Seismicity acceleration and clustering before the 2015 Mw 7.9 Gorkha earthquake, Nepal

Authors

  • Blandine Gardonio CEA, DAM, DIF, 91297 Arpajon https://orcid.org/0000-0002-5305-5350
  • Laurent Bollinger CEA, DAM, DIF, 91297 Arpajon https://orcid.org/0000-0002-5116-860X
  • Marine Laporte Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne https://orcid.org/0000-0001-8978-0661
  • Jérôme Vergne IPGS-EOST, CNRS/Universite de Strasbourg, 67000 Strasbourg
  • Hélène Lyon-Caen Laboratoire de Geologie, CNRS UMR 8538, Ecole normale superieure, PSL University, 75005 Paris https://orcid.org/0000-0002-6331-0108
  • Lok Bijaya Adhikari Department of Mines and Geology, Nepalese National Earthquake Monitoring and Research Centre, Lainchaur, Kathmandu

DOI:

https://doi.org/10.26443/seismica.v4i1.1447

Keywords:

Nepal, precursory signal, 2015 Gorkha earthquake, Template Matching, Earthquake Statistics, Earthquake swarms

Abstract

In the last decade, several observations of peculiar seismic and geodetic phases preceding large earthquakes have been documented. Despite being a posteriori, these observations provide a better understanding of the processes involved in the nucleation of earthquakes. In this study, we investigate the foreshocks and the pre-seismic phase of the M$_w$7.9 25 April 2015, Gorkha earthquake in Nepal by applying a matched-filter technique to its nucleation zone. We use the seismic signals of 1851 local earthquakes and the continuous signal recorded at the nearest station for the 6 years preceding the mainshock. The pre-seismic phase depicts a long-term increase of seismicity rate and several seismic swarms less than 20 km away from the mainshock epicenter. The longest swarm occurs one month before the Gorkha earthquake, lasts two weeks and consists of 38 repetitive earthquakes located at the northwestern edge of the rupture zone. Another increase in seismicity rate starts six days before the mainshock and includes small foreshocks that develop less than 10 kilometers from the future earthquake hypocenter. These observations suggest that the Gorkha earthquake was preceded by a pre-seismic phase related to a possible initiation of a slow slip with fluids involved at the northwestern boundary of the rupture zone.

References

Adhikari, L. B., Gautam, U. P., Koirala, B. P., Bhattarai, M., Kandel, T., Gupta, R. M., Timsina, C., Maharjan, N., Maharjan, K., Dahal, T., Hoste-Colomer, R., Cano, Y., Dandine, M., Guilhem, A., Merrer, S., Roudil, P., & Bollinger, L. (2015). The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake. Geophysical Journal International, 203(3), 2119–2124. https://doi.org/10.1093/gji/ggv412

Adhikari, L. B., Laporte, M., Bollinger, L., Vergne, J., Lambotte, S., Koirala, B. P., Bhattarai, M., Timsina, C., Gupta, R. M., Wendling-Vazquez, N., Batteux, D., Lyon-Caen, H., Gaudemer, Y., Bernard, P., & Perrier, F. (2022). Seismically active structures of the Main Himalayan Thrust revealed before, during and after the 2015 M w 7.9 Gorkha earthquake in Nepal. Geophysical Journal International, 232(1), 451–471. https://doi.org/10.1093/gji/ggac281

Avouac, J.-P. (2003). Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Advances in Geophysics, 46, 1–80.

Avouac, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711. https://doi.org/10.1038/ngeo2518

Bai, L., Klemperer, S. L., Mori, J., Karplus, M. S., Ding, L., Liu, H., Li, G., Song, B., & Dhakal, S. (2019). Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Science Advances, 5(6), eaav0723. https://doi.org/10.1126/sciadv.aav0723

Baillard, C., Lyon-Caen, H., Bollinger, L., Rietbrock, A., Letort, J., & Adhikari, L. B. (2017). Automatic analysis of the Gorkha earthquake aftershock sequence: evidences of structurally segmented seismicity. Geophysical Journal International, 209(2), 1111–1125. https://doi.org/10.1093/gji/ggx081

Ben-Zion, Y., & Zaliapin, I. (2020). Localization and coalescence of seismicity before large earthquakes. Geophysical Journal International, 223(1), 561–583. https://doi.org/10.1093/gji/ggaa315

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533.

Bilham, R. (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Current Science, 69(2), 101–128. https://www.jstor.org/stable/24097233

Bilham, R. (2019). Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geological Society, London, Special Publications, 483(1), 423–482. https://doi.org/10.1144/SP483.16

Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 299–302. https://doi.org/10.1038/ngeo1770

Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., & Bouin, M.-P. (2011). Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake. Science, 331(6019), 877–880. https://doi.org/10.1126/science.1197341

Bouchon, M., Marsan, D., Durand, V., Campillo, M., Perfettini, H., Madariaga, R., & Gardonio, B. (2016). Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 9(5), 380–383. https://doi.org/10.1038/ngeo2701

Bouchon, M., Socquet, A., Marsan, D., Guillot, S., Durand, V., Gardonio, B., Campillo, M., Perfettini, H., Schmittbuhl, J., Renard, F., & Boullier, A.-M. (2022). Observation of rapid long-range seismic bursts in the Japan Trench subduction leading to the nucleation of the Tohoku earthquake. Earth and Planetary Science Letters, 594, 117696. https://doi.org/10.1016/j.epsl.2022.117696

Boullier, A.-M., France-Lanord, C., Dubessy, J., Adamy, J., & Champenois, M. (1991). Linked fluid and tectonic evolution in the High Himalaya mountains (Nepal). Contributions to Mineralogy and Petrology, 107(3), 358–372. https://doi.org/10.1007/BF00325104

Chen, X., & Shearer, P. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research: Solid Earth, 116(B9).

Duputel, Z., Vergne, J., Rivera, L., Wittlinger, G., Farra, V., & Hetényi, G. (2016). The 2015 Gorkha earthquake: A large event illuminating the Main Himalayan Thrust fault. Geophysical Research Letters, 43(6), 2517–2525. https://doi.org/10.1002/2016GL068083

Ellsworth, W. L., & Bulut, F. (2018). Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7), 531–535. https://doi.org/10.1038/s41561-018-0145-1

Galetzka, J., Melgar, D., Genrich, J. F., Geng, J., Owen, S., Lindsey, E. O., Xu, X., Bock, Y., Avouac, J.-P., Adhikari, L. B., Upreti, B. N., Pratt-Sitaula, B., Bhattarai, T. N., Sitaula, B. P., Moore, A., Hudnut, K. W., Szeliga, W., Normandeau, J., Fend, M., … Maharjan, N. (2015). Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 349(6252), 1091–1095. https://doi.org/10.1126/science.aac6383

Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

Gardonio, B., Campillo, M., Marsan, D., Lecointre, A., Bouchon, M., & Letort, J. (2019). Seismic Activity Preceding the 2011 Mw9.0 Tohoku Earthquake, Japan, Analyzed With Multidimensional Template Matching. Journal of Geophysical Research: Solid Earth, 124(7), 6815–6831. https://doi.org/10.1029/2018JB016751

Gardonio, B., Jolivet, R., Calais, E., & Leclère, H. (2018). The April 2017 Mw6.5 Botswana Earthquake: An Intraplate Event Triggered by Deep Fluids. Geophysical Research Letters, 45(17), 8886–8896. https://doi.org/10.1029/2018GL078297

Ghoshal, S., McQuarrie, N., Huntington, K. W., Robinson, D. M., & Ehlers, T. A. (2023). Testing erosional and kinematic drivers of exhumation in the central Himalaya. Earth and Planetary Science Letters, 609, 118087. https://doi.org/10.1016/j.epsl.2023.118087

Gomberg, J. (2018). Unsettled earthquake nucleation. Nature Geoscience, 11(7), 463–464. https://doi.org/10.1038/s41561-018-0149-x

Grandin, R., Doin, M.-P., Bollinger, L., Pinel-Puysségur, B., Ducret, G., Jolivet, R., & Sapkota, S. N. (2012). Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology, 40(12), 1059–1062. https://doi.org/10.1130/G33154.1

Grandin, R., Vallée, M., Satriano, C., Lacassin, R., Klinger, Y., Simoes, M., & Bollinger, L. (2015). Rupture process of the M w = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation: RUPTURE PROCESS OF THE GORKHA EARTHQUAKE. Geophysical Research Letters, 42(20), 8373–8382. https://doi.org/10.1002/2015GL066044

Gualandi, A., Avouac, J.-P., Galetzka, J., Genrich, J. F., Blewitt, G., Adhikari, L. B., Koirala, B. P., Gupta, R., Upreti, B. N., Pratt-Sitaula, B., & Liu-Zeng, J. (2017). Pre- and post-seismic deformation related to the 2015, M w 7.8 Gorkha earthquake, Nepal. Tectonophysics, 714–715, 90–106. https://doi.org/10.1016/j.tecto.2016.06.014

Habermann, R. (1981). Precursory seismicity patterns: Stalking the mature seismic gap. Earthquake Prediction: An International Review, 4, 29–42.

Hainzl, S., & Marsan, D. (2008). Dependence of the Omori-Utsu law parameters on main shock magnitude: Observations and modeling. Journal of Geophysical Research: Solid Earth, 113(B10).

Hainzl, S., Zakharova, O., & Marsan, D. (2013). Impact of aseismic transients on the estimation of aftershock productivity parameters. Bulletin of the Seismological Society of America, 103(3), 1723–1732.

Hoste-Colomer, R., Bollinger, L., Lyon-Caen, H., Burtin, A., & Adhikari, L. B. (2017). Lateral structure variations and transient swarm revealed by seismicity along the Main Himalayan Thrust north of Kathmandu. Tectonophysics, 714–715, 107–116. https://doi.org/10.1016/j.tecto.2016.10.004

Huang, H., Meng, L., Plasencia, M., Wang, Y., Wang, L., & Xu, M. (2017). Matched-filter detection of the missing pre-mainshock events and aftershocks in the 2015 Gorkha, Nepal earthquake sequence. Tectonophysics, 714, 71–81.

Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w

Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15), 5420–5427. https://doi.org/10.1002/2014GL061138

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Kobayashi, T., Morishita, Y., & Yarai, H. (2015). Detailed crustal deformation and fault rupture of the 2015 Gorkha earthquake, Nepal, revealed from ScanSAR-based interferograms of ALOS-2. Earth, Planets and Space, 67(1), 201. https://doi.org/10.1186/s40623-015-0359-z

Koirala, B. P., Laporte, M., Bollinger, L., Batteux, D., Letort, J., Guilhem Trilla, A., Wendling-Vazquez, N., Bhattarai, M., Subedi, S., & Adhikari, L. B. (2023). Tectonic significance of the 2021 Lamjung, Nepal, mid-crustal seismic cluster. Earth, Planets and Space, 75(1), 165. https://doi.org/10.1186/s40623-023-01888-3

Laporte, M, Bollinger, L., Lyon-Caen, H., Hoste-Colomer, R., Duverger, C., Letort, J., Riesner, M., Koirala, B. P., Bhattarai, M., Kandel, T., Timsina, C., & Adhikari, L. B. (2021). Seismicity in far western Nepal reveals flats and ramps along the Main Himalayan Thrust. Geophysical Journal International, 226(3), 1747–1763. https://doi.org/10.1093/gji/ggab159

Laporte, Marine. (2022). Contribution à l’amélioration de l’estimation de la profondeur hypocentrale à partir de réseaux régionaux ou globaux. Université Paris sciences et lettres.

Larsonnier, F., Rouillé, G., Bartoli, C., Klaus, L., & Begoff, P. (2019). Comparison on seismometer sensitivity following ISO 16063-11 standard. In 19th International Congress of Metrology (CIM2019) (p. 27003). EDP Sciences.

Lemonnier, C., Marquis, G., Perrier, F., Avouac, J.-P., Chitrakar, G., Kafle, B., Sapkota, S., Gautam, U., Tiwari, D., & Bano, M. (1999). Electrical structure of the Himalaya of central Nepal: High conductivity around the mid-crustal ramp along the MHT. Geophysical Research Letters, 26(21), 3261–3264. https://doi.org/10.1029/1999GL008363

Lengliné, O., Boubacar, M., & Schmittbuhl, J. (2017). Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France. Geophysical Journal International, 208(3), 1704–1715. https://doi.org/10.1093/gji/ggw490

Letort, J., Bollinger, L., Lyon-Caen, H., Guilhem, A., Cano, Y., Baillard, C., & Adhikari, L. B. (2016). Teleseismic depth estimation of the 2015 Gorkha Nepal aftershocks. Geophysical Journal International, 207(3), 1584–1595. https://doi.org/10.1093/gji/ggw364

Lindsey, E. O., Almeida, R., Mallick, R., Hubbard, J., Bradley, K., Tsang, L. L., Liu, Y., Burgmann, R., & Hill, E. M. (2018). Structural control on downdip locking extent of the Himalayan megathrust. Journal of Geophysical Research: Solid Earth, 123(6), 5265–5278.

Lindsey, E. O., Natsuaki, R., Xu, X., Shimada, M., Hashimoto, M., Melgar, D., & Sandwell, D. T. (2015). Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophysical Research Letters, 42(16), 6655–6661. https://doi.org/10.1002/2015GL065385

Marsan, D., & Lengline, O. (2008). Extending earthquakes’ reach through cascading. Science, 319(5866), 1076–1079.

Marsan, D., & Wyss, M. (2011). Seismicity rate changes. Community Online Resource for Statistical Seismicity Analysis.

Martin, S. S., Hough, S. E., & Hung, C. (2015). Ground Motions from the 2015 Mw 7.8 Gorkha, Nepal, Earthquake Constrained by a Detailed Assessment of Macroseismic Data. Seismological Research Letters, 86(6), 1524–1532. https://doi.org/10.1785/0220150138

Martı́nez-Garzón, P., & Poli, P. (2024). Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Communications Earth & Environment, 5(1), 120.

Mendoza, M. M., Ghosh, A., Karplus, M. S., Klemperer, S. L., Sapkota, S. N., Adhikari, L. B., & Velasco, A. (2019). Duplex in the Main Himalayan Thrust illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake. Nature Geoscience, 12(12), 1018–1022. https://doi.org/10.1038/s41561-019-0474-8

Mesimeri, M., Karakostas, V., Papadimitriou, E., & Tsaklidis, G. (2019). Characteristics of earthquake clusters: Application to western Corinth Gulf (Greece). Tectonophysics, 767, 228160.

Mignan, A. (2014). The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4(1), 4099.

Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H., Chen, J., Huang, B.-S., & Team, the H.-C. (2009). Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment. Science, 325(5946), 1371–1374. https://doi.org/10.1126/science.1167719

Nandan, S., Ouillon, G., Wiemer, S., & Sornette, D. (2017). Objective estimation of spatially variable parameters of epidemic type aftershock sequence model: Application to California. Journal of Geophysical Research: Solid Earth, 122(7), 5118–5143.

Nishikawa, T., & Ide, S. (2018). Recurring Slow Slip Events and Earthquake Nucleation in the Source Region of the M 7 Ibaraki-Oki Earthquakes Revealed by Earthquake Swarm and Foreshock Activity. Journal of Geophysical Research: Solid Earth, 123(9), 7950–7968. https://doi.org/10.1029/2018JB015642

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.

Pandey, M. R. (1985). Seismic model of central and eastern Lesser Himalaya of Nepal. Journal of Nepal Geological Society, 3, 1–11. https://doi.org/10.3126/jngs.v3i0.32655

Passarelli, L., Rivalta, E., Jónsson, S., Hensch, M., Metzger, S., Jakobsdóttir, S. S., Maccaferri, F., Corbi, F., & Dahm, T. (2018). Scaling and spatial complementarity of tectonic earthquake swarms. Earth and Planetary Science Letters, 482, 62–70.

Riesner, M., Bollinger, L., Rizza, M., Klinger, Y., Karakaş, Ç., Sapkota, S. N., Shah, C., Guérin, C., & Tapponnier, P. (2023). Surface rupture and landscape response in the middle of the great Mw 8.3 1934 earthquake mesoseismal area: Khutti Khola site. Scientific Reports, 13(1), 4566. https://doi.org/10.1038/s41598-023-30697-7

Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690.

Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074

Socquet, A., Valdes, J. P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Ortega-Culaciati, F., Carrizo, D., & Norabuena, E. (2017). An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 44(9), 4046–4053. https://doi.org/10.1002/2017GL073023

Subedi, S., Hetényi, G., Vergne, J., Bollinger, L., Lyon-Caen, H., Farra, V., Adhikari, L. B., & Gupta, R. M. (2018). Imaging the Moho and the Main Himalayan Thrust in Western Nepal with receiver functions. Geophysical Research Letters, 45(24), 13–222.

Utsu, T., Ogata, Y., & others. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1–33.

Wang, X., Wei, S., & Wu, W. (2017). Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence. Earth and Planetary Science Letters, 473, 83–93. https://doi.org/10.1016/j.epsl.2017.05.032

Wesnousky, S. G., Kumahara, Y., Chamlagain, D., Pierce, I. K., Karki, A., & Gautam, D. (2017). Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu, Nepal. Earth and Planetary Science Letters, 457, 366–375. https://doi.org/10.1016/j.epsl.2016.10.006

Yamada, M., Kandel, T., Tamaribuchi, K., & Ghosh, A. (2019). 3D Fault Structure Inferred from a Refined Aftershock Catalog for the 2015 Gorkha Earthquake in Nepal. Bulletin of the Seismological Society of America, 110(1), 26–37. https://doi.org/10.1785/0120190075

Zaliapin, I., & Ben-Zion, Y. (2022). Perspectives on clustering and declustering of earthquakes. Seismological Research Letters, 93(1), 386–401.

Zhang, Q., & Shearer, P. M. (2016). A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California. Geophysical Journal International, 205(2), 995–1005.

Zhao, B., Bürgmann, R., Wang, D., Tan, K., Du, R., & Zhang, R. (2017). Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw7.9 Gorkha, Nepal, Earthquake. Journal of Geophysical Research: Solid Earth, 122(10), 8376–8401. https://doi.org/10.1002/2017JB014366

Downloads

Published

2025-05-06

How to Cite

Gardonio, B., Bollinger, L., Laporte, M., Vergne, J., Lyon-Caen, H., & Adhikari, L. B. (2025). Seismicity acceleration and clustering before the 2015 Mw 7.9 Gorkha earthquake, Nepal. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1447

Issue

Section

Articles