Near-real-time design of experiments for seismic monitoring of volcanoes

Authors

  • Dominik Strutz University of Edinburgh
  • Andrew Curtis University of Edinburgh

DOI:

https://doi.org/10.26443/seismica.v4i1.1452

Keywords:

volcano seismology, experimental design, Bayesian hypocentre inversion, Microseismic Monitoring

Abstract

Monitoring the seismic activity of volcanoes is crucial for hazard assessment and eruption forecasting. The layout of each seismic network determines the information content of recorded data about volcanic earthquakes, and experimental design methods optimise sensor locations to maximise that information. We provide a code package that implements Bayesian experimental design to optimise seismometer networks to locate seismicity at any volcano, and a practical guide to make this easily and rapidly implementable by any volcano seismologist. This work is the first to optimise travel-time, amplitude and array source location methods simultaneously, making it suitable for a wide range of volcano monitoring scenarios. The code-package is designed to be straightforward to use and can be adapted to a wide range of scenarios, and automatically links to existing global databases of topography and properties of volcanoes worldwide to allow rapid deployment. Any user should be able to obtain an initial design within minutes using a combination of generic and volcano-specific information to guide the design process, and to refine the design for their specific scenario within hours, if more specific prior information is available.

References

Almendros, J. (2003). Performance of the radial semblance method for the location of very long period volcanic signals. Bull. Seismol. Soc. Am., 93(5), 1890–1903. https://doi.org/10.1785/0120020143

Battaglia, J., & Aki, K. (2003). Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J. Geophys. Res., 108(B8). https://doi.org/10.1029/2002jb002193

Bloem, H., Curtis, A., & Maurer, H. (2020). Experimental design for fully nonlinear source location problems: which method should I choose? Geophys. J. Int., 223(2), 944–958. https://doi.org/10.1093/gji/ggaa358

Callahan, J., Monogue, K., Villarreal, R., & Catanach, T. (2024). Analysis and optimization of seismic monitoring networks with Bayesian optimal experiment design. ArXiv [Stat.AP]. https://doi.org/10.48550/arXiv.2410.07215

Cannavò, F., Camacho, A. G., González, P. J., Mattia, M., Puglisi, G., & Fernández, J. (2015). Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises. Sci. Rep., 5(1), 10970. https://doi.org/10.1038/srep10970

Carbone, D., Zuccarello, L., & Saccorotti, G. (2008). Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period. Geophys. Res. Lett., 35(6). https://doi.org/10.1029/2008gl033212

Caudron, C., White, R. S., Green, R. G., Woods, J., Ágústsdóttir, T., Donaldson, C., Greenfield, T., Rivalta, E., & Brandsdóttir, B. (2018). Seismic Amplitude Ratio Analysis of the 2014–2015 bárarbunga-Holuhraun dike propagation and eruption. J. Geophys. Res. Solid Earth, 123(1), 264–276. https://doi.org/10.1002/2017jb014660

Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino, P., Acocella, V., & Vandemeulebrouck, J. (2016). Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun., 7(1), 13712. https://doi.org/10.1038/ncomms13712

Coles, D., & Curtis, A. (2011). Efficient nonlinear Bayesian survey design usingDNoptimization. Geophysics, 76(2), Q1–Q8. https://doi.org/10.1190/1.3552645

Coles, D., Yang, Y., Djikpesse, H., Prange, M., & Osypov, K. (2013). Optimal nonlinear design of marine borehole seismic surveys. Geophysics, 78(3), WB17–WB29. https://doi.org/10.1190/geo2012-0265.1

Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/047174882x

Dawson, P., Whilldin, D., & Chouet, B. (2004). Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii. Geophys. Res. Lett., 31(21). https://doi.org/10.1029/2004gl021163

Di Lieto, B., Saccorotti, G., Zuccarello, L., Rocca, M. L., & Scarpa, R. (2007). Continuous tracking of volcanic tremor at Mount Etna, Italy. Geophys. J. Int., 169(2), 699–705. https://doi.org/10.1111/j.1365-246x.2007.03316.x

Falsaperla, S., & Neri, M. (2015). Seismic footprints of shallow dyke propagation at Etna, Italy. Sci. Rep., 5(1), 11908. https://doi.org/10.1038/srep11908

Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh, Y. W., Rainforth, T., & Goodman, N. (2019). Variational Bayesian optimal experimental design. Adv. Neural Inf. Process. Syst., 32.

Gad, A. F. (2023). PyGAD: an intuitive genetic algorithm Python library. Multimed. Tools Appl., 83(20), 58029–58042. https://doi.org/10.1007/s11042-023-17167-y

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Rı́o, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Holland, J. H. (1975). Adaptation in Natural Artificial Systems. University Michigan Press.

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Softw., 5(1), 10. https://doi.org/10.5334/jors.148

Huan, X., & Marzouk, Y. M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232(1), 288–317. https://doi.org/10.1016/j.jcp.2012.08.013

Hunter. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng., 9, 90–95. https://doi.org/10.1109/MCSE.2007.55

Inza, L. A., Mars, J. I., Métaxian, J. P., O’Brien, G. S., & Macedo, O. (2011). Seismo-volcano source localization with triaxial broad-band seismic array: 3C seismic antenna on volcano. Geophys. J. Int., 187(1), 371–384. https://doi.org/10.1111/j.1365-246x.2011.05148.x

Jolly, A. D., Thompson, G., & Norton, G. E. (2002). Locating pyroclastic flows on Soufriere Hills Volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J. Volcanol. Geotherm. Res., 118(3–4), 299–317. https://doi.org/10.1016/s0377-0273(02)00299-8

Kao, H., & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophys. J. Int., 157(2), 589–594. https://doi.org/10.1111/j.1365-246x.2004.02276.x

Kawakatsu, H., Kaneshima, S., Matsubayashi, H., Ohminato, T., Sudo, Y., Tsutsui, T., Uhira, K., Yamasato, H., Ito, H., & Legrand, D. (2000). Aso94: Aso seismic observation with broadband instruments. J. Volcanol. Geotherm. Res., 101(1–2), 129–154. https://doi.org/10.1016/s0377-0273(00)00166-9

Ku, H. H. (1966). Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand., 70C(4), 263. https://doi.org/10.6028/jres.070c.025

Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Stat., 22(1), 79–86.

Kumagai, H., Lacson, R., Jr, Maeda, Y., Figueroa, M. S., II, Yamashina, T., Ruiz, M., Palacios, P., Ortiz, H., & Yepes, H. (2013). Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size. J. Volcanol. Geotherm. Res., 257, 57–71. https://doi.org/10.1016/j.jvolgeores.2013.03.002

Kumagai, H., Palacios, P., Maeda, T., Castillo, D. B., & Nakano, M. (2009). Seismic tracking of lahars using tremor signals. J. Volcanol. Geotherm. Res., 183(1–2), 112–121. https://doi.org/10.1016/j.jvolgeores.2009.03.010

Kumagai, H., Palacios, P., Ruiz, M., Yepes, H., & Kozono, T. (2011). Ascending seismic source during an explosive eruption at Tungurahua volcano, Ecuador. Geophys. Res. Lett., 38(1). https://doi.org/10.1029/2010gl045944

Langet, N., Maggi, A., Michelini, A., & Brenguier, F. (2014). Continuous kurtosis-based migration for seismic event detection and location, with application to Piton de la Fournaise volcano, La Reunion. Bull. Seismol. Soc. Am., 104(1), 229–246. https://doi.org/10.1785/0120130107

Leva, C., Rümpker, G., & Wölbern, I. (2022). Multi-array analysis of volcano-seismic signals at Fogo and Brava, Cape Verde. Solid Earth, 13(8), 1243–1258. https://doi.org/10.5194/se-13-1243-2022

Lindley, D. V. (1956). On a Measure of the Information Provided by an Experiment. In The Annals of Mathematical Statistics (Vol. 27, pp. 986–1005). https://doi.org/10.1214/aoms/1177728069

Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake location, direct, global-search methods. In Encyclopedia of Complexity and Systems Science (pp. 1–33). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_150-2

Lomax, A., Zollo, A., Capuano, P., & Virieux, J. (2001). Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int., 146(2), 313–331. https://doi.org/10.1046/j.0956-540x.2001.01444.x

Long, Q., Scavino, M., Tempone, R., & Wang, S. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Eng., 259, 24–39. https://doi.org/10.1016/j.cma.2013.02.017

Marzocchi, W., & Bebbington, M. S. (2012). Probabilistic eruption forecasting at short and long time scales. Bull. Volcanol., 74(8), 1777–1805. https://doi.org/10.1007/s00445-012-0633-x

Maurer, H., & Boerner, D. E. (1998). Optimized and robust experimental design: a non-linear application to EM sounding. Geophys. J. Int., 132(2), 458–468. https://doi.org/10.1046/j.1365-246x.1998.00459.x

Maurer, H., Curtis, A., & Boerner, D. E. (2010). Recent advances in optimized geophysical survey design. Geophysics, 75(5), 75A177-75A194. https://doi.org/10.1190/1.3484194

McNutt, S. R. (2005). Volcanic seismology. Annu. Rev. Earth Planet. Sci., 33(1), 461–491. https://doi.org/10.1146/annurev.earth.33.092203.122459

Métaxian, J.-P., Lesage, P., & Valette, B. (2002). Locating sources of volcanic tremor and emergent events by seismic triangulation: Application to Arenal volcano, Costa Rica. J. Geophys. Res., 107(B10), ECV 10-1-ECV 10-18. https://doi.org/10.1029/2001jb000559

Morioka, H., Kumagai, H., & Maeda, T. (2017). Theoretical basis of the amplitude source location method for volcano-seismic signals. J. Geophys. Res. [Solid Earth], 122(8), 6538–6551. https://doi.org/10.1002/2017jb013997

O’Brien, G. S., Lokmer, I., De Barros, L., Bean, C. J., Saccorotti, G., Metaxian, J.-P., & Patane, D. (2011). Time reverse location of seismic long-period events recorded on Mt Etna. Geophys. J. Int., 184(1), 452–462. https://doi.org/10.1111/j.1365-246x.2010.04851.x

Ogiso, M., Matsubayashi, H., & Yamamoto, T. (2015). Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan. Earth Planets Space, 67(1). https://doi.org/10.1186/s40623-015-0376-y

Ogiso, M., & Yomogida, K. (2012). Migration of tremor locations before the 2008 eruption of Meakandake Volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res., 217–218, 8–20. https://doi.org/10.1016/j.jvolgeores.2011.12.005

Ohminato, T., Chouet, B. A., Dawson, P., & Kedar, S. (1998). Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii. J. Geophys. Res., 103(B10), 23839–23862. https://doi.org/10.1029/98jb01122

Pallister, J., & McNutt, S. R. (2015). Synthesis of volcano monitoring. In The Encyclopedia of Volcanoes (pp. 1151–1171). Elsevier. https://doi.org/10.1016/b978-0-12-385938-9.00066-3

Patane, D., Chiarabba, C., Cocina, O., De Gori, P., Moretti, M., & Boschi, E. (2002). Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion. Geophysical Research Letters, 29(10), 135-1-135–4. https://doi.org/10.1029/2001GL014391

Rabinowitz, N., & Steinberg, D. M. (1990). Optimal configuration of a seismographic network: A statistical approach. Bull. Seismol. Soc. Am., 80(1), 187–196. https://doi.org/10.1785/BSSA0800010187

Rost, S., & Thomas, C. (2002). Array seismology: Methods and applications. Rev. Geophys. https://doi.org/10.1029/2000RG000100

Ryan, K. J. (2003). Estimating Expected Information Gains for Experimental Designs With Application to the Random Fatigue-Limit Model. J. Comput. Graph. Stat., 12(3), 585–603. https://doi.org/10.1198/1061860032012

Saccorotti, G., & Lokmer, I. (2021). Chapter 2 - A review of seismic methods for monitoring and understanding active volcanoes. In P. Papale (Ed.), Forecasting and Planning for Volcanic Hazards, Risks, and Disasters (Vol. 2, pp. 25–73). Elsevier. https://doi.org/10.1016/B978-0-12-818082-2.00002-0

Saccorotti, G., Lokmer, I., Bean, C. J., Di Grazia, G., & Patanè, D. (2007). Analysis of sustained long-period activity at Etna Volcano, Italy. J. Volcanol. Geotherm. Res., 160(3–4), 340–354. https://doi.org/10.1016/j.jvolgeores.2006.10.008

Saltogianni, V., Stiros, S. C., Newman, A. V., Flanagan, K., & Moschas, F. (2014). Time-space modeling of the dynamics of Santorini volcano (Greece) during the 2011-2012 unrest. J. Geophys. Res. Solid Earth, 119(11), 8517–8537. https://doi.org/10.1002/2014jb011409

Sambridge, M., & Gallagher, K. (1993). Earthquake hypocenter location using genetic algorithms. Bull. Seismol. Soc. Am., 83(5), 1467–1491. https://doi.org/10.1785/bssa0830051467

Selva, J., Marzocchi, W., Sandri, L., & Costa, A. (2015). Operational short-term volcanic hazard analysis. In Volcanic Hazards, Risks and Disasters (pp. 233–259). Elsevier. https://doi.org/10.1016/b978-0-12-396453-3.00009-5

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K. S., Ófeigsson, B. G., Heimisson, E. R., Dumont, S., Parks, M., Spaans, K., Gudmundsson, G. B., Drouin, V., Árnadóttir, T., Jónsdóttir, K., Gudmundsson, M. T., Högnadóttir, T., Fridriksdóttir, H. M., Hensch, M., Einarsson, P., Magnússon, E., … Eibl, E. P. S. (2015). Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature, 517(7533), 191–195. https://doi.org/10.1038/nature14111

Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Arnadóttir, T., Pedersen, R., Roberts, M. J., Oskarsson, N., Auriac, A., Decriem, J., Einarsson, P., Geirsson, H., Hensch, M., Ofeigsson, B. G., Sturkell, E., Sveinbjörnsson, H., & Feigl, K. L. (2010). Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468(7322), 426–430. https://doi.org/10.1038/nature09558

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4), 784–802.

Steinberg, D. M., Rabinowitz, N., Shimshoni, Y., & Mizrachi, D. (1995). Configuring a seismographic network for optimal monitoring of fault lines and multiple sources. Bull. Seismol. Soc. Am., 85(6), 1847–1857. https://doi.org/10.1785/BSSA0850061847

Strutz, D., & Curtis, A. (2023). Variational Bayesian experimental design for geophysical applications: seismic source location, amplitude versus offset inversion, and estimating CO2 saturations in a subsurface reservoir. Geophys. J. Int., 236(3), 1309–1331. https://doi.org/10.1093/gji/ggad492

Taisne, B., Brenguier, F., Shapiro, N. M., & Ferrazzini, V. (2011). Imaging the dynamics of magma propagation using radiated seismic intensity. Geophys. Res. Lett., 38(4). https://doi.org/10.1029/2010gl046068

Tarantola, Valette, & Others. (1982). Inverse problems= quest for information. J. Geophys., 50(1), 159–170.

Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6(10), 1847–1864. https://doi.org/10.1029/2019ea000658

Van Rossum, G., & Drake, F. (2011). The python language reference manual. Network Theory.

Venzke, E. (2024). Global Volcanism Program [Database] Volcanoes of the World (v. 5.2.1; 3 Jul 2024) Distributed by Smithsonian Institution, compiled by Venzke, E. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2

Villaseñor, A., Benz, H. M., Filippi, L., De Luca, G., Scarpa, R., Patanè, G., & Vinciguerra, S. (1998). Three-dimensional P-wave velocity structure of Mt. Etna, Italy. Geophysical Research Letters, 25(11), 1975–1978. https://doi.org/10.1029/98GL01240

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

White, M. C. A., Fang, H., Nakata, N., & Ben-Zion, Y. (2020). PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method. Seismol. Res. Lett., 91(4), 2378–2389. https://doi.org/10.1785/0220190318

Woods, J., Winder, T., White, R. S., & Brandsdóttir, B. (2019). Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland. Earth Planet. Sci. Lett., 506, 53–63. https://doi.org/10.1016/j.epsl.2018.10.032

Yamasato, H. (1997). Quantitative analysis of pyroclastic flows using infrasonic and seismic data at unzen volcano, japan. J. Phys. Earth, 45(6), 397–416. https://doi.org/10.4294/jpe1952.45.397

Zobin, V. M. (2017). Fundamentals of volcanic seismology. In Introduction to Volcanic Seismology (pp. 35–60). Elsevier. https://doi.org/10.1016/b978-0-444-63631-7.00003-0

Additional Files

Published

2025-02-14

How to Cite

Strutz, D., & Curtis, A. (2025). Near-real-time design of experiments for seismic monitoring of volcanoes. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1452

Issue

Section

Articles

Funding data