Using citizen science Raspberry Shake seismometers to enhance earthquake location and characterization: a case study from Wellington, New Zealand

Authors

  • Bethany Hughes Victoria University of Wellington
  • Finnigan Illsley-Kemp Victoria University of Wellington
  • Eleanor Mestel Victoria University of Wellington
  • John Townend Victoria University of Wellington
  • Chantujan Chandrakumar Massey University
  • Raj Prasanna Massey University

DOI:

https://doi.org/10.26443/seismica.v4i1.1430

Abstract

 

The recent development of low-cost citizen seismometers has opened new avenues for earthquake analysis. We explore the integration of Raspberry Shake citizen seismometers with the national GeoNet seismic network to improve the precision of earthquake locations in Wellington, New Zealand. We use a dataset of 19 earthquakes between magnitudes 1.1 and 3.5 and between hypocentral distances of 22 km and 102 km. Our findings demonstrate that using Raspberry Shake seismometers in conjunction with the GeoNet network is effective for both the locating and characterisation of earthquakes. Notably, we find that precise station locations are less critical for precise earthquake location, a significant factor given that the publicly available Raspberry Shake locations are obfuscated to protect user privacy. These results suggest that, dependent on network geometry, citizen seismometer data can be a valuable tool in seismic monitoring and improve earthquake location capability, whilst remaining cost-effective.

References

Anthony, R. E., Ringler, A. T., Wilson, D. C., & Wolin, E. (2019). Do low-cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D. Seismological Research Letters, 90(1), 219–228. https://doi.org/https://doi.org/10.1785/0220180251

Balangue-Tarriela, M., Lagmay, A., Sarmiento, D., Vasquez, J., Baldago, M., Ybañez, R., Ybañez, A., Trinidad, J., Thivet, S., Gurioli, L., & others. (2022). Analysis of the 2020 Taal Volcano tephra fall deposits from crowdsourced information and field data. Bulletin of Volcanology, 84(3), 35. https://doi.org/https://doi.org/10.1007/s00445-022-01534-y

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: a Python toolbox for seismology. Seismological Research Letters, 81, 530–533. https://doi.org/https://doi.org/10.1785/gssrl.81.3.530

Calais, E., Symithe, S., Monfret, T., Delouis, B., Lomax, A., Courboulex, F., Ampuero, J. P., Lara, P. E., Bletery, Q., Chèze, J., & others. (2022). Citizen seismology helps decipher the 2021 Haiti earthquake. Science, 376(6590), 283–287. https://doi.org/https://doi.org/10.1126/science.abn1045

Chandrakumar, C., Tan, M. L., Holden, C., Stephens, M. T., & Prasanna, R. (2023). Performance analysis of P-wave detection algorithms for a community-engaged earthquake early warning system–a case study of the 2022 M5. 8 Cook Strait earthquake. New Zealand Journal of Geology and Geophysics, 1–16. https://doi.org/https://doi.org/10.1080/00288306.2023.2284276

GNS Science. (2021). GeoNet Aotearoa New Zealand Seismic Digital Waveform Dataset [Dataset]. https://doi.org/https://doi.org/10.21420/G19Y-9D40

GNS Science. (2024). GeoNet Aotearoa New Zealand Earthquake Catalogue. https://doi.org/10.21420/0S8P-TZ38

Heimann, S., Kriegerowski, M., Isken, M., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., & Dahm, T. (2019). Pyrocko-A versatile software framework for seismology. Geophysical Research Abstracts, 21.

Hinzen, K.-G., Krummel, H., Weber, B., & Fleischer, C. (2022). Forensic view on two Raspberry Shake burglargrams. Journal of Seismology, 26(5), 863–873. https://doi.org/https://doi.org/10.1007/s10950-022-10098-5

Holmgren, J. M., & Werner, M. J. (2021). Raspberry shake instruments provide initial ground-motion assessment of the induced seismicity at the united downs deep geothermal power project in Cornwall, United Kingdom. The Seismic Record, 1(1), 27–34. https://doi.org/https://doi.org/10.1785/0320210010

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465. https://doi.org/https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Lamb, O. D., Shore, M. J., Lees, J. M., Lee, S. J., & Hensman, S. M. (2021). Assessing raspberry shake and boom sensors for recording African elephant acoustic vocalizations. Frontiers in Conservation Science, 1, 630967. https://doi.org/https://doi.org/10.3389/fcosc.2020.630967

Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen, R. J., Barrell, D. J. A., Rattenbury, M., Heron, D. W., Haubrock, S., Townsend, D. B., & others. (2016). The New Zealand active faults database. New Zealand Journal of Geology and Geophysics, 59(1), 86–96. https://doi.org/https://doi.org/10.1080/00288306.2015.1112818

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models: introduction of a Metropolis-Gibbs method and comparison with linear locations. In C. H. Thurber & N. Rabinowitz (Eds.), Advances in seismic event location (pp. 101–134). Springer. https://doi.org/https://doi.org/10.1007/978-94-015-9536-0_5

Lomax, A., Michelini, A., & Curtis, A. (2009). Earthquake location, direct, global-search methods. In R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 2449–2473). Springer. https://doi.org/http://dx.doi.org/10.1007/978-0-387-30440-3

Manconi, A., Coviello, V., Galletti, M., & Seifert, R. (2018). Monitoring rockfalls with the Raspberry Shake. Earth Surface Dynamics, 6(4), 1219–1227. https://doi.org/https://doi.org/10.5194/esurf-6-1219-2018

Özcebe, A. G., Tiganescu, A., Ozer, E., Negulescu, C., Galiana-Merino, J. J., Tubaldi, E., Toma-Danila, D., Molina, S., Kharazian, A., Bozzoni, F., & others. (2022). Raspberry shake-based rapid structural identification of existing buildings subject to earthquake ground motion: The case study of Bucharest. Sensors, 22(13), 4787. https://doi.org/https://doi.org/10.3390/s22134787

Paul, S., Monfret, T., Courboulex, F., Chèze, J., Calais, E., Julien Symithe, S., Deschamps, A., Peix, F., Ambrois, D., Martin, X., & others. (2023). Monitoring of local earthquakes in Haiti using low-cost, citizen-hosted seismometers and regional broadband stations. Seismological Research Letters, 94(6), 2725–2739. https://doi.org/https://doi.org/10.1785/0220230059

Petersen, T., Gledhill, K., Chadwick, M., Gale, N. H., & Ristau, J. (2011). The New Zealand national seismograph network. Seismological Research Letters, 82, 9–20. https://doi.org/https://doi.org/10.1785/gssrl.82.1.9

Prasanna, R., Chandrakumar, C., Nandana, R., Holden, C., Punchihewa, A., Becker, J. S., Jeong, S., Liyanage, N., Ravishan, D., Sampath, R., & others. (2022). “Saving Precious Seconds”—A novel approach to implementing a low-cost earthquake early warning system with node-level detection and alert generation. Informatics, 9(1), 25. https://doi.org/https://doi.org/10.3390/informatics9010025

Pugh, D., & White, R. (2018). MTfit: A Bayesian approach to seismic moment tensor inversion. Seismological Research Letters, 89(4), 1507–1513. https://doi.org/https://doi.org/10.1785/0220170273

Raspberry Shake. (2016). Raspberry Shake [Dataset]. https://doi.org/https://doi.org/10.7914/SN/AM

Ristau, J. (2013). Update of regional moment tensor analysis for earthquakes in New Zealand and adjacent offshore regions. Bulletin of the Seismological Society of America, 103(4), 2520–2533. https://doi.org/https://doi.org/10.1785/0120120339

Subedi, S., Hetényi, G., Denton, P., & Sauron, A. (2020). Seismology at school in Nepal: A program for educational and citizen seismology through a low-cost seismic network. Frontiers in Earth Science, 8, 73. https://doi.org/https://doi.org/10.3389/feart.2020.00073

Subedi, S., Hetényi, G., Frédérick, M., Adhikari, L. B., & Michailos, K. (2024). Local earthquake monitoring with a low-cost seismic network: a case study in Nepal. Earth, Planets and Space, 76(1), 116. https://doi.org/https://doi.org/10.1186/s40623-024-02047-y

Tian, D., Uieda, L., Leong, W. J., Schlitzer, W., Fröhlich, Y., Grund, M., Jones, M., Toney, L., Yao, J., Magen, Y., Tong, J.-H., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2023). PyGMT: A Python interface for the Generic Mapping Tools (0.10.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.8303186

Upton, E., & Halfacree, G. (2016). Raspberry Pi user guide. John Wiley & Sons. https://doi.org/10.1002/9781119415572

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/https://doi.org/10.1029/2019GC008515

Williams, C. A., Eberhart-Phillips, D., Bannister, S., Barker, D. H., Henrys, S., Reyners, M., & Sutherland, R. (2013). Revised interface geometry for the Hikurangi subduction zone, New Zealand. Seismological Research Letters, 84(6), 1066–1073. https://doi.org/https://doi.org/10.1785/0220130035

Winter, K., Lombardi, D., Diaz-Moreno, A., & Bainbridge, R. (2021). Monitoring icequakes in East Antarctica with the raspberry shake. Seismological Society of America, 92(5), 2736–2747. https://doi.org/https://doi.org/10.1785/0220200483

Additional Files

Published

2025-02-05

How to Cite

Hughes, B., Illsley-Kemp, F., Mestel, E., Townend, J., Chandrakumar, C., & Prasanna, R. (2025). Using citizen science Raspberry Shake seismometers to enhance earthquake location and characterization: a case study from Wellington, New Zealand. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1430

Issue

Section

Articles