Sparse fault representation based on moment tensor interpolation

Authors

  • Julien Thurin University of Alaska Fairbanks

DOI:

https://doi.org/10.26443/seismica.v3i2.1433

Keywords:

finite fault slip, source inversion, source model, Moment Tensor

Abstract

Accurate representation of large earthquake sources is required for understanding rupture dynamics and improving seismic hazard assessments. While capable of capturing complex spatio-temporal slip scenarios, traditional finite-fault models often suffer from over-parameterization, require strong regularization, and pose significant computational challenges, especially in rapid-response scenarios. Conversely, multiple point source (MPS) models reduce the rupture as a sequence of point sources but are inadequate to simulate short-period wavefield and static displacement. We introduce a hybrid source representation that leverages moment tensor interpolation to bridge the gap between these models. By treating moment tensors as "key" centroids of a tensor field, we construct geometrically coherent slip models that retain the spatial complexity of finite-fault models while maintaining MPS's computational efficiency and simplicity. Our method extends existing 2D tensor-field reconstruction techniques to moment tensors, allowing source-type-preserving interpolation and enabling sparse model approximation and source upscaling for numerical simulations. We demonstrate how our approach can benefit both the inverse and forward problems on the January 2024 Noto earthquake, computing a sparse approximation of the USGS NEIC source model with fewer than ten key tensors and computing full wavefield and static deformation from upscaled source distributions in a realistic 3D regional tomographic model using spectral-elements method.

References

Aki, K., & Richards, P. G. (2002). Quantitative seismology. University Science Books.

Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis.

An, C., Liu, H., Ren, Z., & Yuan, Y. (2018). Prediction of Tsunami Waves by Uniform Slip Models. jgro, 123(11), 8366–8382. https://doi.org/https://doi.org/10.1029/2018JC014363

Beresnev, I. A. (2003). Uncertainties in Finite-Fault Slip Inversions: To What Extent to Believe? (A Critical Review). bssa, 93(6), 2445–2458. https://doi.org/10.1785/0120020225

Dam, E., Koch, M., & Lillholm, M. (1998). Quaternions, interpolation and animation (WorkingPaper No. 5; DIKU Teknisk Rapport). Datalogisk Institut, Københavns Universitet.

Delouis, B., Giardini, D., Lundgren, P., & Salichon, J. (2002). Joint Inversion of InSAR, GPS, Teleseismic, and Strong-Motion Data for the Spatial and Temporal Distribution of Earthquake Slip: Application to the 1999 Idottextzmit Mainshock. bssa, 92(1), 278–299. https://doi.org/10.1785/0120000806

Dettmer, J., Benavente, R., Cummins, P. R., & Sambridge, M. (2014). Trans-dimensional finite-fault inversion. gji, 199(2), 735–751. https://doi.org/10.1093/gji/ggu280

Duputel, Z., & Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. pepi, 265, 62–66. https://doi.org/https://doi.org/10.1016/j.pepi.2017.02.004

Duputel, Zacharie, Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J.-P., & Stock, J. M. (2012). The 2012 Sumatra great earthquake sequence. epsl, 351–352, 247–257. https://doi.org/https://doi.org/10.1016/j.epsl.2012.07.017

Dutta, R., Jónsson, S., & Vasyura-Bathke, H. (2021). Simultaneous Bayesian Estimation of Non-Planar Fault Geometry and Spatially-Variable Slip. jgrse, 126(7), e2020JB020441. https://doi.org/https://doi.org/10.1029/2020JB020441

Dutykh, D., Mitsotakis, D., Gardeil, X., & Dias, F. (2013). On the use of the finite fault solution for tsunami generation problems. tcfd, 27(1), 177–199. https://doi.org/10.1007/s00162-011-0252-8

Dziewonski, A. M., & Woodhouse, J. H. (1983). An experiment in systematic study of global seismicity: Centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. jgrse, 88(B4), 3247–3271. https://doi.org/https://doi.org/10.1029/JB088iB04p03247

Fichtner, A., van Herwaarden, D.-P., Afanasiev, M., Simutė, S., Krischer, L., Çubuk-Sabuncu, Y., Taymaz, T., Colli, L., Saygin, E., Villaseñor, A., Trampert, J., Cupillard, P., Bunge, H.-P., & Igel, H. (2018). The Collaborative Seismic Earth Model: Generation 1. grl, 45(9), 4007–4016. https://doi.org/https://doi.org/10.1029/2018GL077338

Ghojogh, B., Crowley, M., Karray, F., & Ghodsi, A. (2023). Elements of dimensionality reduction and manifold learning. Springer. https://doi.org/https://doi.org/10.1007/978-3-031-10602-6

Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite‐Fault Modeling. srl, 93(6), 3308–3323. https://doi.org/10.1785/0220220047

Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Johns Hopkins University Press.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. Proceedings of IEEE International Conference on Evolutionary Computation, 312–317. https://doi.org/10.1109/ICEC.1996.542381

Hansen, Nikolaus, Akimoto, Y., & Baudis, P. (2019). CMA-ES/pycma on Github. Zenodo, DOI:10.5281/zenodo.2559634. https://doi.org/10.5281/zenodo.2559634

Hansen, Nikolaus, & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 9(2), 159–195. https://doi.org/10.1162/106365601750190398

Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. epsl, 468, 94–100. https://doi.org/https://doi.org/10.1016/j.epsl.2017.04.003

Hotz, I., Sreevalsan-Nair, J., Hagen, H., & Hamann, B. (2010). Tensor Field Reconstruction Based on Eigenvector and Eigenvalue Interpolation. In H. Hagen (Ed.), Scientific Visualization: Adv. Concepts (Vol. 1, pp. 110–123). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/DFU.SciViz.2010.110

Ide, S. (2007). Slip Inversion. In G. Schubert (Ed.), Treatise on Geophysics (pp. 193–223). Elsevier. https://doi.org/https://doi.org/10.1016/B978-044452748-6.00068-7

Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. bssa, 92(4), 1192–1207. https://doi.org/10.1785/0120000916

Jia, Z., Shen, Z., Zhan, Z., Li, C., Peng, Z., & Gurnis, M. (2020). The 2018 Fiji Mw 8.2 and 7.9 deep earthquakes: One doublet in two slabs. Earth and Planetary Science Letters, 531, 115997. https://doi.org/https://doi.org/10.1016/j.epsl.2019.115997

Jia, Z., Wang, X., & Zhan, Z. (2020). Multifault Models of the 2019 Ridgecrest Sequence Highlight Complementary Slip and Fault Junction Instability. Geophysical Research Letters, 47(17), e2020GL089802. https://doi.org/https://doi.org/10.1029/2020GL089802

Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716. https://doi.org/10.1111/j.1365-246X.1991.tb06343.x

Kheirdast, N., Ansari, A., & Custódio, S. (2021). Neuro-Fuzzy Kinematic Finite-Fault Inversion: 1. Methodology. jgrse, 126(8), e2020JB020770. https://doi.org/https://doi.org/10.1029/2020JB020770

Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. bssa, 72(2), 491–506. https://doi.org/10.1785/BSSA0720020491

Koch, P., Bravo, F., Riquelme, S., & Crempien, J. G. F. (2019). Near‐Real‐Time Finite‐Fault Inversions for Large Earthquakes in Chile Using Strong‐Motion Data. srl, 90(5), 1971–1986. https://doi.org/10.1785/0220180294

Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. gji, 150(1), 303–318. https://doi.org/https://doi.org/10.1046/j.1365-246X.2002.01716.x

Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. gji, 150(1), 303–318. https://doi.org/https://doi.org/10.1046/j.1365-246X.2002.01716.x

Krischer, L., Hutko, A. R., van Driel, M., Stähler, S., Bahavar, M., Trabant, C., & Nissen‐Meyer, T. (2017). On‐Demand Custom Broadband Synthetic Seismograms. srl, 88(4), 1127–1140. https://doi.org/10.1785/0220160210

Kutschera, F., Jia, Z., Oryan, B., Wong, J. W. C., Fan, W., & Gabriel, A.-A. (2024). Rapid earthquake-tsunami modeling: The multi-event, multi-segment complexity of the 2024 Mw 7.5 Noto Peninsula Earthquake governs tsunami generation. https://doi.org/https://doi.org/10.31223/X5ZX1S

Lotto, G. C., Jeppson, T. N., & Dunham, E. M. (2019). Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. pag, 176(9), 4009–4041. https://doi.org/10.1007/s00024-018-1990-y

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055. https://doi.org/https://doi.org/10.1016/j.cageo.2007.07.010

Ma, Y., & Fu, Y. (2012). Manifold learning theory and applications (Vol. 434). CRC press Boca Raton.

Markley, F. L. (2008). Unit Quaternion from Rotation Matrix. Journal of Guidance, Control, and Dynamics, 31(2), 440–442. https://doi.org/10.2514/1.31730

Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. jgrse, 120(5), 3324–3349. https://doi.org/https://doi.org/10.1002/2014JB011832

Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I—theory and algorithm. gji, 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180

Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., & Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. se, 5(1), 425–445. https://doi.org/10.5194/se-5-425-2014

Ragon, T., Sladen, A., & Simons, M. (2018). Accounting for uncertain fault geometry in earthquake source inversions – I: theory and simplified application. gji, 214(2), 1174–1190. https://doi.org/10.1093/gji/ggy187

Razafindrakoto, H. N. T., Mai, P. M., Genton, M. G., Zhang, L., & Thingbaijam, K. K. S. (2015). Quantifying variability in earthquake rupture models using multidimensional scaling: application to the 2011 Tohoku earthquake. gji, 202(1), 17–40. https://doi.org/10.1093/gji/ggv088

Ren, C., Yue, H., Cao, B., Zhu, Y., Wang, T., An, C., Ge, Z., & Li, Z. (2022). Rupture process of the 2020 Mw=6.9 Samos, Greece earthquake on a segmented fault system constrained from seismic, geodetic, and tsunami observations. Tectonophysics, 839, 229497. https://doi.org/https://doi.org/10.1016/j.tecto.2022.229497

Rodríguez-Cardozo, F., Hjörleifsdóttir, V., Jónsdóttir, K., Iglesias, A., Franco, S. I., Geirsson, H., Trujillo-Castrillón, N., & Hensch, M. (2021). The 2014–2015 complex collapse of the Bárðarbunga caldera, Iceland, revealed by seismic moment tensors. jvgr, 416, 107275. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2021.107275

Salamin, E. (1979). Application of quaternions to computation with rotations [Techreport]. Stanford AI Lab.

Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evidence. gji, 167(2), 528–542. https://doi.org/10.1111/j.1365-246X.2006.03155.x

Schultz, T., & Kindlmann, G. L. (2010). Superquadric Glyphs for Symmetric Second-Order Tensors. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1595–1604. https://doi.org/10.1109/TVCG.2010.199

Shi, Q., Wei, S., & Chen, M. (2018). An MCMC multiple point sources inversion scheme and its application to the 2016 Kumamoto Mw 6.2 earthquake. gji, 215(2), 737–752. https://doi.org/10.1093/gji/ggy302

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2019). Development of an inversion method to extract information on fault geometry from teleseismic data. gji, 220(2), 1055–1065. https://doi.org/10.1093/gji/ggz496

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Construction of fault geometry by finite-fault inversion of teleseismic data. gji, 224(2), 1003–1014. https://doi.org/10.1093/gji/ggaa501

Shoemake, K. (1985). Animating rotation with quaternion curves. SIGGRAPH Comput. Graph., 19(3), 245–254. https://doi.org/10.1145/325165.325242

Simutė, S., Steptoe, H., Cobden, L., Gokhberg, A., & Fichtner, A. (2016). Full-waveform inversion of the Japanese Islands region. jgrse, 121(5), 3722–3741. https://doi.org/https://doi.org/10.1002/2016JB012802

Tape, W., & Tape, C. (2012). A geometric setting for moment tensors. gji, 190(1), 476–498. https://doi.org/https://doi.org/10.1111/j.1365-246X.2012.05491.x

Tinti, E., Spudich, P., & Cocco, M. (2005). Earthquake fracture energy inferred from kinematic rupture models on extended faults. jgrse, 110(B12). https://doi.org/https://doi.org/10.1029/2005JB003644

Tsai, V. C., Nettles, M., Ekström, G., & Dziewonski, A. M. (2005). Multiple CMT source analysis of the 2004 Sumatra earthquake. grl, 32(17). https://doi.org/https://doi.org/10.1029/2005GL023813

Wei, G., Chen, K., & Meng, H. (2023). Bayesian Inversion of Finite-Fault Earthquake Slip Model Using Geodetic Data, Solving for Non-Planar Fault Geometry, Variable Slip, and Data Weighting. jgrse, 128(2), e2022JB025225. https://doi.org/https://doi.org/10.1029/2022JB025225

Weinstein, S. A., & Lundgren, P. R. (2008). Finite Fault Modeling in a Tsunami Warning Center Context. In Earthquakes: Simulations, Sources and Tsunamis (pp. 451–474). Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8757-0_2

Worden, C. B., Thompson, E. M., Hearne, M., & Wald, D. J. (2020). ShakeMap Manual Online: Technical Manual, User’s Guide, and Software Guide. U. S. Geological Survey. https://doi.org/10.5066/F7D21VPQ

Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y. (2022). Potency density tensor inversion of complex body waveforms with time-adaptive smoothing constraint. gji, 231(1), 91–107. https://doi.org/10.1093/gji/ggac181

Yue, H., & Lay, T. (2020). Resolving Complicated Faulting Process Using Multi-Point-Source Representation: Iterative Inversion Algorithm Improvement and Application to Recent Complex Earthquakes. jgrse, 125(2), e2019JB018601. https://doi.org/https://doi.org/10.1029/2019JB018601

Zhou, Y., Ren, C., Ghosh, A., Meng, H., Fang, L., Yue, H., Zhou, S., & Su, Y. (2022). Seismological Characterization of the 2021 Yangbi Foreshock-Mainshock Sequence, Yunnan, China: More than a Triggered Cascade. jgrse, 127(8), e2022JB024534. https://doi.org/https://doi.org/10.1029/2022JB024534

Additional Files

Published

2024-12-09

How to Cite

Thurin, J. (2024). Sparse fault representation based on moment tensor interpolation. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1433

Issue

Section

Articles

Funding data