Detecting seasonal differences in high-frequency site response using κ0

Authors

  • Annabel Händel GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • Marco Pilz GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • Luca C. Malatesta GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • David Litwin GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • Fabrice Cotton Institute of Geosciences, University of Potsdam, Potsdam, Germany

DOI:

https://doi.org/10.26443/seismica.v4i1.1425

Keywords:

site characterization, temporal variations, Earthquake ground motion

Abstract

Near-surface geologic site conditions significantly affect seismic waves by amplifying certain frequency ranges and attenuating others. For seismic hazard analysis, site conditions are assumed to be constant over time. Contrary to this assumption, temporal variations in near-surface velocities have been observed in recent years. This study shows for the first time that ∆κ0, the site component of the spec- tral decay parameter κ derived between a surface and a borehole sensor, can vary seasonally. ∆κ0 is an integrative parameter of local site attenuation and amplification at high frequencies. Using data from the Kiban Kyoshin Strong Motion Network (KiK-net) in Japan, we analyze recordings of seismic events between 2004–2020 and correlate temporal ∆κ0 variations with environmental factors such as temperature, precipi- tation, snow depth, soil moisture, and terrestrial water storage. We can identify strong seasonal variations at 13 sites in northeastern Hokkaido and on Honshu, with ∆κ0 being generally larger in winter than in summer. Our results indicate that the high-frequency site response can be influenced by environmental conditions and should not be assumed to be constant

References

Akinci, A., Galadini, F., Pantosti, D., Petersen, M., Malagnini, L., & Perkins, D. (2009). Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the Central Apennines, Italy. Bulletin of the Seismological Society of America, 99(2A), 585–610. https://doi.org/https://doi.org/10.1785/0120080053

Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seismol. Soc. Am., 74(5), 1969–1993. https://doi.org/https://doi.org/10.1785/BSSA0740051969

Aoi, S., Kunugi, T., & Fujiwara, H. (2004). Strong-motion seismograph network operated by NIED: K-NET and KiK-net. Journal of Japan Association for Earthquake Engineering, 4(3), 65–74. https://doi.org/https://doi.org/10.5610/jaee.4.3_65

Bayless, J., & Abrahamson, N. (2018). An empirical model for Fourier amplitude spectra using the NGA-West2 database [PEER Report 2018/07, Pacific Earthquake Engineering Research Center]. University of California, Berkeley, California.

Beresnev, I. A. (2019). Interpretation of kappa and fmax filters as source effect. Bull. Seismol. Soc. Am., 109(2), 822–826. https://doi.org/https://doi.org/10.1785/0120180250

Berger, J. (1975). A note on thermoelastic strains and tilts. Journal of Geophysical Research, 80(2), 274–277. https://doi.org/https://doi.org/10.1029/JB080i002p00274

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismol. Res. Lett., 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bindi, D., Picozzi, M., Spallarossa, D., Cotton, F., & Kotha, S. R. (2019). Impact of magnitude selection on aleatory variability associated with ground-motion prediction equations: Part II—analysis of the between-event distribution in central Italy. Bull. Seismol. Soc. Am., 109(1), 251–262. https://doi.org/https://doi.org/10.1785/0120180239

Boergens, E., Dobslaw, H., & Dill, R. (2020). COST-G GravIS RL01 Continental Water Storage Anomalies. V. 0005. GFZ Data Services, https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS.

Bohnhoff, M., Martínez-Garzón, P., & Ben-Zion, Y. (2024). Global Warming Will Increase Earthquake Hazards through Rising Sea Levels and Cascading Effects. Seismol. Res. Lett., Early Publication. https://doi.org/https://doi.org/10.1785/0220240100

Boore, D. M., Youngs, R. R., Kottke, A. R., Bommer, J. J., Darragh, R., Silva, W. J., Stafford, P. J., Al Atik, L., Rodriguez-Marek, A., & Kaklamanos, J. (2022). Construction of a ground-motion logic tree through host-to-target region adjustments applied to an adaptable ground-motion prediction model. Bulletin of the Seismological Society of America, 112(6), 3063–3080.

Bora, S. S., Cotton, F., & Scherbaum, F. (2019). NGA-West2 empirical Fourier and duration models to generate adjustable response spectra. Earthquake Spectra, 35(1), 61–93. https://doi.org/https://doi.org/10.1193/110317EQS228M

Bora, S. S., Cotton, F., Scherbaum, F., Edwards, B., & Traversa, P. (2017). Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes. Bull. Earthquake Eng., 15(11), 4531–4561. https://doi.org/https://doi.org/10.1007/s10518-017-0167-x

Boyd, O. S. (2012). Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses. Bulletin of the Seismological Society of America, 102(3), 909–917. https://doi.org/https://doi.org/10.1785/0120110008

Chang, Y.-W., Loh, C.-H., & Jean, W.-Y. (2017). Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 28(6). https://doi.org/https://doi.org/10.3319/TAO.2017.02.08.01

Clements, T., & Denolle, M. (2023). The seismic signature of California’s earthquakes, droughts, and floods. Journal of Geophysical Research: Solid Earth, 128(1), e2022JB025553. https://doi.org/https://doi.org/10.1029/2022JB025553

Colombero, C., Baillet, L., Comina, C., Jongmans, D., Larose, E., Valentin, J., & Vinciguerra, S. (2018). Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff. Geophysical Journal International, 213(3), 1876–1897. https://doi.org/https://doi.org/10.1093/gji/ggy090

Dorigo, W., Preimesberger, W., Reimer, C., Van der Schalie, R., Pasik, A., De Jeu, R., & Paulik, C. (2019). Soil moisture gridded data from 1978 to present, v202212. https://doi.org/https://doi.org/10.24381/cds.d7782f18

Edwards, B., Ktenidou, O.-J., Cotton, F., Abrahamson, N., Van Houtte, C., & Fäh, D. (2015). Epistemic uncertainty and limitations of the κ₀ model for near-surface attenuation at hard rock sites. Geophys. J. Int., 202(3), 1627–1645. https://doi.org/https://doi.org/10.1093/gji/ggv222

Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., & Korn, M. (2014). Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal International, 200(1), 524–533. https://doi.org/https://doi.org/10.1093/gji/ggu413

Haendel, A., Anderson, J. G., Pilz, M., & Cotton, F. (2020). A frequency-dependent model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seismol. Soc. Am., 110(6), 2743–2754. https://doi.org/https://doi.org/10.1785/0120200118

Haendel, A., Pilz, M., & Cotton, F. (2023). Hard-Rock κ₀ at KiK-Net Sites in Japan. Bulletin of the Seismological Society of America, 113(6), 2650–2665. https://doi.org/https://doi.org/10.1785/0120220246

Haendel, A., Pilz, M., & Cotton, F. (2022). Temporal variations of Δκ₀. In C. Arion, A. Scupin, & A. Ţigănescu (Eds.), Proceedings of the 3rd European Conference on Earthquake Engineering and Seismology (ECEES): September 4-9, 2022, Bucharest, Romania (pp. 4937–4943).

Hillers, G., Ben-Zion, Y., Campillo, M., & Zigone, D. (2015). Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophysical Journal International, 202(2), 920–932. https://doi.org/https://doi.org/10.1093/gji/ggv151

Hillers, G., Campillo, M., & Ma, K.-F. (2014). Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth and Planetary Science Letters, 391, 121–127. https://doi.org/https://doi.org/10.1016/j.epsl.2014.01.040

Hollender, F., Roumelioti, Z., Maufroy, E., Traversa, P., & Mariscal, A. (2020). Can we trust high-frequency content in strong-motion database signals? Impact of housing, coupling, and installation depth of seismic sensors. Seismol. Res. Lett., 91(4), 2192–2205. https://doi.org/https://doi.org/10.1785/0220190163

Hough, S., Anderson, J., Brune, J., Vernon III, F., Berger, J., Fletcher, J., Haar, L., Hanks, L., & Baker, L. (1988). Attenuation near Anza, California. Bulletin of the Seismological Society of America, 78(2), 672–691. https://doi.org/https://doi.org/10.1785/BSSA0780020672

Illien, L., Andermann, C., Sens-Schönfelder, C., Cook, K., Baidya, K., Adhikari, L., & Hovius, N. (2021). Subsurface moisture regulates Himalayan groundwater storage and discharge. AGU Advances, 2(2), e2021AV000398. https://doi.org/https://doi.org/10.1029/2021AV000398

James, S., Knox, H., Abbott, R., Panning, M., & Screaton, E. (2019). Insights into permafrost and seasonal active-layer dynamics from ambient seismic noise monitoring. Journal of Geophysical Research: Earth Surface, 124(7), 1798–1816. https://doi.org/https://doi.org/10.1029/2019JF005051

Ji, C., Cabas, A., Bonilla, L. F., & Gelis, C. (2021). Effects of nonlinear soil behavior on Kappa (κ): Observations from the KiK-Net database. Bull. Seismol. Soc. Am., 111(4), 2138–2157. https://doi.org/https://doi.org/10.1785/0120200286

Ji, C., Cabas, A., Cotton, F., Pilz, M., & Bindi, D. (2020). Within-station variability in kappa: Evidence of directionality effects. Bull. Seismol. Soc. Am., 110(3), 1247–1259. https://doi.org/https://doi.org/10.1785/0120190253

Kilb, D., Biasi, G., Anderson, J., Brune, J., Peng, Z., & Vernon, F. L. (2012). A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data. Bull. Seismol. Soc. Am., 102(1), 284–300. https://doi.org/https://doi.org/10.1785/0120100309

Köhler, A., & Weidle, C. (2019). Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: A case study in Svalbard. Earth Surface Dynamics, 7(1), 1–16. https://doi.org/https://doi.org/10.5194/esurf-7-1-2019

Ktenidou, O.-J., Gélis, C., & Bonilla, L.-F. (2013). A study on the variability of kappa (κ) in a borehole: Implications of the computation process. Bull. Seismol. Soc. Am., 103(2A), 1048–1068. https://doi.org/https://doi.org/10.1785/0120120093

Kula, D., Olszewska, D., Dobiński, W., & Glazer, M. (2018). Horizontal-to-vertical spectral ratio variability in the presence of permafrost. Geophysical Journal International, 214(1), 219–231. https://doi.org/https://doi.org/10.1093/gji/ggy118

Li, G., & Ben-Zion, Y. (2023). Daily and seasonal variations of shallow seismic velocities in southern California from joint analysis of H/V ratios and autocorrelations of seismic waveforms. Journal of Geophysical Research: Solid Earth, 128(2), e2022JB025682. https://doi.org/https://doi.org/10.1029/2022JB025682

Lotti, A., Pazzi, V., Saccorotti, G., Fiaschi, A., Matassoni, L., Gigli, G., & others. (2018). HVSR analysis of rockslide seismic signals to assess the subsoil conditions and the site seismic response. International Journal of Geophysics, 2018. https://doi.org/https://doi.org/10.1155/2018/9383189

Malagnini, L., Dreger, D. S., Bürgmann, R., Munafò, I., & Sebastiani, G. (2019). Modulation of seismic attenuation at Parkfield, before and after the 2004 M6 earthquake. Journal of Geophysical Research: Solid Earth, 124(6), 5836–5853. https://doi.org/https://doi.org/10.1029/2019JB017372

Mao, S., Lecointre, A., van der Hilst, R. D., & Campillo, M. (2022). Space-time monitoring of groundwater fluctuations with passive seismic interferometry. Nature Communications, 13(1), 4643. https://doi.org/https://doi.org/10.1038/s41467-022-32194-3

Mayor, J., Bora, S. S., & Cotton, F. (2018). Capturing regional variations of hard‐rock κ₀ from coda analysis. Bull. Seismol. Soc. Am., 108(1), 399–408. https://doi.org/https://doi.org/10.1785/0120170153

Miao, Y, Shi, Y., Zhuang, H., Wang, S., Liu, H., & Yu, X. (2019). Influence of seasonal frozen soil on near-surface shear wave velocity in eastern Hokkaido, Japan. Geophysical Research Letters, 46(16), 9497–9508. https://doi.org/https://doi.org/10.1029/2019GL082282

Miao, Yu, Shi, Y., & Wang, S.-Y. (2018). Temporal change of near-surface shear wave velocity associated with rainfall in Northeast Honshu, Japan. Earth, Planets and Space, 70, 1–11. https://doi.org/https://doi.org/10.1186/s40623-018-0969-3

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).

NIED. (2019). NIED K-NET, KiK-net, National Research Institute for Earth Science and Disaster Resilience. doi:10.17598/NIED.0004.

Papageorgiou, A. S., & Aki, K. (1983). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part II. Applications of the model. Bull. Seismol. Soc. Am., 73(4), 953–978. https://doi.org/https://doi.org/10.1785/BSSA0730040953

Perron, V., Laurendeau, A., Hollender, F., Bard, P.-Y., Gélis, C., Traversa, P., & Drouet, S. (2018). Selecting time windows of seismic phases and noise for engineering seismology applications: A versatile methodology and algorithm. Bull. Earthq. Eng., 16(6), 2211–2225. https://doi.org/https://doi.org/10.1007/s10518-017-0131-9

Pilz, M., Cotton, F., & Zhu, C. (2025). Site-response high-frequency frontiers and the added value of site-specific earthquake record-based measurements of velocity and attenuation. Earthquake Spectra. https://doi.org/https://doi.org/10.1177/87552930241311312

Richter, T., Sens-Schönfelder, C., Kind, R., & Asch, G. (2014). Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. Journal of Geophysical Research: Solid Earth, 119(6), 4747–4765. https://doi.org/https://doi.org/10.1002/2013JB010695

Rodriguez-Marek, A., Ake, J., Munson, C., Rathje, E., Stovall, S., Weaver, T., Ulmer, K., & Juckett, M. (2021). Documentation report for SSHAC Level 2: Site response [Research Information Letter RIL 2021-15, ML21323A056]. U.S. Nuclear Regulatory Commission.

Rodriguez-Marek, A., Rathje, E., Bommer, J., Scherbaum, F., & Stafford, P. (2014). Application of single-station sigma and site-response characterization in a probabilistic seismic-hazard analysis for a new nuclear site. Bulletin of the Seismological Society of America, 104(4), 1601–1619. https://doi.org/https://doi.org/10.1785/0120130196

Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). https://doi.org/https://doi.org/10.1029/2006GL027797

Shen, Z. (2022). Probing water below the surface: Insights from seismic interferometry with conventional and DAS array [PhD Thesis, California Institute of Technology]. https://doi.org/https://doi.org/10.7907/5vtn-1c34

Stafford, P. J. (2017). Interfrequency correlations among Fourier spectral ordinates and implications for stochastic ground-motion simulation. Bulletin of the Seismological Society of America, 107(6), 2774–2791. https://doi.org/https://doi.org/10.1785/0120170081

Tafreshi, M. D., Bora, S. S., Ghofrani, H., Mirzaei, N., & Kazemian, J. (2022). Region-and site-specific measurements of kappa (κ₀) and associated variabilities for Iran. Bull. Seismol. Soc. Am., 112(6), 3046–3062. https://doi.org/https://doi.org/10.1785/0120210315

Tromans, I. J., Aldama-Bustos, G., Douglas, J., Lessi-Cheimariou, A., Hunt, S., Davı́, M., Musson, R. M., Garrard, G., Strasser, F. O., & Robertson, C. (2019). Probabilistic seismic hazard assessment for a new-build nuclear power plant site in the UK. Bulletin of Earthquake Engineering, 17, 1–36.

Van Houtte, C., Ktenidou, O.-J., Larkin, T., & Holden, C. (2014). Hard-site κ₀ (kappa) calculations for Christchurch, New Zealand, and comparison with local ground-motion prediction models. Bull. Seismol. Soc. Am., 104(4), 1899–1913. https://doi.org/https://doi.org/10.1785/0120130271

Vassallo, M., Cultrera, G., Di Giulio, G., Cara, F., & Milana, G. (2022). Peak frequency changes from HV spectral ratios in central Italy: Effects of strong motions and seasonality over 12 years of observations. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023848. https://doi.org/https://doi.org/10.1029/2021JB023848

Wang, Q.-Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., & Aoki, Y. (2017). Seasonal crustal seismic velocity changes throughout Japan. Journal of Geophysical Research: Solid Earth, 122(10), 7987–8002. https://doi.org/https://doi.org/10.1002/2017JB014307

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. EOS, Trans. Am. Geophys. Un., 79(47), 579. https://doi.org/https://doi.org/10.1029/98EO00426

Xu, B., & Rathje, E. M. (2021). The effect of soil nonlinearity on high-frequency spectral decay and implications for site response analysis. Earthq. Spectra, 37(2), 686–706. https://doi.org/https://doi.org/10.1177/8755293020981991

Xu, B., Rathje, E. M., Hashash, Y., Stewart, J., Campbell, K., & Silva, W. J. (2020). κ₀ for soil sites: Observations from Kik-net sites and their use in constraining small-strain damping profiles for site response analysis. Earthquake Spectra, 36(1), 111–137. https://doi.org/https://doi.org/10.1177/8755293019878188

Yamaguchi, T., Miyamoto, H., & Oishi, T. (2023). Using Simple LSTM Models to Evaluate Effects of a River Restoration on Groundwater in Kushiro Wetland, Hokkaido, Japan. Water, 15(6), 1115. https://doi.org/https://doi.org/10.3390/w15061115

Downloads

Additional Files

Published

2025-06-11

How to Cite

Händel, A., Pilz, M., Malatesta, L. C., Litwin, D., & Cotton, F. (2025). Detecting seasonal differences in high-frequency site response using κ0. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1425

Issue

Section

Articles