Near-real-time design of experiments for seismic monitoring of volcanoes
DOI:
https://doi.org/10.26443/seismica.v4i1.1452Keywords:
volcano seismology, experimental design, Bayesian hypocentre inversion, Microseismic MonitoringAbstract
Monitoring the seismic activity of volcanoes is crucial for hazard assessment and eruption forecasting. The layout of each seismic network determines the information content of recorded data about volcanic earthquakes, and experimental design methods optimise sensor locations to maximise that information. We provide a code package that implements Bayesian experimental design to optimise seismometer networks to locate seismicity at any volcano, and a practical guide to make this easily and rapidly implementable by any volcano seismologist. This work is the first to optimise travel-time, amplitude and array source location methods simultaneously, making it suitable for a wide range of volcano monitoring scenarios. The code-package is designed to be straightforward to use and can be adapted to a wide range of scenarios, and automatically links to existing global databases of topography and properties of volcanoes worldwide to allow rapid deployment. Any user should be able to obtain an initial design within minutes using a combination of generic and volcano-specific information to guide the design process, and to refine the design for their specific scenario within hours, if more specific prior information is available.References
Almendros, J. (2003). Performance of the radial semblance method for the location of very long period volcanic signals. Bull. Seismol. Soc. Am., 93(5), 1890–1903. https://doi.org/10.1785/0120020143
Battaglia, J., & Aki, K. (2003). Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J. Geophys. Res., 108(B8). https://doi.org/10.1029/2002jb002193
Bloem, H., Curtis, A., & Maurer, H. (2020). Experimental design for fully nonlinear source location problems: which method should I choose? Geophys. J. Int., 223(2), 944–958. https://doi.org/10.1093/gji/ggaa358
Callahan, J., Monogue, K., Villarreal, R., & Catanach, T. (2024). Analysis and optimization of seismic monitoring networks with Bayesian optimal experiment design. ArXiv [Stat.AP]. https://doi.org/10.48550/arXiv.2410.07215
Cannavò, F., Camacho, A. G., González, P. J., Mattia, M., Puglisi, G., & Fernández, J. (2015). Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises. Sci. Rep., 5(1), 10970. https://doi.org/10.1038/srep10970
Carbone, D., Zuccarello, L., & Saccorotti, G. (2008). Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period. Geophys. Res. Lett., 35(6). https://doi.org/10.1029/2008gl033212
Caudron, C., White, R. S., Green, R. G., Woods, J., Ágústsdóttir, T., Donaldson, C., Greenfield, T., Rivalta, E., & Brandsdóttir, B. (2018). Seismic Amplitude Ratio Analysis of the 2014–2015 bárarbunga-Holuhraun dike propagation and eruption. J. Geophys. Res. Solid Earth, 123(1), 264–276. https://doi.org/10.1002/2017jb014660
Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino, P., Acocella, V., & Vandemeulebrouck, J. (2016). Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun., 7(1), 13712. https://doi.org/10.1038/ncomms13712
Coles, D., & Curtis, A. (2011). Efficient nonlinear Bayesian survey design usingDNoptimization. Geophysics, 76(2), Q1–Q8. https://doi.org/10.1190/1.3552645
Coles, D., Yang, Y., Djikpesse, H., Prange, M., & Osypov, K. (2013). Optimal nonlinear design of marine borehole seismic surveys. Geophysics, 78(3), WB17–WB29. https://doi.org/10.1190/geo2012-0265.1
Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/047174882x
Dawson, P., Whilldin, D., & Chouet, B. (2004). Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii. Geophys. Res. Lett., 31(21). https://doi.org/10.1029/2004gl021163
Di Lieto, B., Saccorotti, G., Zuccarello, L., Rocca, M. L., & Scarpa, R. (2007). Continuous tracking of volcanic tremor at Mount Etna, Italy. Geophys. J. Int., 169(2), 699–705. https://doi.org/10.1111/j.1365-246x.2007.03316.x
Falsaperla, S., & Neri, M. (2015). Seismic footprints of shallow dyke propagation at Etna, Italy. Sci. Rep., 5(1), 11908. https://doi.org/10.1038/srep11908
Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh, Y. W., Rainforth, T., & Goodman, N. (2019). Variational Bayesian optimal experimental design. Adv. Neural Inf. Process. Syst., 32.
Gad, A. F. (2023). PyGAD: an intuitive genetic algorithm Python library. Multimed. Tools Appl., 83(20), 58029–58042. https://doi.org/10.1007/s11042-023-17167-y
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Rı́o, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Holland, J. H. (1975). Adaptation in Natural Artificial Systems. University Michigan Press.
Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw., 5(1), 10. https://doi.org/10.5334/jors.148
Huan, X., & Marzouk, Y. M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232(1), 288–317. https://doi.org/10.1016/j.jcp.2012.08.013
Hunter. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng., 9, 90–95. https://doi.org/10.1109/MCSE.2007.55
Inza, L. A., Mars, J. I., Métaxian, J. P., O’Brien, G. S., & Macedo, O. (2011). Seismo-volcano source localization with triaxial broad-band seismic array: 3C seismic antenna on volcano. Geophys. J. Int., 187(1), 371–384. https://doi.org/10.1111/j.1365-246x.2011.05148.x
Jolly, A. D., Thompson, G., & Norton, G. E. (2002). Locating pyroclastic flows on Soufriere Hills Volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J. Volcanol. Geotherm. Res., 118(3–4), 299–317. https://doi.org/10.1016/s0377-0273(02)00299-8
Kao, H., & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophys. J. Int., 157(2), 589–594. https://doi.org/10.1111/j.1365-246x.2004.02276.x
Kawakatsu, H., Kaneshima, S., Matsubayashi, H., Ohminato, T., Sudo, Y., Tsutsui, T., Uhira, K., Yamasato, H., Ito, H., & Legrand, D. (2000). Aso94: Aso seismic observation with broadband instruments. J. Volcanol. Geotherm. Res., 101(1–2), 129–154. https://doi.org/10.1016/s0377-0273(00)00166-9
Ku, H. H. (1966). Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand., 70C(4), 263. https://doi.org/10.6028/jres.070c.025
Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Stat., 22(1), 79–86.
Kumagai, H., Lacson, R., Jr, Maeda, Y., Figueroa, M. S., II, Yamashina, T., Ruiz, M., Palacios, P., Ortiz, H., & Yepes, H. (2013). Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size. J. Volcanol. Geotherm. Res., 257, 57–71. https://doi.org/10.1016/j.jvolgeores.2013.03.002
Kumagai, H., Palacios, P., Maeda, T., Castillo, D. B., & Nakano, M. (2009). Seismic tracking of lahars using tremor signals. J. Volcanol. Geotherm. Res., 183(1–2), 112–121. https://doi.org/10.1016/j.jvolgeores.2009.03.010
Kumagai, H., Palacios, P., Ruiz, M., Yepes, H., & Kozono, T. (2011). Ascending seismic source during an explosive eruption at Tungurahua volcano, Ecuador. Geophys. Res. Lett., 38(1). https://doi.org/10.1029/2010gl045944
Langet, N., Maggi, A., Michelini, A., & Brenguier, F. (2014). Continuous kurtosis-based migration for seismic event detection and location, with application to Piton de la Fournaise volcano, La Reunion. Bull. Seismol. Soc. Am., 104(1), 229–246. https://doi.org/10.1785/0120130107
Leva, C., Rümpker, G., & Wölbern, I. (2022). Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde. Solid Earth, 13(8), 1243–1258. https://doi.org/10.5194/se-13-1243-2022
Lindley, D. V. (1956). On a Measure of the Information Provided by an Experiment. In The Annals of Mathematical Statistics (Vol. 27, pp. 986–1005). https://doi.org/10.1214/aoms/1177728069
Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake location, direct, global-search methods. In Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_150-2
Lomax, A., Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int., 146(2), 313–331. https://doi.org/10.1046/j.0956-540x.2001.01444.x
Long, Q., Scavino, M., Tempone, R., & Wang, S. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Eng., 259, 24–39. https://doi.org/10.1016/j.cma.2013.02.017
Marzocchi, W., & Bebbington, M. S. (2012). Probabilistic eruption forecasting at short and long time scales. Bull. Volcanol., 74(8), 1777–1805. https://doi.org/10.1007/s00445-012-0633-x
Maurer, H., & Boerner, D. E. (1998). Optimized and robust experimental design: a non-linear application to EM sounding. Geophys. J. Int., 132(2), 458–468. https://doi.org/10.1046/j.1365-246x.1998.00459.x
Maurer, H., Curtis, A., & Boerner, D. E. (2010). Recent advances in optimized geophysical survey design. Geophysics, 75(5), 75A177-75A194. https://doi.org/10.1190/1.3484194
McNutt, S. R. (2005). Volcanic seismology. Annu. Rev. Earth Planet. Sci., 33(1), 461–491. https://doi.org/10.1146/annurev.earth.33.092203.122459
Métaxian, J.-P., Lesage, P., & Valette, B. (2002). Locating sources of volcanic tremor and emergent events by seismic triangulation: Application to Arenal volcano, Costa Rica. J. Geophys. Res., 107(B10), ECV 10-1-ECV 10-18. https://doi.org/10.1029/2001jb000559
Morioka, H., Kumagai, H., & Maeda, T. (2017). Theoretical basis of the amplitude source location method for volcano-seismic signals. J. Geophys. Res. [Solid Earth], 122(8), 6538–6551. https://doi.org/10.1002/2017jb013997
O’Brien, G. S., Lokmer, I., De Barros, L., Bean, C. J., Saccorotti, G., Metaxian, J.-P., & Patane, D. (2011). Time reverse location of seismic long-period events recorded on Mt Etna. Geophys. J. Int., 184(1), 452–462. https://doi.org/10.1111/j.1365-246x.2010.04851.x
Ogiso, M., Matsubayashi, H., & Yamamoto, T. (2015). Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan. Earth Planets Space, 67(1). https://doi.org/10.1186/s40623-015-0376-y
Ogiso, M., & Yomogida, K. (2012). Migration of tremor locations before the 2008 eruption of Meakandake Volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res., 217–218, 8–20. https://doi.org/10.1016/j.jvolgeores.2011.12.005
Ohminato, T., Chouet, B. A., Dawson, P., & Kedar, S. (1998). Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii. J. Geophys. Res., 103(B10), 23839–23862. https://doi.org/10.1029/98jb01122
Pallister, J., & McNutt, S. R. (2015). Synthesis of volcano monitoring. In The Encyclopedia of Volcanoes (pp. 1151–1171). Elsevier. https://doi.org/10.1016/b978-0-12-385938-9.00066-3
Patane, D., Chiarabba, C., Cocina, O., De Gori, P., Moretti, M., & Boschi, E. (2002). Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion. Geophysical Research Letters, 29(10), 135-1-135–4. https://doi.org/10.1029/2001GL014391
Rabinowitz, N., & Steinberg, D. M. (1990). Optimal configuration of a seismographic network: A statistical approach. Bull. Seismol. Soc. Am., 80(1), 187–196. https://doi.org/10.1785/BSSA0800010187
Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Rev. Geophys. https://doi.org/10.1029/2000RG000100
Ryan, K. J. (2003). Estimating Expected Information Gains for Experimental Designs With Application to the Random Fatigue-Limit Model. J. Comput. Graph. Stat., 12(3), 585–603. https://doi.org/10.1198/1061860032012
Saccorotti, G., & Lokmer, I. (2021). Chapter 2 - A review of seismic methods for monitoring and understanding active volcanoes. In P. Papale (Ed.), Forecasting and Planning for Volcanic Hazards, Risks, and Disasters (Vol. 2, pp. 25–73). Elsevier. https://doi.org/10.1016/B978-0-12-818082-2.00002-0
Saccorotti, G., Lokmer, I., Bean, C. J., Di Grazia, G., & Patanè, D. (2007). Analysis of sustained long-period activity at Etna Volcano, Italy. J. Volcanol. Geotherm. Res., 160(3–4), 340–354. https://doi.org/10.1016/j.jvolgeores.2006.10.008
Saltogianni, V., Stiros, S. C., Newman, A. V., Flanagan, K., & Moschas, F. (2014). Time-space modeling of the dynamics of Santorini volcano (Greece) during the 2011-2012 unrest. J. Geophys. Res. Solid Earth, 119(11), 8517–8537. https://doi.org/10.1002/2014jb011409
Sambridge, M., & Gallagher, K. (1993). Earthquake hypocenter location using genetic algorithms. Bull. Seismol. Soc. Am., 83(5), 1467–1491. https://doi.org/10.1785/bssa0830051467
Selva, J., Marzocchi, W., Sandri, L., & Costa, A. (2015). Operational short-term volcanic hazard analysis. In Volcanic Hazards, Risks and Disasters (pp. 233–259). Elsevier. https://doi.org/10.1016/b978-0-12-396453-3.00009-5
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K. S., Ófeigsson, B. G., Heimisson, E. R., Dumont, S., Parks, M., Spaans, K., Gudmundsson, G. B., Drouin, V., Árnadóttir, T., Jónsdóttir, K., Gudmundsson, M. T., Högnadóttir, T., Fridriksdóttir, H. M., Hensch, M., Einarsson, P., Magnússon, E., … Eibl, E. P. S. (2015). Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature, 517(7533), 191–195. https://doi.org/10.1038/nature14111
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Arnadóttir, T., Pedersen, R., Roberts, M. J., Oskarsson, N., Auriac, A., Decriem, J., Einarsson, P., Geirsson, H., Hensch, M., Ofeigsson, B. G., Sturkell, E., Sveinbjörnsson, H., & Feigl, K. L. (2010). Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468(7322), 426–430. https://doi.org/10.1038/nature09558
Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4), 784–802.
Steinberg, D. M., Rabinowitz, N., Shimshoni, Y., & Mizrachi, D. (1995). Configuring a seismographic network for optimal monitoring of fault lines and multiple sources. Bull. Seismol. Soc. Am., 85(6), 1847–1857. https://doi.org/10.1785/BSSA0850061847
Strutz, D., & Curtis, A. (2023). Variational Bayesian experimental design for geophysical applications: seismic source location, amplitude versus offset inversion, and estimating CO2 saturations in a subsurface reservoir. Geophys. J. Int., 236(3), 1309–1331. https://doi.org/10.1093/gji/ggad492
Taisne, B., Brenguier, F., Shapiro, N. M., & Ferrazzini, V. (2011). Imaging the dynamics of magma propagation using radiated seismic intensity. Geophys. Res. Lett., 38(4). https://doi.org/10.1029/2010gl046068
Tarantola, Valette, & Others. (1982). Inverse problems= quest for information. J. Geophys., 50(1), 159–170.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6(10), 1847–1864. https://doi.org/10.1029/2019ea000658
Van Rossum, G., & Drake, F. (2011). The python language reference manual. Network Theory.
Venzke, E. (2024). Global Volcanism Program [Database] Volcanoes of the World (v. 5.2.1; 3 Jul 2024) Distributed by Smithsonian Institution, compiled by Venzke, E. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2
Villaseñor, A., Benz, H. M., Filippi, L., De Luca, G., Scarpa, R., Patanè, G., & Vinciguerra, S. (1998). Three-dimensional P-wave velocity structure of Mt. Etna, Italy. Geophysical Research Letters, 25(11), 1975–1978. https://doi.org/10.1029/98GL01240
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
White, M. C. A., Fang, H., Nakata, N., & Ben-Zion, Y. (2020). PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismol. Res. Lett., 91(4), 2378–2389. https://doi.org/10.1785/0220190318
Woods, J., Winder, T., White, R. S., & Brandsdóttir, B. (2019). Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland. Earth Planet. Sci. Lett., 506, 53–63. https://doi.org/10.1016/j.epsl.2018.10.032
Yamasato, H. (1997). Quantitative analysis of pyroclastic flows using infrasonic and seismic data at unzen volcano, japan. J. Phys. Earth, 45(6), 397–416. https://doi.org/10.4294/jpe1952.45.397
Zobin, V. M. (2017). Fundamentals of volcanic seismology. In Introduction to Volcanic Seismology (pp. 35–60). Elsevier. https://doi.org/10.1016/b978-0-444-63631-7.00003-0
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dominik Strutz, Andrew Curtis

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Horizon 2020
Grant numbers 955515