)90041-b
Martínez‐Garzón, P., Kwiatek, G., Bohnhoff, M., & Dresen, G. (2017). Volumetric components in the earthquake source related to fluid injection and stress state. Geophysical Research Letters, 44(2), 800–809. https://doi.org/10.1002/2016gl071963
Martínez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01285-y
McLaskey, G. C., & Glaser, S. D. (2012). Acoustic emission sensor calibration for absolute source measurements. Journal of Nondestructive Evaluation, 31(2), 157–168. https://doi.org/10.1007/s10921-012-0131-2
McLaskey, G. C., & Lockner, D. A. (2018). Shear failure of a granite pin traversing a sawcut fault. International Journal of Rock Mechanics and Mining Sciences, 110, 97–110. https://doi.org/10.1016/j.ijrmms.2018.07.001
Menéndez, B., Zhu, W., & Wong, T.-F. (1996). Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. Journal of Structural Geology, 18(1), 1–16. https://doi.org/10.1016/0191-8141(95)00076-p
Meredith, P. G., Main, I. G., & Jones, C. (1990). Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophysics, 175(1–3), 249–268. https://doi.org/10.1016/0040-1951(90)90141-t
Nanjo, K. Z., Hirata, N., Obara, K., & Kasahara, K. (2012). Decade‐scale decrease in b value prior to the M9‐class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Research Letters, 39(20). https://doi.org/10.1029/2012gl052997
Nishizawa, O., Onai, K., & Kusunose, K. (1984). Hypocenter distribution and focal mechanism of AE events during two stress stage creep in Yugawara andesite. Pure and Applied Geophysics, 122(1), 36–52. https://doi.org/10.1007/bf00879648
Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science, 353(6296), 253–257. https://doi.org/10.1126/science.aaf1512
Pearson, K. (1895). Note on Regression and Inheritance in the Case of Two Parents. Proceedings of the Royal Society of London Series I, 58, 240–242.
Petrini, C., Gerya, T., Yarushina, V., van Dinther, Y., Connolly, J., & Madonna, C. (2020). Seismo-hydro-mechanical modelling of the seismic cycle: Methodology and implications for subduction zone seismicity. Tectonophysics, 791, 228504. https://doi.org/10.1016/j.tecto.2020.228504
Petruccelli, A., Gasperini, P., Tormann, T., Schorlemmer, D., Rinaldi, A. P., Vannucci, G., & Wiemer, S. (2019). Simultaneous dependence of the earthquake‐size distribution on faulting style and depth. Geophysical Research Letters, 46(20), 11044–11053. https://doi.org/10.1029/2019gl083997
Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., & Vannucci, G. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. https://doi.org/10.1016/j.epsl.2019.115791
Petruccelli, Antonio. (2018). Universality of GR b-value gradients for different tectonic regimes and inferences on a differential stress dependence [Phdthesis, alma]. http://amsdottorato.unibo.it/8466/
Petruccelli, Antonio, Vannucci, G., Lolli, B., & Gasperini, P. (2018). Harmonic fluctuation of the slope of the frequency–magnitude distribution (b‐Value) as a function of the angle of rake. Bulletin of the Seismological Society of America, 108(4), 1864–1876. https://doi.org/10.1785/0120170328
Proctor, T. M. (1982). An improved piezoelectric acoustic emission transducer. The Journal of the Acoustical Society of America, 71(5), 1163–1168. https://doi.org/10.1121/1.387763
Riedel, J. J., & Labuz, J. F. (2006). Propagation of a shear band in sandstone. International Journal for Numerical and Analytical Methods in Geomechanics, 31(11), 1281–1299. https://doi.org/10.1002/nag.592
Salazar Vásquez, A., Selvadurai, P. A., Bianchi, P., Madonna, C., Germanovich, L. N., Puzrin, A. M., Wiemer, S., Giardini, D., & Rabaiotti, C. (2024). Aseismic strain localization prior to failure and associated seismicity in crystalline rock. Scientific Reports. https://doi.org/10.1038/s41598-024-75942-9
Savage, H. M., Keranen, K. M., P. Schaff, D., & Dieck, C. (2017). Possible precursory signals in damage zone foreshocks. Geophysical Research Letters, 44(11), 5411–5417. https://doi.org/10.1002/2017gl073226
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ane.0000000000002864
Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73(4), 1417–1432. https://doi.org/10.1029/jb073i004p01417
Scholz, Christopher H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. https://doi.org/10.1002/2014gl062863
Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539–542. https://doi.org/10.1038/nature04094
Selvadurai, P. A., Wu, R., Bianchi, P., Niu, Z., Michail, S., Madonna, C., & Wiemer, S. (2022). A methodology for reconstructing source properties of a conical piezoelectric actuator using array-based methods. Journal of Nondestructive Evaluation, 41(1). https://doi.org/10.1007/s10921-022-00853-6
Shalev, E., Lyakhovsky, V., Ougier-Simonin, A., Hamiel, Y., & Zhu, W. (2014). Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions. Geophysical Journal International, 197(2), 920–925. https://doi.org/10.1093/gji/ggu052
Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677–1687. https://doi.org/10.1785/bssa0720051677
Silver, P. G., & Jordan, T. H. (1982). Optimal estimation of scalar seismic moment. Geophysical Journal of the Royal Astronomical Society, 70(3), 755–787. https://doi.org/10.1111/j.1365-246x.1982.tb05982.x
Smalley, Jr., R. F., Chatelain, J.-L., Turcotte, D. L., & Prévot, R. (1987). A fractal approach to the clustering of earthquakes: Applications to the seismicity of the New Hebrides. Bulletin of the Seismological Society of America, 77(4), 1368–1381. https://doi.org/10.1785/BSSA0770041368
Sondergeld, C. H., & Estey, L. H. (1982). Source mechanisms and microfracturing during uniaxial cycling of rock. Pure and Applied Geophysics, 120(1), 151–166. https://doi.org/10.1007/bf00879434
Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency‐size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709–714. https://doi.org/10.1029/2012gl054198
Sreejith, K. M., Sunil, P. S., Agrawal, R., Saji, A. P., Rajawat, A. S., & Ramesh, D. S. (2018). Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-35025-y
Stanchits, S., & Dresen, G. (2010). Advanced acoustic emission analysis of brittle and porous rock fracturing. EPJ Web of Conferences, 6, 22010. https://doi.org/10.1051/epjconf/20100622010
Stevens, V. L., & Avouac, J.-P. (2021). On the relationship between strain rate and seismicity in the India–Asia collision zone: Implications for probabilistic seismic hazard. Geophysical Journal International, 226(1), 220–245. https://doi.org/10.1093/gji/ggab098
Stierle, E., Bohnhoff, M., & Vavryčuk, V. (2014). Resolution of non-double-couple components in the seismic moment tensor using regional networks—II: Application to aftershocks of the 1999 Mw 7.4 Izmit earthquake. Geophysical Journal International, 196(3), 1878–1888. https://doi.org/10.1093/gji/ggt503
Stierle, E., Vavryčuk, V., Šílený, J., & Bohnhoff, M. (2014). Resolution of non-double-couple components in the seismic moment tensor using regional networks—I: A synthetic case study. Geophysical Journal International, 196(3), 1869–1877. https://doi.org/10.1093/gji/ggt502
Tape, W., & Tape, C. (2012a). A geometric comparison of source-type plots for moment tensors: Plots of moment tensor source types. Geophysical Journal International, 190(1), 499–510. https://doi.org/10.1111/j.1365-246x.2012.05490.x
Tape, W., & Tape, C. (2012b). A geometric setting for moment tensors. Geophysical Journal International, 190(1), 476–498. https://doi.org/10.1111/j.1365-246x.2012.05491.x
Tormann, T., Wiemer, S., & Mignan, A. (2014). Systematic survey of high-resolution b value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research: Solid Earth, 119(3), 2029–2054. https://doi.org/10.1002/2013jb010867
Tormann, Thessa, Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2), 152–158. https://doi.org/10.1038/ngeo2343
Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge University Press. https://doi.org/10.1017/cbo9781139174695
Utsu, T. (1999). Representation and analysis of the earthquake Size distribution: A historical review and some new approaches. Pure and Applied Geophysics, 155(2–4), 509–535. https://doi.org/10.1007/s000240050276
van der Baan, M., & Chorney, D. (2019). Insights from micromechanical modeling of intact rock failure: Event characteristics, stress drops, and force networks. Journal of Geophysical Research: Solid Earth, 124(12), 12955–12980. https://doi.org/10.1029/2019jb018121
van der Elst, N. J. (2021). B‐Positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. Journal of Geophysical Research: Solid Earth, 126(2). https://doi.org/10.1029/2020jb021027
Vavryčuk, V. (2001). Inversion for parameters of tensile earthquakes. Journal of Geophysical Research: Solid Earth, 106(B8), 16339–16355. https://doi.org/10.1029/2001jb000372
Vavryčuk, V. (2014). Moment tensor decompositions revisited. Journal of Seismology, 19(1), 231–252. https://doi.org/10.1007/s10950-014-9463-y
Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114
Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007
Wong, T.-F. (1982). Micromechanics of faulting in westerly granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19(2), 49–64. https://doi.org/10.1016/0148-9062(82)91631-x
Wu, R., Selvadurai, P. A., Chen, C., & Moradian, O. (2021). Revisiting piezoelectric sensor calibration methods using elastodynamic body waves. Journal of Nondestructive Evaluation, 40(3). https://doi.org/10.1007/s10921-021-00799-1
Yarushina, V. M., & Podladchikov, Y. Y. (2015). (De)compaction of porous viscoelastoplastic media: Model formulation. Journal of Geophysical Research: Solid Earth, 120(6), 4146–4170. https://doi.org/10.1002/2014jb011258
Zhang, J., Wong, T., & Davis, D. M. (1990). Micromechanics of pressure‐induced grain crushing in porous rocks. Journal of Geophysical Research: Solid Earth, 95(B1), 341–352. https://doi.org/10.1029/jb095ib01p00341
Zhao, X. G., & Cai, M. (2010). A mobilized dilation angle model for rocks. International Journal of Rock Mechanics and Mining Sciences, 47(3), 368–384. https://doi.org/10.1016/j.ijrmms.2009.12.007
Zhao, X. G., Cai, M., & Cai, M. (2010). Considerations of rock dilation on modeling failure and deformation of hard rocks—a case study of the mine-by test tunnel in Canada. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 338–349. https://doi.org/https://doi.org/10.3724/SP.J.1235.2010.00338
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Patrick Bianchi, Paul Antony Selvadurai, Luca Dal Zilio, Markus Rast, Claudio Madonna, Stefan Wiemer

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Grant numbers 200021-192017 -
HORIZON EUROPE European Research Council
Grant numbers 856559 -
Earth Observatory of Singapore
Grant numbers MOE-MOET32021-0002 -
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Grant numbers R’Equip206021-170766