Picking Regional Seismic Phase Arrival Times with Deep Learning

Authors

DOI:

https://doi.org/10.26443/seismica.v4i1.1431

Abstract

Sparse instrumental coverage for much of the Earth requires working with regional seismic phases for effective seismic monitoring. Machine learning phase pickers to date have focused on local earthquake recordings. Here we present deep learning models designed and trained to be effective at picking the arrival times of earthquake phases at distances up to 20 degrees. We trained our models on the CREW dataset, which includes 1.6 million earthquake waveforms with over 3.2 million labeled arrivals on 5 minute long three component seismograms. We present models that accurately pick the first arriving P and S waves and models that pick and classify Pn, Pg, Sn, and Sg phase arrivals. We apply these models in a variety of settings and compare their performance to established machine learning models that were trained on local earthquake recordings. We demonstrate the abilities of our models by finding new earthquakes in the Gorda plate offshore northern California. Finally, we use our multiple phase picker to find new examples with secondary arrivals from our massive training dataset. The goal of this method is to improve automatic earthquake monitoring in regions of sparse instrumental coverage and seismicity in remote regions far from instrumentation.

References

Aguilar Suarez , A. L., & Beroza, G. (2024). Curated Regional Earthquake Waveforms (CREW) Dataset. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1049

Al-Damegh, K., Sandvol, E., Al-Lazki, A., & Barazangi, M. (2004). Regional seismic wave propagation (Lg and Sn) and Pn attenuation in the Arabian Plate and surrounding regions. Geophysical Journal International, 157(2), 775–795. https://doi.org/10.1111/j.1365-246X.2004.02246.x

Barama, L., Peng, Z., Newman, A. V., & Williams, J. (2022). GTUNE: An Assembled Global Seismic Dataset of Underground Nuclear Test Blasts. Seismological Research Letters, 93(6), 3514–3523. https://doi.org/10.1785/0220220036

Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I., & Tilmann, F. (2024). PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers With Deep Learning. Earth and Space Science, 11(1). https://doi.org/10.1029/2023EA003332

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

Cole, H. M., Yeck, W. L., & Benz, H. M. (2023). MLAAPDE: A Machine Learning Dataset for Determining Global Earthquake Source Parameters. Seismological Research Letters, 20(20), 1–11. https://doi.org/10.1785/0220230021

Feng, T., Mohanna, S., & Meng, L. (2022). EdgePhase: A Deep Learning Model for Multi-Station Seismic Phase Picking. Geochemistry, Geophysics, Geosystems, 23(11). https://doi.org/10.1029/2022GC010453

GFZ German Research Centre For Geosciences, & Institut Des Sciences De L’Univers-Centre National De La Recherche CNRS-INSU. (2006). IPOC Seismic Network. Integrated Plate boundary Observatory Chile - IPOC. https://doi.org/10.14470/PK615318

Isken, M. P., Niemz, P., Münchmeyer, J., Büyükakpınar, P., Cesca, S., Vasyura-bathke, H., & Dahm, T. (2025). Qseek : A Data-Driven Framework for Automated Earthquake Detection , Localization and Characterization. Seismica, 4. https://doi.org/10.26443/seismica.v4i1.1283

Kong, H., Xiao, Z., Lü, Y., & Li, J. (2024). Seis‐PnSn: A Global Million‐Scale Benchmark Data Set of Pn and Sn Seismic Phases for Deep Learning. Seismological Research Letters. https://doi.org/10.1785/0220230379

Liu, T., Münchmeyer, J., Laurenti, L., Marone, C., de Hoop, M. V., & Dokmanić, I. (2024). SeisLM: a Foundation Model for Seismic Waveforms. 140(NeurIPS). http://arxiv.org/abs/2410.15765

Liu, X., & Zhao, D. (2018). Upper and lower plate controls on the great 2011 Tohoku-oki earthquake. Science Advances, 4(6). https://doi.org/10.1126/sciadv.aat4396

McBrearty, I. W., & Beroza, G. C. (2023). Earthquake Phase Association with Graph Neural Networks. Bulletin of the Seismological Society of America, 113(2), 524–547. https://doi.org/10.1785/0120220182

McGuire, J. J., Boettcher, M. S., & Jordan, T. H. (2005). Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults (Nature (2005) 434 (457-461)). Nature, 435(7041), 528. https://doi.org/10.1038/nature03621

Mousavi, S. M., & Beroza, G. C. (2020). A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1), 1–7. https://doi.org/10.1029/2019GL085976

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-17591-w

Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848

Münchmeyer, J., Saul, J., & Tilmann, F. (2023). Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation. Seismological Research Letters. https://doi.org/10.1785/0220230187

Ni, Y., Hutko, A. R., Skene, F., Denolle, M. A., Malone, S. D., Bodin, P., Hartog, J. R., & Wright, A. K. (2023). Curated Pacific Northwest AI-ready Seismic Dataset. Seismica, 2. https://doi.org/10.26443/seismica.v2i1.368

Niksejel, A., & Zhang, M. (2024). OBSTransformer: a deep-learning seismic phase picker for OBS data using automated labelling and transfer learning. Geophysical Journal International, 237(1), 485–505. https://doi.org/10.1093/gji/ggae049

Northern California Earthquake Data Center. (2014). Berkeley Digital Seismic Network (BDSN). Northern California Earthquake Data Center. https://doi.org/10.7932/BDSN

Novoselov, A., Balazs, P., & Bokelmann, G. (2022). SEDENOSS: SEparating and DENOising Seismic Signals With Dual-Path Recurrent Neural Network Architecture. Journal of Geophysical Research: Solid Earth, 127(3), 1–22. https://doi.org/10.1029/2021JB023183

Park, Y., Mousavi, S. M., Zhu, W., Ellsworth, W. L., & Beroza, G. C. (2020). Machine-Learning-Based Analysis of the Guy-Greenbrier, Arkansas Earthquakes: A Tale of Two Sequences. Geophysical Research Letters, 47(6), 1–8. https://doi.org/10.1029/2020GL087032

Pasyanos, M. E., Walter, W. R., & Matzel, E. M. (2009). A simultaneous multiphase approach to determine P-Wave and S-Wave attenuation of the crust and upper mantle. Bulletin of the Seismological Society of America, 99(6), 3314–3325. https://doi.org/10.1785/0120090061

Rodgers, A. J., & Walter, W. R. (2002). Seismic discrimination of the May 11, 1998 Indian nuclear test with short-period regional data from station NIL (Nilore, Pakistan). Pure and Applied Geophysics, 159(4), 679–700. https://doi.org/10.1007/s00024-002-8654-6

Ross, Z. E., Meier, M. A., & Hauksson, E. (2018). P Wave Arrival Picking and First-Motion Polarity Determination With Deep Learning. Journal of Geophysical Research: Solid Earth, 123(6), 5120–5129. https://doi.org/10.1029/2017JB015251

Schultz, R., Park, Y., Aguilar Suarez, A. L., Ellsworth, W. L., & Beroza, G. C. (2023). En echelon faults reactivated by wastewater disposal near Musreau Lake, Alberta. Geophysical Journal International, 235(1), 417–429. https://doi.org/10.1093/gji/ggad226

Shi, P., Meier, M.-A., Villiger, L., Tuinstra, K., Selvadural, P., Lanza, F., Yuan, S., Obermann, A., Mesimeri, M., Münchmeyer, J., & Others. (2024). From labquakes to megathrusts: Scaling deep learning based pickers over 15 orders of magnitude. Journal of Geophysical Research: Machine Learning and Computation, 1. https://doi.org/10.1029/2024JH000220

Shiina, T., Katsumata, K., Yomogida, K., & Kato, A. (2021). Attenuation contrast in mantle wedge across the volcanic front of northeastern Japan that controls propagations of high-frequency S-wave later phases. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-021-01361-z

Smith, J. D., Ross, Z. E., Azizzadenesheli, K., & Muir, J. B. (2022). HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks. Geophysical Journal International, 228(1), 698–710. https://doi.org/10.1093/gji/ggab309

Song, X., & Klemperer, S. L. (2024). Numerous Tibetan lower-crustal and upper-mantle earthquakes, detected by Sn/Lg ratios, suggest crustal delamination or drip tectonics. Earth and Planetary Science Letters, 626(December 2023), 118555. https://doi.org/10.1016/j.epsl.2023.118555

Sun, H., Ross, Z. E., Zhu, W., & Azizzadenesheli, K. (2023). Phase Neural Operator for Multi-Station Picking of Seismic Arrivals. Geophysical Research Letters, 50(24), 1–10. https://doi.org/10.1029/2023GL106434

Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C., & Segou, M. (2021). Machine-Learning-Based High-Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1(1), 11–19. https://doi.org/10.1785/0320210001

Tang, K., Chen, K., Chen, D., Chin, T., & Hsu, T. (2024). The CWA Benchmark: A Seismic Dataset from Taiwan for Seismic Research. Seismological Research Letters. https://doi.org/10.1785/0220230393

Uchide, T. (2020). Focal mechanisms of small earthquakes beneath the Japanese islands based on first-motion polarities picked using deep learning. Geophysical Journal International, 223(3), 1658–1671. https://doi.org/10.1093/gji/ggaa401

University of Nevada, Reno. (1971). Nevada Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NN

USGS Menlo Park. (1966). USGS Northern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NC

Wang, S., & Klemperer, S. L. (2021). Love-wave normal modes discriminate between upper-mantle and crustal earthquakes: Simulation and demonstration in Tibet. Earth and Planetary Science Letters, 571, 117089. https://doi.org/10.1016/j.epsl.2021.117089

Wilding, J. D., Zhu, W., Ross, Z. E., & Jackson, J. M. (2023). The magmatic web beneath Hawai’i. Science, 379(6631), 462–468. https://doi.org/10.1126/science.ade5755

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench-A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324

Xi, Z., Wei, S. S., Zhu, W., Beroza, G. C., Jie, Y., & Saloor, N. (2024). Deep learning for deep earthquakes: insights from OBS observations of the Tonga subduction zone. Geophysical Journal International, 238(2), 1073–1088. https://doi.org/10.1093/gji/ggae200

Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Nick, B., Shelly, D. R., Benz, H. M., & Earle, P. S. (2020). Leveraging Deep Learning in Global 24 / 7 Real-Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Research Letters. https://doi.org/10.1785/0220200178

Zhao, D. (2019). Importance of later phases in seismic tomography. Physics of the Earth and Planetary Interiors, 296(August), 106314. https://doi.org/10.1016/j.pepi.2019.106314

Zhong, Y., & Tan, Y. J. (2024). Deep-Learning-Based Phase Picking for Volcano-Tectonic and Long-Period Earthquakes. Geophysical Research Letters, 51(12). https://doi.org/10.1029/2024GL108438

Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic signal denoising and decomposition using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476–9488.

Downloads

Published

2025-04-30

How to Cite

Aguilar Suarez, A. L., & Beroza, G. (2025). Picking Regional Seismic Phase Arrival Times with Deep Learning. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1431

Issue

Section

Articles