Partial ruptures governed by the complex interplay between geodetic slip deficit, rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations

Authors

  • Jonatan Glehman Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA https://orcid.org/0009-0008-1735-3116
  • Alice Gabriel Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
  • Thomas Ulrich Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany https://orcid.org/0000-0002-4164-8933
  • Marlon Ramos Sandia National Laboratories, Albuquerque, New Mexico USA
  • Yihe Huang Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA https://orcid.org/0000-0001-5270-9378
  • Eric Lindsey Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA https://orcid.org/0000-0003-2274-8215

DOI:

https://doi.org/10.26443/seismica.v2i4.1427

Abstract

Physics-based dynamic rupture simulations are valuable for assessing the seismic hazard in the Cascadia subduction zone (CSZ), but require assumptions about fault stress and material properties. Geodetic slip deficit models (SDMs) may provide information about the initial stresses governing megathrust earthquake dynamics. We present a unified workflow linking SDMs to 3D dynamic rupture simulations, and 22 rupture scenarios to unravel the dynamic trade-offs of assumptions for SDMs, rigidity, and pore fluid pressure. We find that margin-wide rupture, an earthquake that ruptures the entire length of the plate boundary, requires a large slip deficit in the central CSZ. Comparisons between Gaussian and smoother, shallow-coupled SDMs show significant differences in stress distributions and rupture dynamics. Variations in depth-dependent rigidity cause competing effects, particularly in the near-trench region. Higher overall rigidity can increase fault slip but also result in lower initial shear stresses, inhibiting slip. The state of pore fluid pressure is crucial in balancing SDM-informed initial shear stresses with realistic dynamic rupture processes, especially assuming small recurrence time scaling factors. This study highlights the importance of self-consistent assumptions for rigidity and initial stresses between geodetic, structural, and dynamic rupture models, providing a foundation for future simulations of ground motions and tsunami generation.

References

Abrahams, L. S., Krenz, L., Dunham, E. M., Gabriel, A.-A., & Saito, T. (2023). Comparison of methods for coupled earthquake and tsunami modelling. Geophysical Journal International, 234(1), 404–426.

Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M

Adams, J. (1990). Paleoseismicity of the Cascadia Subduction Zone: Evidence from turbidites off the Oregon-Washington Margin. Tectonics, 9(4), 569–583. https://doi.org/10.1029/TC009i004p00569

Allen, T. I., & Hayes, G. P. (2017). Alternative Rupture‐Scaling Relationships for Subduction Interface and Other Offshore Environments. Bulletin of the Seismological Society of America, 107(3), 1240–1253. https://doi.org/10.1785/0120160255

Almeida, R., Lindsey, E. O., Bradley, K., Hubbard, J., Mallick, R., & Hill, E. M. (2018). Can the Updip Limit of Frictional Locking on Megathrusts Be Detected Geodetically? Quantifying the Effect of Stress Shadows on Near-Trench Coupling. Geophysical Research Letters, 45(10), 4754–4763. https://doi.org/10.1029/2018GL077785

Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research: Solid Earth, 81(32), 5679–5687. https://doi.org/10.1029/JB081i032p05679

Andrews, D. J., & Barall, M. (2011). Specifying Initial Stress for Dynamic Heterogeneous Earthquake Source Models. Bulletin of the Seismological Society of America, 101(5), 2408–2417. https://doi.org/10.1785/0120110012

Arnold, R., & Townend, J. (2007). A Bayesian approach to estimating tectonic stress from seismological data. Geophysical Journal International, 170(3), 1336–1356. https://doi.org/10.1111/j.1365-246X.2007.03485.x

Atwater, B. F., & Yamaguchi, D. K. (1991). Sudden, probably coseismic submergence of Holocene trees and grass in coastal Washington State. Geology, 19(7), 706–709. https://doi.org/10.1130/0091-7613(1991)019<0706:SPCSOH>2.3.CO;2

Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457(7225), 76–78. https://doi.org/10.1038/nature07650

Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle [Journal Article]. Annual Review of Earth and Planetary Sciences, 43(Volume 43, 2015), 233–271. https://doi.org/https://doi.org/10.1146/annurev-earth-060614-105302

Biemiller, J., & Gabriel, A.-A. (2022). The dynamics of unlikely slip: 3D modeling of low-angle normal fault rupture at the Mai’iu fault, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 23(5), e2021GC010298.

Biemiller, J., Gabriel, A.-A., & Ulrich, T. (2023). Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage. Nature Communications, 14(1), 2352.

Bizzarri, A., & Cocco, M. (2003). Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws. Journal of Geophysical Research: Solid Earth, 108(B8). https://doi.org/10.1029/2002JB002198

Breuer, A., Heinecke, A., & Bader, M. (2016). Petascale Local Time Stepping for the ADER-DG Finite Element Method. 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 854–863. https://doi.org/10.1109/IPDPS.2016.109

Brothers, D. S., Sherrod, B. L., Singleton, D. M., Padgett, J. S., Hill, J. C., Ritchie, A. C., Kluesner, J. W., & Dartnell, P. (2024). Post-glacial stratigraphy and late Holocene record of great Cascadia earthquakes in Ozette Lake, Washington, USA. Geosphere, 20(5), 1315–1346. https://doi.org/10.1130/GES02713.1

Brudzinski, M. R., & Allen, R. M. (2007). Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10), 907–910. https://doi.org/10.1130/G23740A.1

Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E. (2005). Interseismic coupling and asperity distribution along the Kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, 110(B7). https://doi.org/10.1029/2005JB003648

Byerlee, J. (1978). Friction of Rocks. In J. D. Byerlee & M. Wyss (Eds.), Rock Friction and Earthquake Prediction (pp. 615–626). Birkhäuser Basel.

Carbotte, S. M., Boston, B., Han, S., Shuck, B., Beeson, J., Canales, J. P., Tobin, H., Miller, N., Nedimovic, M., Tréhu, A., Lee, M., Lucas, M., Jian, H., Jiang, D., Moser, L., Anderson, C., Judd, D., Fernandez, J., Campbell, C., … Gahlawat, R. (2024). Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia. Science Advances, 10(23), eadl3198. https://doi.org/10.1126/sciadv.adl3198

Causse, M., Dalguer, L. A., & Mai, P. M. (2014). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196(3), 1754–1769. https://doi.org/10.1093/gji/ggt478

Chan, Y. P. B., Yao, S., & Yang, H. (2023). Impact of Hypocenter Location on Rupture Extent and Ground Motion: A Case Study of Southern Cascadia. Journal of Geophysical Research: Solid Earth, 128(8), e2023JB026371. https://doi.org/https://doi.org/10.1029/2023JB026371

Chlieh, M., Mothes, P. A., Nocquet, J.-M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Collot, J.-Y., Villegas-Lanza, J.-C., Rolandone, F., Vallée, M., Regnier, M., Segovia, M., Martin, X., & Yepes, H. (2014). Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth and Planetary Science Letters, 400, 292–301. https://doi.org/https://doi.org/10.1016/j.epsl.2014.05.027

Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress. Bulletin of the Seismological Society of America, 72(6A), 1881–1902. https://doi.org/10.1785/BSSA07206A1881

Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005JB003813

Day, S. M., Yu, G., & Wald, D. J. (1998). Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 88(2), 512–522. https://doi.org/10.1785/BSSA0880020512

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault Lubrication during Earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838

Diao, F., Weng, H., Ampuero, J.-P., Shao, Z., Wang, R., Long, F., & Xiong, X. (2024). Physics-based assessment of earthquake potential on the Anninghe-Zemuhe fault system in southwestern China. Nature Communications, 15(1), 6908. https://doi.org/10.1038/s41467-024-51313-w

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/JB084iB05p02161

Dumbser, M., & Käser, M. (2006). An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case. Geophysical Journal International, 167(1), 319–336. https://doi.org/10.1111/j.1365-246X.2006.03120.x

Dunham, E. M. (2007). Conditions governing the occurrence of supershear ruptures under slip-weakening friction. Journal of Geophysical Research: Solid Earth, 112(B7). https://doi.org/10.1029/2006JB004717

Dunham, E. M., Belanger, D., Cong, L., & Kozdon, J. E. (2011). Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults. Bulletin of the Seismological Society of America, 101(5), 2296–2307. https://doi.org/10.1785/0120100075

Dura, T., Engelhart, S. E., Vacchi, M., Horton, B. P., Kopp, R. E., Peltier, W. R., & Bradley, S. (2016). The Role of Holocene Relative Sea-Level Change in Preserving Records of Subduction Zone Earthquakes. Current Climate Change Reports, 2(3), 86–100. https://doi.org/10.1007/s40641-016-0041-y

Engelhart, S. E., Vacchi, M., Horton, B. P., Nelson, A. R., & Kopp, R. E. (2015). A sea-level database for the Pacific coast of central North America. Quaternary Science Reviews, 113, 78–92. https://doi.org/10.1016/j.quascirev.2014.12.001

Fan, W., Barbour, A. J., McGuire, J. J., Huang, Y., Lin, G., Cochran, E. S., & Okuwaki, R. (2022). Very Low Frequency Earthquakes in Between the Seismogenic and Tremor Zones in Cascadia? AGU Advances, 3(2), e2021AV000607. https://doi.org/https://doi.org/10.1029/2021AV000607

Gabriel, A., Ulrich, T., Marchandon, M., Biemiller, J., & Rekoske, J. (2023). 3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early Observations. The Seismic Record, 3(4), 342–356. https://doi.org/10.1785/0320230028

Gabriel, A.-A., Garagash, D. I., Palgunadi, K. H., & Mai, P. M. (2024). Fault size–dependent fracture energy explains multiscale seismicity and cascading earthquakes. Science, 385(6707), eadj9587. https://doi.org/10.1126/science.adj9587

Galis, M., Pelties, C., Kristek, J., Moczo, P., Ampuero, J.-P., & Mai, P. M. (2015). On the initiation of sustained slip-weakening ruptures by localized stresses. Geophysical Journal International, 200(2), 890–909. https://doi.org/10.1093/gji/ggu436

Gallovič, F., & Valentová, Ľ. (2023). Broadband Strong Ground Motion Modeling Using Planar Dynamic Rupture With Fractal Parameters. Journal of Geophysical Research: Solid Earth, 128(6), e2023JB026506. https://doi.org/https://doi.org/10.1029/2023JB026506

Gallovič, F., Valentová, Ľ., Ampuero, J.-P., & Gabriel, A.-A. (2019). Bayesian Dynamic Finite-Fault Inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, Earthquake. Journal of Geophysical Research: Solid Earth, 124(7), 6970–6988. https://doi.org/10.1029/2019JB017512

Gallovič, František, Zahradnı́k, J., Plicka, V., Sokos, E., Evangelidis, C., Fountoulakis, I., & Turhan, F. (2020). Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ earthquake, Turkey. Communications Earth & Environment, 1(1), 40. https://doi.org/10.1038/s43247-020-00038-x

Galvez, P., Dalguer, L. A., Ampuero, J., & Giardini, D. (2016). Rupture Reactivation during the 2011 Mw 9.0 Tohoku Earthquake: Dynamic Rupture and Ground‐Motion Simulations. Bulletin of the Seismological Society of America, 106(3), 819–831. https://doi.org/10.1785/0120150153

Garagash, D. I. (2021). Fracture mechanics of rate-and-state faults and fluid injection induced slip. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200129. https://doi.org/10.1098/rsta.2020.0129

GEBCO Bathymetric Compilation group. (2020). GEBCO_2020 Grid. In British Oceanographic Data Centre. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9

Glehman, J., Gabriel, A.-A., Ulrich, T., Ramos, M. D., Yihe, H., & Lindsey, E. O. (2024). SeisSol input files of the 3D dynamic relaxation and dynamic rupture simulations of the Cascadia subduction zone in preprint Glehman et al. (2024). Zenodo. https://doi.org/10.5281/zenodo.14991047

Goldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., Patton, J., Nelson, C. H., Hausmann, R., & Morey, A. (2017). The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Marine Geology, 384, 4–46. https://doi.org/10.1016/j.margeo.2016.06.008

Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., Gutierrez-Pastor, J., Eriksson, A. T., Gracia, E., Dunhill, G., Enkin, R. J., Dallimore, A., & Vallier, T. (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone (Techreport No. 1661-F). U.S. Geological Survey. https://doi.org/10.3133/pp1661F

Graehl, N. A., Kelsey, H. M., Witter, R. C., Hemphill-Haley, E., & Engelhart, S. E. (2015). Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA. GSA Bulletin, 127(1–2), 211–226. https://doi.org/10.1130/B31074.1

Guatteri, M., & Spudich, P. (2000). What Can Strong-Motion Data Tell Us about Slip-Weakening Fault-Friction Laws? Bulletin of the Seismological Society of America, 90(1), 98–116. https://doi.org/10.1785/0119990053

Han, S., Bangs, N. L., Carbotte, S. M., Saffer, D. M., & Gibson, J. C. (2017). Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geoscience, 10(12), 954–959. https://doi.org/10.1038/s41561-017-0007-2

Hardebeck, J. L. (2012). Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophysical Research Letters, 39(21). https://doi.org/10.1029/2012GL053438

Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/https://doi.org/10.1029/2005JB004144

Harris, R. A., Barall, M., Lockner, D. A., Moore, D. E., Ponce, D. A., Graymer, R. W., Funning, G., Morrow, C. A., Kyriakopoulos, C., & Eberhart-Phillips, D. (2021). A Geology and Geodesy Based Model of Dynamic Earthquake Rupture on the Rodgers Creek-Hayward-Calaveras Fault System, California. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020577. https://doi.org/https://doi.org/10.1029/2020JB020577

Harris, Ruth A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J., Kaneko, Y., Gabriel, A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., … Dalguer, L. (2018). A Suite of Exercises for Verifying Dynamic Earthquake Rupture Codes. Seismological Research Letters, 89(3), 1146–1162. https://doi.org/10.1785/0220170222

Harris, Ruth A., & Simpson, R. W. (1996). In the shadow of 1857-the effect of the Great Ft. Tejon Earthquake on subsequent earthquakes in southern California. Geophysical Research Letters, 23(3), 229–232. https://doi.org/https://doi.org/10.1029/96GL00015

Harris, Ruth A., & Simpson, R. W. (1998). Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure. Journal of Geophysical Research: Solid Earth, 103(B10), 24439–24451. https://doi.org/https://doi.org/10.1029/98JB00793

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723

Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008524

Heinecke, A., Breuer, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C., Bode, A., Barth, W., Liao, X.-K., Vaidyanathan, K., Smelyanskiy, M., & Dubey, P. (2014). Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 3–14. https://doi.org/10.1109/SC.2014.6

Herman, M. W., Furlong, K. P., & Govers, R. (2018). The Accumulation of Slip Deficit in Subduction Zones in the Absence of Mechanical Coupling: Implications for the Behavior of Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth, 123(9), 8260–8278. https://doi.org/https://doi.org/10.1029/2018JB016336

Hetland, E. A., & Simons, M. (2010). Post-seismic and interseismic fault creep II: transient creep and interseismic stress shadows on megathrusts. Geophysical Journal International, 181(1), 99–112. https://doi.org/10.1111/j.1365-246X.2009.04482.x

Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., & Faccenna, C. (2011). Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophysics, Geosystems, 12(1). https://doi.org/10.1029/2010GC003230

Hok, S., Fukuyama, E., & Hashimoto, C. (2011). Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011JB008492

Huang, Y., Ampuero, J.-P., & Kanamori, H. (2014). Slip-Weakening Models of the 2011 Tohoku-Oki Earthquake and Constraints on Stress Drop and Fracture Energy. Pure and Applied Geophysics, 171(10), 2555–2568. https://doi.org/10.1007/s00024-013-0718-2

Hutchinson, I., & Clague, J. (2017). Were they all giants? Perspectives on late Holocene plate-boundary earthquakes at the northern end of the Cascadia subduction zone. Quaternary Science Reviews, 169, 29–49. https://doi.org/https://doi.org/10.1016/j.quascirev.2017.05.015

Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research (1896-1977), 77(20), 3796–3805. https://doi.org/10.1029/JB077i020p03796

Ide, S., & Aochi, H. (2005). Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. Journal of Geophysical Research: Solid Earth, 110(B11). https://doi.org/10.1029/2004JB003591

Ide, S., & Aochi, H. (2013). Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 1–13. https://doi.org/10.1016/j.tecto.2012.10.018

Ide, S., Araki, E., & Matsumoto, H. (2021). Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan. Earth, Planets and Space, 73(1), 63. https://doi.org/10.1186/s40623-021-01385-5

Ikari, M. J., & Kopf, A. J. (2017). Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. Science Advances, 3(11), e1701269. https://doi.org/10.1126/sciadv.1701269

Jiang, G., Xu, X., Chen, G., Liu, Y., Fukahata, Y., Wang, H., Yu, G., Tan, X., & Xu, C. (2015). Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model. Journal of Geophysical Research: Solid Earth, 120(3), 1855–1873. https://doi.org/10.1002/2014JB011492

Johnson, K. M., Wallace, L. M., Maurer, J., Hamling, I., Williams, C., Rollins, C., Gerstenberger, M., & Van Dissen, R. (2024). Inverting Geodetic Strain Rates for Slip Deficit Rate in Complex Deforming Zones: An Application to the New Zealand Plate Boundary. Journal of Geophysical Research: Solid Earth, 129(3), e2023JB027565. https://doi.org/https://doi.org/10.1029/2023JB027565

Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1

Kanamori, H., & Kikuchi, M. (1993). The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature, 361(6414), 714–716. https://doi.org/10.1038/361714a0

Kanda, R. V. S., Hetland, E. A., & Simons, M. (2013). An asperity model for fault creep and interseismic deformation in northeastern Japan. Geophysical Journal International, 192(1), 38–57. https://doi.org/10.1093/gji/ggs028

Kaneko, Y., Lapusta, N., & Ampuero, J.-P. (2008). Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths. Journal of Geophysical Research: Solid Earth, 113(B9). https://doi.org/10.1029/2007JB005553

Kelsey, H. M., Nelson, A. R., Hemphill-Haley, E., & Witter, R. C. (2005). Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. GSA Bulletin, 117(7–8), 1009–1032. https://doi.org/10.1130/B25452.1

Kelsey, H. M., Witter, R. C., & Hemphill-Haley, E. (2002). Plate-boundary earthquakes and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon. GSA Bulletin, 114(3), 298–314. https://doi.org/10.1130/0016-7606(2002)114<0298:PBEATO>2.0.CO;2

Kemp, A. C., Cahill, N., Engelhart, S. E., Hawkes, A. D., & Wang, K. (2018). Revising Estimates of Spatially Variable Subsidence during the A.D. 1700 Cascadia Earthquake Using a Bayesian Foraminiferal Transfer Function. Bulletin of the Seismological Society of America, 108(2), 654–673. https://doi.org/10.1785/0120170269

Konca, A. O., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., Natawidjaja, D. H., Bock, Y., Fielding, E. J., Ji, C., & Helmberger, D. V. (2008). Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456(7222), 631–635. https://doi.org/10.1038/nature07572

Kopf, A., & Brown, K. M. (2003). Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Marine Geology, 202(3), 193–210. https://doi.org/10.1016/S0025-3227(03)00286-X

Kozdon, J. E., & Dunham, E. M. (2013). Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake. Bulletin of the Seismological Society of America, 103(2B), 1275–1289. https://doi.org/10.1785/0120120136

Krenz, L., Uphoff, C., Ulrich, T., Gabriel, A.-A., Abrahams, L. S., Dunham, E. M., & Bader, M. (2021). 3D acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 1–14. https://doi.org/10.1145/3458817.3476173

Lay, T., & Bilek, S. (2007). 15. Anomalous Earthquake Ruptures at Shallow Depths on Subduction Zone Megathrusts (pp. 476–511). Columbia University Press.

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/https://doi.org/10.1029/2011JB009133

Lay, T., & Schwartz, S. Y. (2004). Comment on “Coupling semantics and science in earthquake research.” Eos, Transactions American Geophysical Union, 85(36), 339–340. https://doi.org/10.1029/2004EO360003

Leithold, E. L., Wegmann, K. W., Bohnenstiehl, D. R., Smith, S. G., Noren, A., & O’Grady, R. (2018). Slope failures within and upstream of Lake Quinault, Washington, as uneven responses to Holocene earthquakes along the Cascadia subduction zone. Quaternary Research, 89(1), 178–200. https://doi.org/10.1017/qua.2017.96

Li, D., & Gabriel, A.-A. (2024). Linking 3D Long-Term Slow-Slip Cycle Models With Rupture Dynamics: The Nucleation of the 2014 Mw 7.3 Guerrero, Mexico Earthquake. AGU Advances, 5(2), e2023AV000979. https://doi.org/10.1029/2023AV000979

Li, D., & Liu, Y. (2016). Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6828–6845. https://doi.org/10.1002/2016JB012857

Li, Shanshan, & Freymueller, J. T. (2018). Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone. Geophysical Research Letters, 45(8), 3453–3460. https://doi.org/10.1002/2017GL076761

Li, Shaoyang, Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically Inferred Locking State of the Cascadia Megathrust Based on a Viscoelastic Earth Model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. https://doi.org/10.1029/2018JB015620

Lindsey, E. O., Mallick, R., Hubbard, J. A., Bradley, K. E., Almeida, R. V., Moore, J. D. P., Bürgmann, R., & Hill, E. M. (2021). Slip rate deficit and earthquake potential on shallow megathrusts. Nature Geoscience, 14(5), 321–326. https://doi.org/10.1038/s41561-021-00736-x

Liu, Y., & Rice, J. R. (2009). Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. Journal of Geophysical Research: Solid Earth, 114(B9). https://doi.org/10.1029/2008JB006142

Long, A. J., & Shennan, I. (1998). Models of rapid relative sea-level change in Washington and Oregon, USA. The Holocene, 8(2), 129–142. https://doi.org/10.1191/095968398666306493

Lotto, G. C., Jeppson, T. N., & Dunham, E. M. (2019). Fully coupled simulations of megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure and Applied Geophysics, 176, 4009–4041.

Ma, S. (2023). Wedge plasticity and a minimalist dynamic rupture model for the 2011 MW 9.1 Tohoku-Oki earthquake and tsunami. Tectonophysics, 869, 230146. https://doi.org/https://doi.org/10.1016/j.tecto.2023.230146

Ma, S., & Beroza, G. C. (2008). Rupture Dynamics on a Bimaterial Interface for Dipping Faults. Bulletin of the Seismological Society of America, 98(4), 1642–1658. https://doi.org/10.1785/0120070201

Ma, S., Custódio, S., Archuleta, R. J., & Liu, P. (2008). Dynamic modeling of the 2004 Mw 6.0 Parkfield, California, earthquake. Journal of Geophysical Research: Solid Earth, 113(B2). https://doi.org/https://doi.org/10.1029/2007JB005216

Ma, S., & Nie, S. (2019). Dynamic Wedge Failure and Along-Arc Variations of Tsunamigenesis in the Japan Trench Margin. Geophysical Research Letters, 46(15), 8782–8790. https://doi.org/https://doi.org/10.1029/2019GL083148

Madariaga, R., & Olsen, K. B. (2002). 12 - Earthquake Dynamics. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International Geophysics (Vol. 81, pp. 175-cp2). Academic Press. https://doi.org/10.1016/S0074-6142(02)80215-7

Madden, E. H., Ulrich, T., & Gabriel, A.-A. (2022). The State of Pore Fluid Pressure and 3-D Megathrust Earthquake Dynamics. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023382. https://doi.org/10.1029/2021JB023382

Martı́nez-Garzón, P., Ben-Zion, Y., Abolfathian, N., Kwiatek, G., & Bohnhoff, M. (2016). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 121(12), 8666–8687. https://doi.org/10.1002/2016JB013493

Materna, K., Bartlow, N., Wech, A., Williams, C., & Bürgmann, R. (2019). Dynamically Triggered Changes of Plate Interface Coupling in Southern Cascadia. Geophysical Research Letters, 46(22), 12890–12899. https://doi.org/10.1029/2019GL084395

McCaffrey, R. (2009). Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia. Geophysical Research Letters, 36(7). https://doi.org/10.1029/2008GL036784

McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. Journal of Geophysical Research: Solid Earth, 118(2), 709–723. https://doi.org/10.1029/2012JB009473

McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J., & Zwick, P. C. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340. https://doi.org/10.1111/j.1365-246X.2007.03371.x

Melgar, D. (2021). Was the January 26th, 1700 Cascadia Earthquake Part of a Rupture Sequence? Journal of Geophysical Research: Solid Earth, 126(10), e2021JB021822. https://doi.org/10.1029/2021JB021822

Melgar, D., Sahakian, V. J., & Thomas, A. M. (2022). Deep Coseismic Slip in the Cascadia Megathrust Can Be Consistent With Coastal Subsidence. Geophysical Research Letters, 49(3), e2021GL097404. https://doi.org/10.1029/2021GL097404

Mikumo, T., Olsen, K. B., Fukuyama, E., & Yagi, Y. (2003). Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 93(1), 264–282. https://doi.org/10.1785/0120020082

Nelson, A. R., Sawai, Y., Jennings, A. E., Bradley, L.-A., Gerson, L., Sherrod, B. L., Sabean, J., & Horton, B. P. (2008). Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast, USA. Quaternary Science Reviews, 27(7), 747–768. https://doi.org/10.1016/j.quascirev.2008.01.001

Nieminski, N. M., Sylvester, Z., Covault, J. A., Gomberg, J., Staisch, L., & McBrearty, I. W. (2024). Turbidite correlation for paleoseismology. GSA Bulletin, 137(1–2), 29–40. https://doi.org/10.1130/B37343.1

Niu, Z., Gabriel, A.-A., Wolf, S., Ulrich, T., Lyakhovsky, V., & Igel, H. (2025). A Discontinuous Galerkin Method for Simulating 3D Seismic Wave Propagation in Nonlinear Rock Models: Verification and Application to the 2015 Mw 7.8 Gorkha Earthquake. arXiv. https://doi.org/10.48550/arXiv.2502.09714

Noda, A., Hashimoto, C., Fukahata, Y., & Matsu’ura, M. (2013). Interseismic GPS strain data inversion to estimate slip-deficit rates at plate interfaces: application to the Kanto region, central Japan. Geophysical Journal International, 193(1), 61–77. https://doi.org/10.1093/gji/ggs129

Noda, H., Dunham, E. M., & Rice, J. R. (2009). Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008JB006143

Oeser, J., Bunge, H.-P., & Mohr, M. (2006). Cluster Design in the Earth Sciences Tethys. In M. Gerndt & D. Kranzlmüller (Eds.), High Performance Computing and Communications. Springer Berlin Heidelberg.

Okubo, P. G., & Dieterich, J. H. (1986). State Variable Fault Constitutive Relations for Dynamic Slip. In Earthquake Source Mechanics (pp. 25–35). American Geophysical Union (AGU). https://doi.org/https://doi.org/10.1029/GM037p0025

Olsen, K. B. (2000). Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94. https://doi.org/10.1785/0120000506

Oral, E., Ampuero, J.-P., Ruiz, J., & Asimaki, D. (2022). A method to generate initial fault stresses for physics-based ground-motion prediction consistent with regional seismicity. Bulletin of the Seismological Society of America, 112, 2812–2827. https://doi.org/10.1785/0120220064

Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. https://doi.org/10.1038/nature10227

Padgett, J. S., Engelhart, S. E., Kelsey, H. M., Witter, R. C., & Cahill, N. (2022). Reproducibility and variability of earthquake subsidence estimates from saltmarshes of a Cascadia estuary. Journal of Quaternary Science, 37(7), 1294–1312. https://doi.org/10.1002/jqs.3446

Palmer, A. C., Rice, J. R., & Hill, R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 332(1591), 527–548. https://doi.org/10.1098/rspa.1973.0040

Pelties, C., Gabriel, A.-A., & Ampuero, J.-P. (2014). Verification of an ADER-DG method for complex dynamic rupture problems. Geoscientific Model Development, 7(3), 847–866. https://doi.org/10.5194/gmd-7-847-2014

Pelties, Christian, de la Puente, J., Ampuero, J.-P., Brietzke, G. B., & Käser, M. (2012). Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/10.1029/2011JB008857

Petersen, M. D., Cramer, C. H., & Frankel, A. D. (2002). Simulations of Seismic Hazard for the Pacific Northwest of the United States from Earthquakes Associated with the Cascadia Subduction Zone. In M. Matsu’ura, P. Mora, A. Donnellan, & X. Yin (Eds.), Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I (pp. 2147–2168). Birkhäuser Basel.

Pilz, M., Cotton, F., Razafindrakoto, H. N. T., Weatherill, G., & Spies, T. (2021). Regional broad-band ground-shaking modelling over extended and thick sedimentary basins: an example from the Lower Rhine Embayment (Germany). Bulletin of Earthquake Engineering, 19(2), 581–603. https://doi.org/10.1007/s10518-020-01004-w

Pollitz, F. F. (2025). 3D Viscoelastic Models of Slip-Deficit Rate Along the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 130(1), e2024JB029847. https://doi.org/10.1029/2024JB029847

Prada, M., Galvez, P., Ampuero, J.-P., Sallarès, V., Sánchez-Linares, C., Macías, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022328. https://doi.org/10.1029/2021JB022328

Prada, M., Galvez, P., Ampuero, J.-P., Sallarès, V., Sánchez-Linares, C., Macı́as, J., & Peter, D. (2021). The Influence of Depth-Varying Elastic Properties of the Upper Plate on Megathrust Earthquake Rupture Dynamics and Tsunamigenesis. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022328. https://doi.org/10.1029/2021JB022328

Quin, H. (1990). Dynamic stress drop and rupture dynamics of the October 15, 1979 Imperial Valley, California, earthquake. Tectonophysics, 175(1), 93–117. https://doi.org/https://doi.org/10.1016/0040-1951(90)90132-R

Ramos, M. D., & Huang, Y. (2019). How the Transition Region Along the Cascadia Megathrust Influences Coseismic Behavior: Insights From 2-D Dynamic Rupture Simulations. Geophysical Research Letters, 46(4), 1973–1983. https://doi.org/10.1029/2018GL080812

Ramos, M. D., Huang, Y., Ulrich, T., Li, D., Gabriel, A.-A., & Thomas, A. M. (2021). Assessing Margin-Wide Rupture Behaviors Along the Cascadia Megathrust With 3-D Dynamic Rupture Simulations. Journal of Geophysical Research: Solid Earth, 126(7), e2021JB022005. https://doi.org/10.1029/2021JB022005

Ramos, M. D., Thakur, P., Huang, Y., Harris, R. A., & Ryan, K. J. (2022). Working with Dynamic Earthquake Rupture Models: A Practical Guide. Seismological Research Letters, 93(4), 2096–2110. https://doi.org/10.1785/0220220022

Rettenberger, S., Meister, O., Bader, M., & Gabriel, A.-A. (2016). ASAGI: A Parallel Server for Adaptive Geoinformation. Proceedings of the Exascale Applications and Software Conference 2016. https://doi.org/10.1145/2938615.2938618

Rice, J. R. (1992). Chapter 20 Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault. In B. Evans & T. Wong (Eds.), International Geophysics (Vol. 51, pp. 475–503). Academic Press. https://doi.org/10.1016/S0074-6142(08)62835-1

Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/https://doi.org/10.1029/JB088iB12p10359

Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure. Annual Review of Earth and Planetary Sciences, 39(Volume 39, 2011), 157–186. https://doi.org/10.1146/annurev-earth-040610-133408

Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature, 576(7785), 96–101. https://doi.org/10.1038/s41586-019-1784-0

Satake, K., Wang, K., & Atwater, B. F. (2003). Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research: Solid Earth, 108(B11). https://doi.org/10.1029/2003JB002521

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. https://doi.org/10.1029/JB088iB06p04984

Schliwa, N., Gabriel, A.-A., Premus, J., & Gallovič, F. (2024). The Linked Complexity of Coseismic and Postseismic Faulting Revealed by Seismo-Geodetic Dynamic Inversion of the 2004 Parkfield Earthquake. Journal of Geophysical Research: Solid Earth, 129(12), e2024JB029410. https://doi.org/https://doi.org/10.1029/2024JB029410

Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. https://doi.org/10.1002/2013GC005172

Schulz, W. H., Galloway, S. L., & Higgins, J. D. (2012). Evidence for earthquake triggering of large landslides in coastal Oregon, USA. Geomorphology, 141–142, 88–98. https://doi.org/10.1016/j.geomorph.2011.12.026

Sibson, R. H. (1973). Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief. Nature Physical Science, 243(126), 66–68. https://doi.org/10.1038/physci243066a0

Staisch, L. (2024). Sensitivity Testing of Marine Turbidite Age Estimates along the Cascadia Subduction Zone. Bulletin of the Seismological Society of America, 114(3), 1739–1753. https://doi.org/10.1785/0120230252

Stephenson, W. J., Reitman, N. G., & Angster, S. J. (2017). P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations, Version 1.6—Update for Open-File Report 2007–1348 (Techreport No. 2017–1152). U.S. Geological Survey. https://doi.org/10.3133/ofr20171152

Takada, K., & Atwater, B. F. (2004). Evidence for Liquefaction Identified in Peeled Slices of Holocene Deposits along the Lower Columbia River, Washington. Bulletin of the Seismological Society of America, 94(2), 550–575. https://doi.org/10.1785/0120020152

Taufiqurrahman, T., Gabriel, A.-A., Ulrich, T., Valentová, L., & Gallovič, F. (2022). Broadband Dynamic Rupture Modeling With Fractal Fault Roughness, Frictional Heterogeneity, Viscoelasticity and Topography: The 2016 Mw 6.2 Amatrice, Italy Earthquake. Geophysical Research Letters, 49(22), e2022GL098872. https://doi.org/10.1029/2022GL098872

Templeton, E. L., & Rice, J. R. (2008). Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes. Journal of Geophysical Research: Solid Earth, 113(B9). https://doi.org/10.1029/2007JB005529

Thomas, A. L. (1993). POLU3D: A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth’s crust. Master Thesis at Stanford University. https://cir.nii.ac.jp/crid/1572824500630586752

Tinti, E., Spudich, P., & Cocco, M. (2005). Earthquake fracture energy inferred from kinematic rupture models on extended faults. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005JB003644

Tinti, Elisa, Casarotti, E., Ulrich, T., Taufiqurrahman, T., Li, D., & Gabriel, A.-A. (2021). Constraining families of dynamic models using geological, geodetic and strong ground motion data: The Mw 6.5, October 30th, 2016, Norcia earthquake, Italy. Earth and Planetary Science Letters, 576, 117237. https://doi.org/10.1016/j.epsl.2021.117237

Tobin, H. J. (2022). Re-examining the Prospects for Frictional Locking and Seismic Slip of the Cascadia Shallow Megathrust and Accretionary Wedge Faults. AGU Fall Meeting Abstracts, 2022, eT53B-05.

Ulrich, T., Gabriel, A.-A., & Madden, E. H. (2022). Stress, rigidity and sediment strength control megathrust earthquake and tsunami dynamics. Nature Geoscience, 15(1), 67–73. https://doi.org/10.1038/s41561-021-00863-5

Uphoff, C., Rettenberger, S., Bader, M., Madden, E. H., Ulrich, T., Wollherr, S., & Gabriel, A.-A. (2017). Extreme scale multi-physics simulations of the tsunamigenic 2004 sumatra megathrust earthquake. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 1–16. https://doi.org/10.1145/3126908.3126948

Vyas, J. C., Gabriel, A., Ulrich, T., Mai, P. M., & Ampuero, J. (2023). How Does Thermal Pressurization of Pore Fluids Affect 3D Strike‐Slip Earthquake Dynamics and Ground Motions? Bulletin of the Seismological Society of America, 113(5), 1992–2008. https://doi.org/10.1785/0120220205

Walton, M. A. L., Staisch, L. M., Dura, T., Pearl, J. K., Sherrod, B., Gomberg, J., Engelhart, S., Tréhu, A., Watt, J., Perkins, J., Witter, R. C., Bartlow, N., Goldfinger, C., Kelsey, H., Morey, A. E., Sahakian, V. J., Tobin, H., Wang, K., Wells, R., & Wirth, E. (2021). Toward an Integrative Geological and Geophysical View of Cascadia Subduction Zone Earthquakes. Annual Review of Earth and Planetary Sciences, 49(Volume 49, 2021), 367–398. https://doi.org/10.1146/annurev-earth-071620-065605

Wang, D., Mori, J., & Koketsu, K. (2016). Fast rupture propagation for large strike-slip earthquakes. Earth and Planetary Science Letters, 440, 115–126. https://doi.org/10.1016/j.epsl.2016.02.022

Wang, K., & Dixon, T. (2004). “Coupling” Semantics and science in earthquake research. Eos, Transactions American Geophysical Union, 85(18), 180–180. https://doi.org/https://doi.org/10.1029/2004EO180005

Wang, K., & Tréhu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. Journal of Geodynamics, 98, 1–18. https://doi.org/https://doi.org/10.1016/j.jog.2016.03.010

Wang, P.-L., Engelhart, S. E., Wang, K., Hawkes, A. D., Horton, B. P., Nelson, A. R., & Witter, R. C. (2013). Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. Journal of Geophysical Research: Solid Earth, 118(5), 2460–2473. https://doi.org/10.1002/jgrb.50101

Watt, J. T., & Brothers, D. S. (2020). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. Geosphere, 17(1), 95–117. https://doi.org/10.1130/GES02178.1

Wilson, A., & Ma, S. (2021). Wedge plasticity and fully coupled simulations of dynamic rupture and tsunami in the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 126(7), e2020JB021627.

Wirp, S. A., Gabriel, A.-A., Ulrich, T., & Lorito, S. (2024). Dynamic rupture modeling of large earthquake scenarios at the Hellenic Arc toward physics-based seismic and tsunami hazard assessment. In Authorea Preprints. https://doi.org/10.22541/essoar.171466347.70823241/v1

Wirth, E. A., & Frankel, A. D. (2019). Impact of Down‐Dip Rupture Limit and High‐Stress Drop Subevents on Coseismic Land‐Level Change during Cascadia Megathrust Earthquakes. Bulletin of the Seismological Society of America, 109(6), 2187–2197. https://doi.org/10.1785/0120190043

Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 3(2), 125–140. https://doi.org/10.1038/s43017-021-00245-w

Witter, R. C., Kelsey, H. M., & Hemphill-Haley, E. (2003). Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. GSA Bulletin, 115(10), 1289–1306. https://doi.org/10.1130/B25189.1

Wollherr, S., Gabriel, A.-A., & Uphoff, C. (2018). Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal Discontinuous Galerkin method on unstructured meshes: implementation, verification and application. Geophysical Journal International, 214(3), 1556–1584. https://doi.org/10.1093/gji/ggy213

Yang, H., Yao, S., He, B., & Newman, A. V. (2019). Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust. Earth and Planetary Science Letters, 520, 10–17. https://doi.org/https://doi.org/10.1016/j.epsl.2019.05.030

Yang, H., Yao, S., He, B., Newman, A. V., & Weng, H. (2019). Deriving Rupture Scenarios From Interseismic Locking Distributions Along the Subduction Megathrust. Journal of Geophysical Research: Solid Earth, 124(10), 10376–10392. https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JB017541

Yao, S., & Yang, H. (2020). Rupture Dynamics of the 2012 Nicoya M 7.6 Earthquake: Evidence for Low Strength on the Megathrust. Geophysical Research Letters, 47(13), e2020GL087508. https://doi.org/10.1029/2020GL087508

Yao, S., & Yang, H. (2023). Towards ground motion prediction for potential large earthquakes from interseismic locking models. Earth and Planetary Science Letters, 601, 117905. https://doi.org/https://doi.org/10.1016/j.epsl.2022.117905

Zumberge, M. A., Hatfield, W., & Wyatt, F. K. (2018). Measuring Seafloor Strain With an Optical Fiber Interferometer. Earth and Space Science, 5(8), 371–379. https://doi.org/10.1029/2018EA000418

Downloads

Published

2025-06-19

How to Cite

Glehman, J., Gabriel, A., Ulrich, T., Ramos, M., Huang, Y., & Lindsey, E. (2025). Partial ruptures governed by the complex interplay between geodetic slip deficit, rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1427

Issue

Section

Special Issue: the Cascadia Subduction Zone

Funding data