Can Earthquake Locations Be Improved for Real-time Monitoring? Revisiting the 1995 seismicity at Soufri`ere Hills Volcano, Montserrat

Authors

DOI:

https://doi.org/10.26443/seismica.v4i1.1429

Keywords:

Volcanic Seismicity, Earthquake Location

Abstract

Volcanic earthquakes provide a wealth of information about the magmatic system. Monitoring volcanic seismicity is one of the primary methods used by volcano observatories globally, including at Soufri`ere Hills Volcano, Montserrat. Computed earthquake locations represent the optimal solution given the information available, and vary depending on the chosen location method and seismic velocity model, but rarely are these parameters tested for suitability in each region. We propose a new method that utilises synthetic earthquakes to evaluate whether the calculated hypocenters and their associated errors accurately represent the true source locations. We define this evaluation as a confidence parameter that highlights events we can 'trust'. By comparing several location methods and seismic velocity models for Montserrat we show the current setup is not optimal, and suggest an alternative location method. Analysis using new 'trusted' relocations focuses on four seismic clusters distal from Soufriere Hills in 1995. Our results highlight differences in hypocenters during this period, suggesting alternative interpretations of the distal seismicity. We propose a WNW dyke orientation supporting previous studies, and local fault complexes in the region. Overall, this paper highlights the importance of using a robust location method suitable for the region to ensure that calculated hypocenters are trustworthy and accurate. Use of sub-optimal methods can influence apparent spatial earthquake trends, impacting interpretations and our understanding of volcanic systems.

References

Aspinall, W., Miller, A., Lynch, L., Latchman, J., Stewart, R., White, R., & Power, J. (1998). Soufrière Hills eruption, Montserrat, 1995–1997: Volcanic earthquake locations and fault plane solutions. Geophysical Research Letters, 25(18), 3397–3400. DOI: https://doi.org/10.1029/98GL00858

Baird, A., Kendall, J.M., Sparks, R., & Baptie, B. (2015). Transtensional deformation of Montserrat revealed by shear wave splitting. Earth and Planetary Science Letters, 425, 179–186. DOI: https://doi.org/10.1016/j.epsl.2015.06.006

Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). DOI: https://doi.org/10.1029/2001GC000252

Bono, A., Lauciani, V., Margheriti, L., & Quintiliani, M. (2021). Caravel: A New Earthworm‐Based Open‐Source Development for the Italian Seismic Monitoring System. Seismological Research Letters, 92(3), 1738–1745. DOI: https://doi.org/10.1785/0220200355

Bonneton, J.R., & Scheidegger, A. (1981). Relations between fracture patterns, seismicity and plate motions in the Lesser Antilles. Journal of Structural Geology, 3(4), 359–369. DOI: https://doi.org/10.1016/0191-8141(81)90036-5

Bratt, S., & Nagy, I. (1991). The LocSAT Program. Science Applications International Corporation, San Diego.

Chardot, L., Voight, B., Foroozan, R., Sacks, S., Linde, A., Stewart, R., Hidayat, D., Clarke, A., Elsworth, D., Fournier, N., & others. (n.d.). Explosion dynamics from strainmeter and microbarometer observations, Soufrière Hills Volcano, Montserrat: 2008–2009. Geophysical Research Letters, 37(19). (Year is required!) DOI: https://doi.org/10.1029/2010GL044661

Dunn, O. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252. DOI: https://doi.org/10.1080/00401706.1964.10490181

Faulds, J., Hinz, N., Coolbaugh, M., Cashman, P., Kratt, C., Dering, G., Edwards, J., Mayhew, B., & McLachlan, H. (2011). Assessment of favorable structural settings of geothermal systems in the Great Basin, western USA. Geothermal Resources Council Transactions, 35, 777–783.

Feuillet, N., Leclerc, F., Tapponnier, P., Beauducel, F., Boudon, G., Le Friant, A., Deplus, C., Lebrun, J.F., Nercessian, A., Saurel, J.M., & others. (2010). Active faulting induced by slip partitioning in Montserrat and link with volcanic activity: New insights from the 2009 GWADASEIS marine cruise data. Geophysical Research Letters, 37(19). DOI: https://doi.org/10.1029/2010GL042556

Harford, C., Pringle, M., Sparks, R., & Young, S. (2002). The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. Geological Society, London, Memoirs, 21(1), 93–113. DOI: https://doi.org/10.1144/GSL.MEM.2002.021.01.05

Hautmann, S., Gottsmann, J., Sparks, R., Costa, A., Melnik, O., & Voight, B. (2009). Modelling ground deformation caused by oscillating overpressure in a dyke conduit at Soufrière Hills Volcano, Montserrat. Tectonophysics, 471(1–2), 87–95. DOI: https://doi.org/10.1016/j.tecto.2008.10.021

Hill, D. (1977). A model for earthquake swarms. Journal of Geophysical Research, 82(8), 1347–1352. DOI: https://doi.org/10.1029/JB082i008p01347

Hobro, J., Singh, S., & Minshull, T. (2003). Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophysical Journal International, 152(1), 79–93. DOI: https://doi.org/10.1046/j.1365-246X.2003.01822.x

Johnson, C., Bittenbinder, A., Bogaert, B., Dietz, L., & Kohler, W. (1995). Earthworm: A flexible approach to seismic network processing. Iris Newsletter, 14(2), 1–4.

Klein, F. (2002). User’s guide to HYPOINVERSE-2000: A Fortran program to solve for earthquake locations and magnitudes. US Geological Survey Open File Report, 02-171. DOI: https://doi.org/10.3133/ofr02171

Lienert, B., Berg, E., & Frazer, L. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, 76(3), 771–783. DOI: https://doi.org/10.1785/BSSA0760030771

Lomax, A. (2001). NonLinLoc Home Page. http://alomax.free.fr/nlloc/

Mattioli, G., Dixon, T., Farina, F., Howell, E., Jansma, P., & Smith, A. (1998). GPS measurement of surface deformation around Soufrière Hills volcano, Montserrat from October 1995 to July 1996. Geophysical Research Letters, 25(18), 3417–3420. DOI: https://doi.org/10.1029/98GL00931

Miller, V., Voight, B., Ammon, C., Shalev, E., & Thompson, G. (2010). Seismic expression of magma-induced crustal strains and localized fluid pressures during initial eruptive stages, Soufrière Hills Volcano, Montserrat. Geophysical Research Letters, 37(19). DOI: https://doi.org/10.1029/2010GL043997

Miller, V. (2011). Crustal response to changes in the magmatic system at the Soufrière Hills Volcano, Montserrat. Ph.D. Thesis, Pennsylvania State University.

MVO. (2023). MVO OFR 23/02. MVO Open File Report.

Neuberg, J., Taisne, B., Burton, M., Ryan, G., Calder, E., Fournier, N., & Collinson, A. (2022). A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills Volcano on Montserrat, West Indies. Journal of Volcanology and Geothermal Research, 425, 107518. DOI: https://doi.org/10.1016/j.jvolgeores.2022.107518

Paulatto, M., Annen, C., Henstock, T., Kiddle, E., Minshull, T., Sparks, R., & Voight, B. (2012). Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochemistry, Geophysics, Geosystems, 13(1). DOI: https://doi.org/10.1029/2011GC003892

Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International, 105(1), 271–284. DOI: https://doi.org/10.1111/j.1365-246X.1991.tb03461.x

Powell, C. (1938). The Royal Society expedition to Montserrat, BWI final report. Philosophical Transactions of the Royal Society of London. Series A, 237(771), 1–34. DOI: https://doi.org/10.1098/rsta.1938.0002

Power, J., Wyss, M., & Latchman, J. (1998). Spatial variations in the frequency-magnitude distribution of earthquakes at Soufrière Hills Volcano, Montserrat, West Indies. Geophysical Research Letters, 25(19), 3653–3656. DOI: https://doi.org/10.1029/98GL00430

Richards, P. et al. (2006). The applicability of modern methods of earthquake location. Pure and Applied Geophysics, 163, 351–372. DOI: https://doi.org/10.1007/s00024-005-0019-5

Roman, D., De Angelis, S., Latchman, J., & White, R. (2008). Patterns of volcanotectonic seismicity and stress during the ongoing eruption of the Soufrière Hills Volcano, Montserrat (1995–2007). Journal of Volcanology and Geothermal Research, 173(3–4), 230–244. DOI: https://doi.org/10.1016/j.jvolgeores.2008.01.014

Roman, D., Neuberg, J., & Luckett, R. (2006). Assessing the likelihood of volcanic eruption through analysis of volcanotectonic earthquake fault-plane solutions. Earth and Planetary Science Letters, 248(1–2), 244–252. DOI: https://doi.org/10.1016/j.epsl.2006.05.029

Roman, D., Savage, M., Arnold, R., Latchman, J., & De Angelis, S. (2011). Analysis and forward modeling of seismic anisotropy during the ongoing eruption of the Soufrière Hills Volcano, Montserrat, 1996–2007. Journal of Geophysical Research: Solid Earth, 116(B3). DOI: https://doi.org/10.1029/2010JB007667

Rowe, C., Thurber, C., & White, R. (2004). Dome growth behavior at Soufrière Hills Volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995–1996. Journal of Volcanology and Geothermal Research, 134(3), 199–221. DOI: https://doi.org/10.1016/j.jvolgeores.2004.01.008

Ryan, G., Peacock, J., Shalev, E., & Rugis, J. (2013). Montserrat geothermal system: A 3D conceptual model. Geophysical Research Letters, 40(10), 2038–2043. DOI: https://doi.org/10.1002/grl.50489

Shalev, E., & Lees, J. (1998). Cubic B-splines tomography at Loma Prieta. Bulletin of the Seismological Society of America, 88(1), 256–269. DOI: https://doi.org/10.1785/BSSA0880010256

Shalev, E., Kenedi, C., Malin, P., Voight, V., Miller, V., Hidayat, D., Sparks, R., Minshull, T., Paulatto, M., Brown, L., & others. (2010). Three-dimensional seismic velocity tomography of Montserrat from the SEA-CALIPSO offshore/onshore experiment. Geophysical Research Letters, 37(19). DOI: https://doi.org/10.1029/2010GL042498

Shepherd, J., Tomblin, J., & Woo, D. (1971). Volcano-seismic crisis in Montserrat, West Indies, 1966–67. Bulletin Volcanologique, 35(1), 143–162. DOI: https://doi.org/10.1007/BF02596813

Ukawa, M., & Tsukahara, H. (1996). Earthquake swarms and dike intrusions off the east coast of Izu Peninsula, central Japan. Tectonophysics, 253(3), 285–303. DOI: https://doi.org/10.1016/0040-1951(95)00077-1

Vargas-Bracamontes, D., & Neuberg, J. (2012). Interaction between regional and magma-induced stresses and their impact on volcano-tectonic seismicity. Journal of Volcanology and Geothermal Research, 243, 91–96. DOI: https://doi.org/10.1016/j.jvolgeores.2012.06.025

Wadge, G. (1986). The dykes and structural setting of the volcanic front in the Lesser Antilles island arc. Bulletin of Volcanology, 48(6), 349–372. DOI: https://doi.org/10.1007/BF01074466

Waldhauser, F. (2001). HypoDD---A program to compute double-difference hypocenter locations. USGS Open-File Report 2001-113. DOI: https://doi.org/10.3133/ofr01113

White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions. Journal of Volcanology and Geothermal Research, 309, 139–155. DOI: https://doi.org/10.1016/j.jvolgeores.2015.10.020

Young, S., Francis, P., Barclay, J., Casadevall, T., Gardner, C., Darroux, B., Davies, M., Delmelle, P., Norton, G., Maciejewski, A., & others. (1998). Monitoring SO₂ emission at the Soufrière Hills Volcano: Implications for changes in eruptive conditions. Geophysical Research Letters, 25(19), 3681–3684. DOI: https://doi.org/10.1029/98GL01406

Downloads

Published

2025-05-01

How to Cite

Eyles, J., Johnson, J., Barclay, J., Smith, P., & Miller, V. (2025). Can Earthquake Locations Be Improved for Real-time Monitoring? Revisiting the 1995 seismicity at Soufri`ere Hills Volcano, Montserrat. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1429

Issue

Section

Articles

Funding data