Delineation of 3D crustal seismic structures beneath western Tibet and the Himalayan range using local earthquake tomography
DOI:
https://doi.org/10.26443/seismica.v4i1.1453Keywords:
Western Tibet, Local Earthquake Tomography, Partial Melting, seismic velocity change, Karakoram FaultAbstract
This study aims to image the crustal structure of the western Tibetan Plateau by analyzing the velocity structure of elastic waves, using manually picked P- and S-wave arrival times from waveform data recorded by temporarily installed seismic stations in western Tibet. Preliminary events located using the VELEST algorithm resulted in the development of a 1-D velocity model through inversion, which was then used in the TomoDD algorithm to relocate earthquakes and generate a high-resolution 3-D velocity structure model. A significant number of events were located between the Karakoram fault (KKF), Main Boundary Thrust, and Main Central Thrust. A low P-wave anomaly of approximately ~8% is noted in the vicinity of the KKF, while a significant low P-wave anomaly is also observed in the crust beneath the western margin. A low P-wave anomaly is concentrated beneath the Lhasa block, whereas a relatively higher P-wave anomaly is evident in the Himalayan terrane. The KKF dips beneath the Tibetan plateau towards the northeast. Evidence of partial melting in the crust beneath the Tibetan plateau and mid-crustal channel flow of slower crustal material from the plateau towards the Himalayan range can also be delineated through the observed velocity structures found in the study.
References
Alsdorf, D., Makovsky, Y., Zhao, W., Brown, L., Nelson, K., Klemperer, S., Hauck, M., Ross, A., Cogan, M., Clark, M., & others. (1998). INDEPTH (International Deep Profiling of Tibet and the Himalaya) multichannel seismic reflection data: Description and availability. Journal of Geophysical Research: Solid Earth, 103(B11), 26993–26999. https://doi.org/10.1029/98JB01078
Ashish, Padhi, A., Rai, S., & Gupta, S. (2009). Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: implications for the Himalayan channel flow. Geophysical Journal International, 177(3), 1111–1120. https://doi.org/10.1111/j.1365-246X.2009.04112.x
Basuyau, C., Diament, M., Tiberi, C., Hetényi, G., Vergne, J., & Peyrefitte, A. (2013). Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas. Geophysical Journal International, 193(1), 149–160. https://doi.org/10.1093/gji/ggs110
Bilham, R., & others. (2004). Earthquakes in India and the Himalaya: tectonics, geodesy and history. Annals of GEOPHYSICS. https://doi.org/10.4401/ag-3338
Biswas, R., & Singh, C. (2020a). An investigation of regional variations of coda wave attenuation in western Tibet. Journal of Seismology, 24(6), 1235–1254. https://doi.org/10.1007/s10950-020-09929-0
Biswas, R., & Singh, C. (2020b). Attenuation of high frequency body waves in the crust of western Tibet. Physics of the Earth and Planetary Interiors, 298, 106323. https://doi.org/10.1016/j.pepi.2019.106323
Caldwell, W. B., Klemperer, S. L., Lawrence, J. F., Rai, S. S., & others. (2013). Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters, 367, 15–27. https://doi.org/10.1016/j.epsl.2013.02.009
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
Cotte, N., Pedersen, H., Campillo, M., Mars, J., Ni, J., Kind, R., Sandvol, E., & Zhao, W. (1999). Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh waves. Geophysical Journal International, 138(3), 809–819. https://doi.org/10.1046/j.1365-246x.1999.00927.x
DeCelles, P. G., Robinson, D. M., & Zandt, G. (2002). Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6), 12–1. https://doi.org/10.1029/2001TC001322
Dubey, A. K., Singh, A., Kumar, M. R., Jana, N., Sarkar, S., Saikia, D., & Singh, C. (2022). Tomographic imaging of the plate geometry beneath the Arunachal Himalaya and Burmese subduction zones. Geophysical Research Letters, 49(8), e2022GL098331. https://doi.org/10.1029/2022GL098331
Eberhart-Phillips, D., & Michael, A. J. (1993). Three-dimensional velocity structure, seismicity, and fault structure in the Parkfield region, central California. Journal of Geophysical Research: Solid Earth, 98(B9), 15737–15758. https://doi.org/10.1029/93JB01029
Fang, H., & Zhang, H. (2014). Wavelet-based double-difference seismic tomography with sparsity regularization. Geophysical Journal International, 199(2), 944–955. https://doi.org/10.1093/gji/ggu305
Gilligan, A., Priestley, K. F., Roecker, S. W., Levin, V., & Rai, S. (2015). The crustal structure of the western Himalayas and Tibet. Journal of Geophysical Research: Solid Earth, 120(5), 3946–3964. https://doi.org/10.1002/2015JB011891
Haines, S. S., Klemperer, S. L., Brown, L., Jingru, G., Mechie, J., Meissner, R., Ross, A., & Wenjin, Z. (2003). INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics, 22(1). https://doi.org/10.1029/2001TC001305
Havskov, J., & Ottemoller, L. (1999). SEISAN earthquake analysis software. Seismological Research Letters, 70(5), 532–534. https://doi.org/10.1785/gssrl.70.5.532
Huang, G.-C. D., Wu, F. T., Roecker, S. W., & Sheehan, A. F. (2009). Lithospheric structure of the central Himalaya from 3-D tomographic imaging. Tectonophysics, 475(3–4), 524–543. https://doi.org/10.1016/j.tecto.2009.06.023
Jaiswal, N., Singh, C., Sarkar, S., Tiwari, A. K., & Jana, N. (2022). Pg attenuation tomography beneath western Tibet. Journal of Seismology, 26(3), 531–543. https://doi.org/10.1007/s10950-022-10086-9
Jaiswal, N., Singh, C., & Singh, A. (2020). Crustal structure of western Tibet revealed by Lg attenuation tomography. Tectonophysics, 775, 228245. https://doi.org/10.1016/j.tecto.2019.228245
Jia, M. (2015). The Transformation of Tibetan Identity.
Joshi, G. R., Hayashi, D., & others. (2010). Development of extensional stresses in the compressional setting of the Himalayan thrust wedge: inference from numerical modelling. Natural Science, 2(7), 667. https://doi.org/10.4236/ns.2010.27083
Kao, H., Shan, S.-J., Dragert, H., Rogers, G., Cassidy, J. F., & Ramachandran, K. (2005). A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature, 436(7052), 841–844. https://doi.org/10.1038/nature03903
Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M., & Ding, L. (2007). Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7–8), 917–933. https://doi.org/10.1130/B26033.1
Kapp, P., Murphy, M. A., Yin, A., Harrison, T. M., Ding, L., & Guo, J. (2003). Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4). https://doi.org/10.1029/2001TC001332
Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7–8), 865–878. https://doi.org/10.1130/B25595.1
Kind, R., Ni, J., Zhao, W., Wu, J., Yuan, X., Zhao, L., Sandvol, E., Reese, C., Nabelek, J., & Hearn, T. (1996). Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science, 274(5293), 1692–1694. https://doi.org/10.1126/science.274.5293.1692
Kissling, E, Kradolfer, U., & Maurer, H. (1995). Program VELEST user’s guide-Short Introduction. Institute of Geophysics, ETH Zurich.
Kissling, Edi. (1988). Geotomography with local earthquake data. Reviews of Geophysics, 26(4), 659–698. https://doi.org/10.1029/RG026i004p00659
Kissling, Edi, Ellsworth, W., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10), 19635–19646. https://doi.org/10.1029/93JB03138
Klemperer, SIMON L. (2006). Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society, London, Special Publications, 268(1), 39–70. https://doi.org/10.1144/GSL.SP.2006.268.01.03
Klemperer, Simon L, Kennedy, B. M., Sastry, S. R., Makovsky, Y., Harinarayana, T., & Leech, M. L. (2013). Mantle fluids in the Karakoram fault: Helium isotope evidence. Earth and Planetary Science Letters, 366, 59–70. https://doi.org/10.1016/j.epsl.2013.01.013
Koulakov, I., D’Auria, L., Prudencio, J., Cabrera-Pérez, I., Barrancos, J., Padilla, G. D., Abramenkov, S., Pérez, N. M., & Ibáñez, J. M. (2023). Local earthquake seismic tomography reveals the link between crustal structure and volcanism in Tenerife (Canary Islands). Journal of Geophysical Research: Solid Earth, 128(3), e2022JB025798. https://doi.org/10.1029/2022JB025798
Leech, M. L. (2008). Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya? Earth and Planetary Science Letters, 276(3–4), 314–322. https://doi.org/10.1016/j.epsl.2008.10.006
Li, P., & Cai, M. (2018). Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula, China. Journal of Asian Earth Sciences, 166, 66–79. https://doi.org/10.1016/j.jseaes.2018.07.021
Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419
Murphy, M., Yin, A., Harrison, T., Durr, S., Ryerson, F., & Kidd, W. (1997). Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25(8), 719–722. https://doi.org/10.1130/0091-7613(1997)025
Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H., Chen, J., Huang, B.-S., & Team, the H.-C. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371–1374. https://doi.org/10.1126/science.1167719
Nelson, K. D., Zhao, W., Brown, L., Kuo, J., Che, J., Liu, X., Klemperer, S., Makovsky, Y., Meissner, R., Mechie, J., & others. (1996). Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science, 274(5293), 1684–1688. https://doi.org/10.1126/science.274.5293.1684
Ottemöller, L., Voss, P., & Havskov, J. (2011). FOR WINDOWS, SOLARIS, LINUX and MACOSX.
Pan, G., Wang, L., Li, R., Yuan, S., Ji, W., Yin, F., Zhang, W., & Wang, B. (2012). Tectonic evolution of the Qinghai-Tibet plateau. Journal of Asian Earth Sciences, 53, 3–14. https://doi.org/10.1016/j.jseaes.2011.12.018
Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1. 0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173. https://doi.org/10.1002/2013JB010626
Rai, S., Priestley, K., Gaur, V., Mitra, S., Singh, M., & Searle, M. (2006). Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophysical Research Letters, 33(15). https://doi.org/10.1029/2006GL026076
Rapine, R., Tilmann, F., West, M., Ni, J., & Rodgers, A. (2003). Crustal structure of northern and southern Tibet from surface wave dispersion analysis. Journal of Geophysical Research: Solid Earth, 108(B2). https://doi.org/10.1029/2001JB000445
Razi, Ayda S, Roecker, S. W., & Levin, V. (2016). The fate of the Indian lithosphere beneath western Tibet: Upper mantle elastic wave speed structure from a joint teleseismic and regional body wave tomographic study. Physics of the Earth and Planetary Interiors, 251, 11–23. https://doi.org/10.1016/j.pepi.2015.12.001
Razi, Ayda Shokoohi, Levin, V., Roecker, S. W., & Huang, G. D. (2014). Crustal and uppermost mantle structure beneath western Tibet using seismic traveltime tomography. Geochemistry, Geophysics, Geosystems, 15(2), 434–452. https://doi.org/10.1002/2013GC005143
Rowe, C. A., Aster, R., Phillips, W. S., Jones, R., Borchers, B., & Fehler, M. (2002). Using automated, high-precision repicking to improve delineation of microseismic structures at the Soultz geothermal reservoir. The Mechanism of Induced Seismicity, 563–596. https://doi.org/10.1007/PL00001265
Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058. https://doi.org/10.1126/science.1155371
Schulte-Pelkum, V., Monsalve, G., Sheehan, A., Pandey, M., Sapkota, S., Bilham, R., & Wu, F. (2005). Imaging the Indian subcontinent beneath the Himalaya. Nature, 435(7046), 1222–1225. https://doi.org/10.1038/nature03678
Serlenga, V., & Stabile, T. A. (2018). How do Local Earthquake Tomography and inverted dataset affect earthquake locations? The case study of High Agri Valley (Southern Italy). Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2018.1504124
Shen, Z.-K., Lü, J., Wang, M., & Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11). https://doi.org/10.1029/2004JB003421
Sibson, R. H. (1994). Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78(1), 69–84. https://doi.org/10.1144/GSL.SP.1994.078.01.07
Singh, A., Ravi Kumar, M., Mohanty, D. D., Singh, C., Biswas, R., & Srinagesh, D. (2017). Crustal structure beneath India and Tibet: New constraints from inversion of receiver functions. Journal of Geophysical Research: Solid Earth, 122(10), 7839–7859. https://doi.org/10.1002/2017JB013946
Singh, A., Singh, C., & Kennett, B. (2015). A review of crust and upper mantle structure beneath the Indian subcontinent. Tectonophysics, 644, 1–21. https://doi.org/10.1016/j.tecto.2015.01.007
Styron, R. H., Taylor, M. H., & Murphy, M. A. (2011). Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya. Geosphere, 7(2), 582–596. https://doi.org/10.1130/GES00606.1
Theunissen, T., Chevrot, S., Sylvander, M., Monteiller, V., Calvet, M., Villaseñor, A., Benahmed, S., Pauchet, H., & Grimaud, F. (2018). Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees. Geophysical Journal International, 212(3), 1806–1828. https://doi.org/10.1093/gji/ggx472
Thurber, C., & Eberhart-Phillips, D. (1999). Local earthquake tomography with flexible gridding. Computers & Geosciences, 25(7), 809–818. https://doi.org/10.1016/S0098-3004(99)00007-2
Thurber, C. H. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, 75(1–3), 55–62. https://doi.org/10.1016/0031-9201(92)90117-E
Thurber, C. H., Zhang, H., Rowe, C. A., & Lutter, W. J. (2002). Methods for improving seismic event location processing. 25th Seismic Research Review-Nuclear Explosion Monitoring: Building the Knowledge Base. Proceedings of the 25TM Seismic Research Review-Nuclear Explosion Monitoring,‘Building the Knowledge Base,’ 342–351.
Tian, X., Wu, Q., Zhang, Z., Teng, J., & Zeng, R. (2005). Joint imaging by teleseismic converted and multiple waves and its application in the INDEPTH-III passive seismic array. Geophysical Research Letters, 32(21). https://doi.org/10.1029/2005GL023686
Valli, F., Arnaud, N., Leloup, P. H., Sobel, E. R., Mahéo, G., Lacassin, R., Guillot, S., Li, H., Tapponnier, P., & Xu, Z. (2007). Twenty million years of continuous deformation along the Karakorum fault, western Tibet: A thermochronological analysis. Tectonics, 26(4). https://doi.org/10.1029/2005TC001913
Vergne, J., Wittlinger, G., Hui, Q., Tapponnier, P., Poupinet, G., Mei, J., Herquel, G., & Paul, A. (2002). Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau. Earth and Planetary Science Letters, 203(1), 25–33. https://doi.org/10.1016/S0012-821X(02)00853-1
Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations [Techreport]. https://doi.org/10.3133/ofr01113
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
Wittlinger, G., Farra, V., & Vergne, J. (2004). Lithospheric and upper mantle stratifications beneath Tibet: New insights from Sp conversions. Geophysical Research Letter, 31(19). https://doi.org/10.1029/2004GL020955
Wu, J., Zhang, Z., Kong, F., Yang, B. B., Yu, Y., Liu, K. H., & Gao, S. S. (2015). Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth and Planetary Science Letters, 413, 167–175. https://doi.org/10.1016/j.epsl.2015.01.002
Xu, Q., Ding, L., Zhang, L., Cai, F., Lai, Q., Yang, D., & Liu-Zeng, J. (2013). Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth and Planetary Science Letters, 362, 31–42. https://doi.org/10.1016/j.epsl.2012.11.058
Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
Yuan, X., Ni, J., Kind, R., Mechie, J., & Sandvol, E. (1997). Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. Journal of Geophysical Research: Solid Earth, 102(B12), 27491–27500. https://doi.org/10.1029/97JB02379
Zhang, H., Roecker, S., Thurber, C. H., Wang, W., & Dar, I. (2012). Seismic imaging of microblocks and weak zones in the crust beneath the southeastern margin of the Tibetan Plateau. Earth Sciences, 159–202. https://doi.org/10.5772/27876
Zhang, H., & Thurber, C. (2003). Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5), 1875–1889. https://doi.org/10.1785/0120020190
Zhang, H., & Thurber, C. (2006). Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163, 373–403. https://doi.org/10.1007/s00024-005-0021-y
Zhang, Zeming, Ding, L., Zhao, Z., & Santosh, M. (2017). Tectonic evolution and dynamics of the Tibetan Plateau. In Gondwana Research (Vol. 41, pp. 1–8). Elsevier. https://doi.org/10.1016/j.gr.2016.09.001
Zhang, Zhongjie, Deng, Y., Teng, J., Wang, C., Gao, R., Chen, Y., & Fan, W. (2011). An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4), 977–989. https://doi.org/10.1016/j.jseaes.2010.03.010
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arghya Kusum Dey, Niptika Jana, Rahul Biswas

This work is licensed under a Creative Commons Attribution 4.0 International License.