Cascadia Daily GNSS Time Series Denoising: Graph Neural Network and Stack Filtering

Authors

DOI:

https://doi.org/10.26443/seismica.v2i4.1419

Abstract

Precise Global Navigation Satellite System (GNSS) time series have greatly advanced tectonic studies, particularly in detecting transient deformation signals like slow slip events (SSEs). However, GNSS position data can be noisy, impacting the accuracy of analyses. Traditional denoising methods often struggle with spatially heterogeneous and evolving networks. This study introduces a novel Graph Neural Network (GNN) approach to denoise GNSS time series, effectively managing network heterogeneity and varying station availability. GNNs are robust against temporal gaps, making them suitable for GNSS data. Applied to daily time series for the Cascadia Region processed by the University of Nevada Reno and Central Washington University, our method reduced common-mode noise by more than 70% and 30% on horizontal components, in the two datasets respectively, significantly enhancing surface displacement measurements and slow slip events (SSE) source property estimation. We compared the GNN approach with three simple stack filtering methods, which performed comparably in many situations but are more sensitive to parameter choices. For all methods, substantial noise reduction removes artifacts that could impact geophysical interpretations. Our findings suggest that GNN-based denoising offers a robust, adaptive solution for heterogeneous GNSS networks, enhancing accuracy in tectonic and volcanic process studies, but stack filtering approaches might still outperform the machine learning technique depending on the application.

References

Azarbad, M. R., & Mosavi, M. R. (2013). A new method to mitigate multipath error in single-frequency GPS receiver with wavelet transform. GPS Solutions, 18(2), 189–198. https://doi.org/10.1007/s10291-013-0320-1 DOI: https://doi.org/10.1007/s10291-013-0320-1

Bachelot, L. (2024). Cascadia GNSS denoised daily time series [Data set]. Zenodo. https://doi.org/10.5281/zenodo.13840584

Bartlow, N. M. (2020). A Long‐Term View of Episodic Tremor and Slip in Cascadia. Geophysical Research Letters, 47(3). https://doi.org/10.1029/2019gl085303 DOI: https://doi.org/10.1029/2019GL085303

Bartlow, N. M., Miyazaki, S., Bradley, A. M., & Segall, P. (2011). Space-time correlation of slip and tremor during the 2009 Cascadia slow slip event. Geophysical Research Letters, 38(18). https://doi.org/10.1029/2011gl048714 DOI: https://doi.org/10.1029/2011GL048714

Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., Murphy, D., Ries, P., Romans, L., Sibois, A., Sibthorpe, A., Szilagyi, B., Vallisneri, M., & Willis, P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469–489. https://doi.org/10.1016/j.asr.2020.04.015 DOI: https://doi.org/10.1016/j.asr.2020.04.015

Bletery, Q., & Nocquet, J.-M. (2025). Do large earthquakes start with a precursory phase of slow slip? Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1383 DOI: https://doi.org/10.26443/seismica.v3i2.1383

Bletery, Q., Thomas, A. M., Hawthorne, J. C., Skarbek, R. M., Rempel, A. W., & Krogstad, R. D. (2017). Characteristics of secondary slip fronts associated with slow earthquakes in Cascadia. Earth and Planetary Science Letters, 463, 212–220. https://doi.org/10.1016/j.epsl.2017.01.046 DOI: https://doi.org/10.1016/j.epsl.2017.01.046

Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99. https://doi.org/10.1029/2018eo104623 DOI: https://doi.org/10.1029/2018EO104623

Bloemheuvel, S., van den Hoogen, J., Jozinović, D., Michelini, A., & Atzmueller, M. (2022). Graph neural networks for multivariate time series regression with application to seismic data. International Journal of Data Science and Analytics, 16(3), 317–332. https://doi.org/10.1007/s41060-022-00349-6 DOI: https://doi.org/10.1007/s41060-022-00349-6

Bock, Y., & Melgar, D. (2016). Physical applications of GPS geodesy: a review. Reports on Progress in Physics, 79(10), 106801. https://doi.org/10.1088/0034-4885/79/10/106801 DOI: https://doi.org/10.1088/0034-4885/79/10/106801

Bradley, K., & Hubbard, J. (2023). Earthquake precursors? Not so fast. Earthquake Insights. https://doi.org/10.62481/310cc439 DOI: https://doi.org/10.62481/310cc439

Brody, S., Alon, U., & Yahav, E. (2021). How Attentive are Graph Attention Networks? https://arxiv.org/abs/2105.14491

Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062 DOI: https://doi.org/10.1016/j.epsl.2018.04.062

Costantino, G., Giffard-Roisin, S., Mura, M. D., & Socquet, A. (2024). Denoising of Geodetic Time Series Using Spatiotemporal Graph Neural Networks: Application to Slow Slip Event Extraction. arXiv. https://doi.org/10.48550/ARXIV.2405.03320 DOI: https://doi.org/10.1109/JSTARS.2024.3465270

Delph, J. R., Thomas, A. M., & Levander, A. (2021). Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth and Planetary Science Letters, 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724 DOI: https://doi.org/10.1016/j.epsl.2020.116724

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04491.x

Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., & Jamason, P. (2006). Spatiotemporal filtering using principal component analysis and Karhunen‐Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.1029/2005jb003806 DOI: https://doi.org/10.1029/2005JB003806

Fey, M., & Lenssen, J. E. (2019). Fast Graph Representation Learning with PyTorch Geometric. arXiv. https://doi.org/10.48550/ARXIV.1903.02428

Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23(4). https://doi.org/10.1007/s10291-019-0888-1 DOI: https://doi.org/10.1007/s10291-019-0888-1

Geng, J., Pan, Y., Li, X., Guo, J., Liu, J., Chen, X., & Zhang, Y. (2018). Noise Characteristics of High‐Rate Multi‐GNSS for Subdaily Crustal Deformation Monitoring. Journal of Geophysical Research: Solid Earth, 123(2), 1987–2002. https://doi.org/10.1002/2018jb015527 DOI: https://doi.org/10.1002/2018JB015527

Ghosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., Wech, A. G., Houston, H., & Brodsky, E. E. (2010). Rapid, continuous streaking of tremor in Cascadia. Geochemistry, Geophysics, Geosystems, 11(12). https://doi.org/10.1029/2010gc003305 DOI: https://doi.org/10.1029/2010GC003305

Goldberg, D. E., & Haynie, K. L. (2022). Ready for Real Time: Performance of Global Navigation Satellite System in 2019 Mw 7.1 Ridgecrest, California, Rapid Response Products. Seismological Research Letters, 93(2A), 517–530. https://doi.org/10.1785/0220210278 DOI: https://doi.org/10.1785/0220210278

Hadas, T., Kaplon, J., Bosy, J., Sierny, J., & Wilgan, K. (2013). Near-real-time regional troposphere models for the GNSS precise point positioning technique. Measurement Science and Technology, 24(5), 55003. https://doi.org/10.1088/0957-0233/24/5/055003 DOI: https://doi.org/10.1088/0957-0233/24/5/055003

Hawthorne, J. C., Bostock, M. G., Royer, A. A., & Thomas, A. M. (2016). Variations in slow slip moment rate associated with rapid tremor reversals in Cascadia. Geochemistry, Geophysics, Geosystems, 17(12), 4899–4919. https://doi.org/10.1002/2016gc006489 DOI: https://doi.org/10.1002/2016GC006489

He, X., Hua, X., Yu, K., Xuan, W., Lu, T., Zhang, W., & Chen, X. (2015). Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Advances in Space Research, 55(5), 1316–1327. https://doi.org/10.1016/j.asr.2014.12.016 DOI: https://doi.org/10.1016/j.asr.2014.12.016

Herring, T. A., Melbourne, T. I., Murray, M. H., Floyd, M. A., Szeliga, W. M., King, R. W., Phillips, D. A., Puskas, C. M., Santillan, M., & Wang, L. (2016). Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Reviews of Geophysics, 54(4), 759–808. https://doi.org/10.1002/2016rg000529 DOI: https://doi.org/10.1002/2016RG000529

Hirose, H., Kato, A., & Kimura, T. (2024). Did Short‐Term Preseismic Crustal Deformation Precede the 2011 Great Tohoku‐Oki Earthquake? An Examination of Stacked Tilt Records. Geophysical Research Letters, 51(12). https://doi.org/10.1029/2024gl109384 DOI: https://doi.org/10.1029/2024GL109384

Houston, H., Delbridge, B. G., Wech, A. G., & Creager, K. C. (2011). Rapid tremor reversals in Cascadia generated by a weakened plate interface. Nature Geoscience, 4(6), 404–409. https://doi.org/10.1038/ngeo1157 DOI: https://doi.org/10.1038/ngeo1157

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal of Open Research Software, 5(1), 10. https://doi.org/10.5334/jors.148 DOI: https://doi.org/10.5334/jors.148

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., Ohta, Y., Iinuma, T., Ohzono, M., Miura, S., Mishina, M., Suzuki, K., Tsuji, T., & Ashi, J. (2013). Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 14–26. https://doi.org/10.1016/j.tecto.2012.08.022 DOI: https://doi.org/10.1016/j.tecto.2012.08.022

Itoh, Y., Aoki, Y., & Fukuda, J. (2022). Imaging evolution of Cascadia slow-slip event using high-rate GPS. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10957-8 DOI: https://doi.org/10.1038/s41598-022-10957-8

Jolivet, R., & Frank, W. B. (2020). The Transient and Intermittent Nature of Slow Slip. AGU Advances, 1(1). https://doi.org/10.1029/2019av000126 DOI: https://doi.org/10.1029/2019AV000126

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141 DOI: https://doi.org/10.1126/science.1215141

Kazmierski, K., Zajdel, R., & Sośnica, K. (2020). Evolution of orbit and clock quality for real-time multi-GNSS solutions. GPS Solutions, 24(4). https://doi.org/10.1007/s10291-020-01026-6 DOI: https://doi.org/10.1007/s10291-020-01026-6

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. http://arxiv.org/abs/1609.02907

Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849–3889. https://doi.org/10.1002/2014gc005407 DOI: https://doi.org/10.1002/2014GC005407

Larson, K. M. (2019). Unanticipated Uses of the Global Positioning System. Annual Review of Earth and Planetary Sciences, 47(1), 19–40. https://doi.org/10.1146/annurev-earth-053018-060203 DOI: https://doi.org/10.1146/annurev-earth-053018-060203

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 DOI: https://doi.org/10.1109/5.726791

Li, Y., Han, L., & Liu, X. (2023). Accuracy Enhancement and Feature Extraction for GNSS Daily Time Series Using Adaptive CEEMD-Multi-PCA-Based Filter. Remote Sensing, 15(7), 1902. https://doi.org/10.3390/rs15071902 DOI: https://doi.org/10.3390/rs15071902

Li, Y., Han, L., Yi, L., Zhong, S., & Chen, C. (2021). Feature extraction and improved denoising method for nonlinear and nonstationary high-rate GNSS coseismic displacements applied to earthquake focal mechanism inversion of the El Mayor–Cucapah earthquake. Advances in Space Research, 68(10), 3971–3991. https://doi.org/10.1016/j.asr.2021.07.032 DOI: https://doi.org/10.1016/j.asr.2021.07.032

Li, Y., Xu, C., Yi, L., & Fang, R. (2017). A data-driven approach for denoising GNSS position time series. Journal of Geodesy, 92(8), 905–922. https://doi.org/10.1007/s00190-017-1102-2 DOI: https://doi.org/10.1007/s00190-017-1102-2

Lin, J. ‐T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early Warning for Great Earthquakes From Characterization of Crustal Deformation Patterns With Deep Learning. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022703 DOI: https://doi.org/10.1029/2021JB022703

Lu, C., Li, X., Li, Z., Heinkelmann, R., Nilsson, T., Dick, G., Ge, M., & Schuh, H. (2016). GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. Journal of Geophysical Research: Atmospheres, 121(2), 912–930. https://doi.org/10.1002/2015jd024255 DOI: https://doi.org/10.1002/2015JD024255

Mavrommatis, A. P., Segall, P., & Johnson, K. M. (2014). A decadal‐scale deformation transient prior to the 2011 Mw 9.0 Tohoku‐oki earthquake. Geophysical Research Letters, 41(13), 4486–4494. https://doi.org/10.1002/2014gl060139 DOI: https://doi.org/10.1002/2014GL060139

McBrearty, I. W., & Beroza, G. C. (2023). Earthquake Phase Association with Graph Neural Networks. Bulletin of the Seismological Society of America, 113(2), 524–547. https://doi.org/10.1785/0120220182 DOI: https://doi.org/10.1785/0120220182

Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004jb003209 DOI: https://doi.org/10.1029/2004JB003209

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real‐Time High‐Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197 DOI: https://doi.org/10.1029/2019JB019197

Michel, S., Gualandi, A., & Avouac, J.-P. (2019). Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574(7779), 522–526. https://doi.org/10.1038/s41586-019-1673-6 DOI: https://doi.org/10.1038/s41586-019-1673-6

Miller, M. M., Melbourne, T., Johnson, D. J., & Sumner, W. Q. (2002). Periodic Slow Earthquakes from the Cascadia Subduction Zone. Science, 295(5564), 2423–2423. https://doi.org/10.1126/science.1071193 DOI: https://doi.org/10.1126/science.1071193

Moreno, M., Melnick, D., Rosenau, M., Bolte, J., Klotz, J., Echtler, H., Baez, J., Bataille, K., Chen, J., Bevis, M., Hase, H., & Oncken, O. (2011). Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters, 305(3–4), 413–424. https://doi.org/10.1016/j.epsl.2011.03.025 DOI: https://doi.org/10.1016/j.epsl.2011.03.025

Nikolaidis, R. (2002). Observation of Geodetic and Seismic Deformation with the Global Positioning System.

Nishimura, T., Matsuzawa, T., & Obara, K. (2013). Detection of short‐term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. Journal of Geophysical Research: Solid Earth, 118(6), 3112–3125. https://doi.org/10.1002/jgrb.50222 DOI: https://doi.org/10.1002/jgrb.50222

Peng, Y., Rubin, A. M., Bostock, M. G., & Armbruster, J. G. (2015). High‐resolution imaging of rapid tremor migrations beneath southern Vancouver Island using cross‐station cross correlations. Journal of Geophysical Research: Solid Earth, 120(6), 4317–4332. https://doi.org/10.1002/2015jb011892 DOI: https://doi.org/10.1002/2015JB011892

Prawirodirdjo, L., & Bock, Y. (2004). Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research: Solid Earth, 109(B8). https://doi.org/10.1029/2003jb002944 DOI: https://doi.org/10.1029/2003JB002944

Rogers, G., & Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783 DOI: https://doi.org/10.1126/science.1084783

Rollins, C., & Avouac, J. (2019). A Geodesy‐ and Seismicity‐Based Local Earthquake Likelihood Model for Central Los Angeles. Geophysical Research Letters, 46(6), 3153–3162. https://doi.org/10.1029/2018gl080868 DOI: https://doi.org/10.1029/2018GL080868

Rollins, C., Avouac, J., Landry, W., Argus, D. F., & Barbot, S. (2018). Interseismic Strain Accumulation on Faults Beneath Los Angeles, California. Journal of Geophysical Research: Solid Earth, 123(8), 7126–7150. https://doi.org/10.1029/2017jb015387 DOI: https://doi.org/10.1029/2017JB015387

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28 DOI: https://doi.org/10.1007/978-3-319-24574-4_28

Royer, A. A., Thomas, A. M., & Bostock, M. G. (2015). Tidal modulation and triggering of low‐frequency earthquakes in northern Cascadia. Journal of Geophysical Research: Solid Earth, 120(1), 384–405. https://doi.org/10.1002/2014jb011430 DOI: https://doi.org/10.1002/2014JB011430

Rubin, A. M., & Armbruster, J. G. (2013). Imaging slow slip fronts in Cascadia with high precision cross‐station tremor locations. Geochemistry, Geophysics, Geosystems, 14(12), 5371–5392. https://doi.org/10.1002/2013gc005031 DOI: https://doi.org/10.1002/2013GC005031

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074 DOI: https://doi.org/10.1126/science.1256074

Satirapod, C., & Rizos, C. (2005). MULTIPATH MITIGATION BY WAVELET ANALYSIS FOR GPS BASE STATION APPLICATIONS. Survey Review, 38(295), 2–10. https://doi.org/10.1179/sre.2005.38.295.2 DOI: https://doi.org/10.1179/sre.2005.38.295.2

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., & Sun, Y. (2021). Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. http://arxiv.org/abs/2009.03509 DOI: https://doi.org/10.24963/ijcai.2021/214

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega‐Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017gl073023 DOI: https://doi.org/10.1002/2017GL073023

Szeliga, W., Melbourne, T., Santillan, M., & Miller, M. (2008). GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005. Journal of Geophysical Research: Solid Earth, 113(B4). https://doi.org/10.1029/2007jb004948 DOI: https://doi.org/10.1029/2007JB004948

Tao, Y., Liu, C., Liu, C., Zhao, X., & Hu, H. (2021). Empirical Wavelet Transform Method for GNSS Coordinate Series Denoising. Journal of Geovisualization and Spatial Analysis, 5(1). https://doi.org/10.1007/s41651-021-00078-7 DOI: https://doi.org/10.1007/s41651-021-00078-7

Thomas, A., Melgar, D., Dybing, S. N., & Searcy, J. R. (2023). Deep learning for denoising High-Rate Global Navigation Satellite System data. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.240 DOI: https://doi.org/10.26443/seismica.v2i1.240

van den Ende, M. P. A., & Ampuero, J. ‐P. (2020). Automated Seismic Source Characterization Using Deep Graph Neural Networks. Geophysical Research Letters, 47(17). https://doi.org/10.1029/2020gl088690 DOI: https://doi.org/10.1029/2020GL088690

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

Wallace, L. M. (2020). Slow Slip Events in New Zealand. Annual Review of Earth and Planetary Sciences, 48(1), 175–203. https://doi.org/10.1146/annurev-earth-071719-055104 DOI: https://doi.org/10.1146/annurev-earth-071719-055104

Wang, K., He, J., Dragert, H., & James, T. S. (2001). Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone. Earth, Planets and Space, 53(4), 295–306. https://doi.org/10.1186/bf03352386 DOI: https://doi.org/10.1186/BF03352386

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057–18070. https://doi.org/10.1029/97jb01378 DOI: https://doi.org/10.1029/97JB01378

Wech, A. G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022523 DOI: https://doi.org/10.1029/2021JB022523

Wu, X., Hu, X., Wang, G., Zhong, H., & Tang, C. (2013). Evaluation of COMPASS ionospheric model in GNSS positioning. Advances in Space Research, 51(6), 959–968. https://doi.org/10.1016/j.asr.2012.09.039 DOI: https://doi.org/10.1016/j.asr.2012.09.039

Zhang, X., Reichard‐Flynn, W., Zhang, M., Hirn, M., & Lin, Y. (2022). Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization. Journal of Geophysical Research: Solid Earth, 127(11). https://doi.org/10.1029/2022jb024401 DOI: https://doi.org/10.1029/2022JB024401

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476–9488. https://doi.org/10.1109/tgrs.2019.2926772 DOI: https://doi.org/10.1109/TGRS.2019.2926772

Downloads

Published

2025-03-22

How to Cite

Bachelot, L., Thomas, A. M., Melgar, D., Searcy, J., & Sun, Y.-S. (2025). Cascadia Daily GNSS Time Series Denoising: Graph Neural Network and Stack Filtering. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1419

Issue

Section

Special Issue: the Cascadia Subduction Zone

Funding data