Characterization and validation of tidally calibrated strains from the Alto Tiberina Near Fault Observatory Strainmeter Array (TABOO-NFO-STAR)
DOI:
https://doi.org/10.26443/seismica.v4i1.1471Keywords:
Borehole Strainmeters, Near-Fault Observatory, Earthquakes, Strain, CalibrationAbstract
Six horizontal borehole tensor strainmeters (TSM1-6) installed from Fall 2021 to Spring 2022 comprise the Alto Tiberina Near Fault Observatory Strainmeter Array (STAR), providing an unprecedented opportunity to investigate seismic and aseismic deformation from hazardous high- and low-angle normal faults in Italy. Prior to use in tectonic applications, they require in-situ calibration and correction for non-tectonic signals. We tidally calibrate the instruments, characterize the calibration uncertainty, and test the results against environmental and earthquake signals originating from local to teleseismic distances. The STAR sites demonstrably deviate from assumptions common to the standard manufacturer's calibrations, including negative areal coupling at TSM3-6. While the tidally calibrated strains have ~3-56% uncertainty, the calibrated dynamic strains show interstation precision and accuracy to nanostrain levels, and static coseismic offsets in the array footprint are within uncertainty. TSM3 records a complex series of strains that may arise from dynamically triggered near-borehole fracture slip and fluid flow that does not appear to affect its sensitivity to lower strain rate deformation. Future calibration improvement may be afforded with longer stable timeseries, particularly for TSM4. Overall, our analyses demonstrate expanded geodetic capability for detecting deformation in the Alto Tiberina Near Fault Observatory.
References
Agnew, D. C. (2012). SPOTL: Some Programs for Ocean-Tide Loading. Scripps Institution of Oceanography. https://escholarship.org/uc/item/954322pg
Agnew, D. C., & Hodgkinson, K. (2007). Designing Compact Causal Digital Filters for Low-Frequency Strainmeter Data. Bulletin of the Seismological Society of America, 97(1B), 91–99. https://doi.org/10.1785/0120060088
Amoruso, A., & Crescentini, L. (2009). The geodetic laser interferometers at Gran Sasso, Italy: Recent modifications and correction for local effects. Journal of Geodynamics, 48(3–5), 120–125. https://doi.org/10.1016/j.jog.2009.09.025
Anderlini, L., Serpelloni, E., & Belardinelli, M. E. (2016). Creep and locking of a low‐angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy). Geophysical Research Letters, 43(9), 4321–4329. https://doi.org/10.1002/2016gl068604
Attewell, P. B., & Farmer, I. W. (1976). Principles of Engineering Geology. Springer Netherlands. https://doi.org/10.1007/978-94-009-5707-7
Bailo, D., Paciello, R., Michalek, J., Cocco, M., Freda, C., Jeffery, K., & Atakan, K. (2023). The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02697-9
Barbour, A. J. (2015). Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions. Journal of Geophysical Research: Solid Earth, 120(8), 5863–5883. https://doi.org/10.1002/2015jb012201
Barbour, A. J., Agnew, D. C., & Wyatt, F. K. (2014). Coseismic Strains on Plate Boundary Observatory Borehole Strainmeters in Southern California. Bulletin of the Seismological Society of America, 105(1), 431–444. https://doi.org/10.1785/0120140199
Beaumont, C., & Berger, J. (1975). An analysis of tidal strain observations from the United States of America: I. The laterally homogeneous tide. Bulletin of the Seismological Society of America, 65(6), 1613–1629. https://doi.org/10.1785/bssa0650061613
Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GPS station velocities without step detection. Journal of Geophysical Research: Solid Earth, 121(3), 2054–2068. https://doi.org/10.1002/2015jb012552
Canitano, A., Bernard, P., Linde, A. T., Sacks, S., & Boudin, F. (2013). Correcting High-Resolution Borehole Strainmeter Data from Complex External Influences and Partial-Solid Coupling: the Case of Trizonia, Rift of Corinth (Greece). Pure and Applied Geophysics, 171(8), 1759–1790. https://doi.org/10.1007/s00024-013-0742-2
Canitano, Alexandre, Hsu, Y.-J., Lee, H.-M., Linde, A. T., & Sacks, S. (2017). Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling. Journal of Geodesy, 92(3), 223–240. https://doi.org/10.1007/s00190-017-1056-4
Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., & Cocco, M. (2007). Architecture and mechanics of an active low‐angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. Journal of Geophysical Research: Solid Earth, 112(B10). https://doi.org/10.1029/2007jb005015
Chiaraluce, Lauro, Amato, A., Carannante, S., Castelli, V., Cattaneo, M., Cocco, M., Collettini, C., D’Alema, E., Stefano, R. D., Latorre, D., Marzorati, S., Mirabella, F., Monachesi, G., Piccinini, D., Nardi, A., Piersanti, A., Stramondo, S., & Valoroso, L. (2014). The Alto Tiberina Near Fault Observatory (northern Apennines, Italy). Annals of Geophysics, 57(3). https://doi.org/10.4401/ag-6426
Chiaraluce, Lauro, Bennett, R., Mencin, D., Johnson, W., Barchi, M. R., Bohnhoff, M., Baccheschi, P., Caracausi, A., Calamita, C., Cavaliere, A., Gualandi, A., Mandler, E., Mariucci, M. T., Martelli, L., Marzorati, S., Montone, P., Pantaleo, D., Pucci, S., Serpelloni, E., … Schenato, L. (2024). A strainmeter array as the fulcrum of novel observatory sites along the Alto Tiberina Near Fault Observatory. Scientific Drilling, 33(2), 173–190. https://doi.org/10.5194/sd-33-173-2024
Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research: Solid Earth, 107(B2). https://doi.org/10.1029/2000jb000138
Currenti, G., Zuccarello, L., Bonaccorso, A., & Sicali, A. (2017). Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano. Journal of Geophysical Research: Solid Earth, 122(10), 7729–7738. https://doi.org/10.1002/2017jb014663
Dziewonski, A. M., Chou, T. ‐A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825
Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441(7097), 1135–1138. https://doi.org/10.1038/nature04798
Farr, T. G. (2007). The Shuttle Radar Topography Mission. Rev. Geophys, 45, 2004.
Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761–797. https://doi.org/10.1029/rg010i003p00761
Farrell, W. E. (1973). A discussion on the measurement and interpretation of changes of strain in the Earth-Earth tides, ocean tides and tidal loading. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 274(1239), 253–259. https://doi.org/10.1098/rsta.1973.0050
Gladwin, M. T. (1984). High-precision multicomponent borehole deformation monitoring. Review of Scientific Instruments, 55(12), 2011–2016. https://doi.org/10.1063/1.1137704
Gladwin, M. T., & Hart, R. (1985). Design parameters for borehole strain instrumentation. Pure and Applied Geophysics, 123(1), 59–80. https://doi.org/10.1007/bf00877049
Gottlieb, M., & Hanagan, C. (2024). EarthScope/earthscopestraintools: v0.1.42 (V0.1.42-beta) [Software]. Zenodo. https://doi.org/10.5281/zenodo.12193840
Grant, E. B., & Langston, C. A. (2009). Gladwin Tensor Strain-Meter calibration and wave gradiometry applications. AGU Fall Meeting Abstracts, 2009, 53–0070.
Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M. E., & Avouac, J. ‐P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706–7714. https://doi.org/10.1002/2017gl073687
Guangyu, F., Xuzhang, S., Yoichi, F., Shanghua, G., & Satoshi, Y. (2011). Co-seismic strain changes of Wenchuan Mw7. 9 earthquake recorded by borehole strainmeters on Tibetan plateau. Geodesy and Geodynamics, 2(3), 42–49. https://doi.org/10.3724/sp.j.1246.2011.00042
Harkrider, D. G. (1970). Surface waves in multilayered elastic media. Part II. Higher mode spectra and spectral ratios from point sources in plane layered Earth models. Bulletin of the Seismological Society of America, 60(6), 1937–1987. https://doi.org/10.1785/bssa0600061937
Hart, R. H. G., Gladwin, M. T., Gwyther, R. L., Agnew, D. C., & Wyatt, F. K. (1996). Tidal calibration of borehole strain meters: Removing the effects of small‐scale inhomogeneity. Journal of Geophysical Research: Solid Earth, 101(B11), 25553–25571. https://doi.org/10.1029/96jb02273
Hodgkinson, K., Langbein, J., Henderson, B., Mencin, D., & Borsa, A. (2013). Tidal calibration of plate boundary observatory borehole strainmeters. Journal of Geophysical Research: Solid Earth, 118(1), 447–458. https://doi.org/10.1029/2012jb009651
Hreinsdottir, S., & Bennett, R. A. (2009). Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology, 37(8), 683–686. https://doi.org/10.1130/g30194a.1
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55
Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x
Langbein, J. (2010). Effect of error in theoretical Earth tide on calibration of borehole strainmeters. Geophysical Research Letters, 37(21). https://doi.org/10.1029/2010gl044454
Langbein, J. (2015). Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration. Journal of Geophysical Research: Solid Earth, 120(10), 7190–7202. https://doi.org/10.1002/2015jb012278
Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L., & Bilham, R. G. (1996). A slow earthquake sequence on the San Andreas fault. Nature, 383(6595), 65–68. https://doi.org/10.1038/383065a0
Mandler, E., Canitano, A., Belardinelli, M. E., Nespoli, M., Serpelloni, E., & Linde, A. (2024). Tidal Calibration of the Gladwin Tensor Strain Monitor (GTSM) Array in Taiwan. Pure and Applied Geophysics, 182(3), 1001–1021. https://doi.org/10.1007/s00024-024-03453-9
Matsumoto, K., Sato, T., Takanezawa, T., & Ooe, M. (2001). GOTIC2: A program for computation of oceanic tidal loading effect. Journal of the Geodetic Society of Japan, 47(1), 243–248. https://doi.org/10.11366/sokuchi1954.47.243
Menke, W. (2014). Review of the Generalized Least Squares Method. Surveys in Geophysics, 36(1), 1–25. https://doi.org/10.1007/s10712-014-9303-1
mikegottlieb84, & cehanagan. (2024). EarthScope/earthscopestraintools: v0.1.42. Zenodo. https://doi.org/10.5281/ZENODO.12193840
Mirabella, F., Brozzetti, F., Lupattelli, A., & Barchi, M. R. (2011). Tectonic evolution of a low‐angle extensional fault system from restored cross‐sections in the Northern Apennines (Italy). Tectonics, 30(6). https://doi.org/10.1029/2011tc002890
Nespoli, M., Belardinelli, M. E., Gualandi, A., Serpelloni, E., & Bonafede, M. (2018). Poroelasticity and Fluid Flow Modeling for the 2012 Emilia-Romagna Earthquakes: Hints from GPS and InSAR Data. Geofluids, 2018, 1–15. https://doi.org/10.1155/2018/4160570
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135
Peltzer, G., Rosen, P., Rogez, F., & Hudnut, K. (1998). Poroelastic rebound along the Landers 1992 earthquake surface rupture. Journal of Geophysical Research: Solid Earth, 103(B12), 30131–30145. https://doi.org/10.1029/98jb02302
Pollitz, F. F. (1996). Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth. Geophysical Journal International, 125(1), 1–14. https://doi.org/10.1111/j.1365-246x.1996.tb06530.x
Roeloffs, E. (2010). Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling. Journal of Geophysical Research: Solid Earth, 115(B6). https://doi.org/10.1029/2009jb006407
Scognamiglio, L., Tinti, E., & Quintiliani, M. (2006). Time Domain Moment Tensor (TDMT) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/TDMT
Segall, P., Jónsson, S., & Ágústsson, K. (2003). When is the strain in the meter the same as the strain in the rock? Geophysical Research Letters, 30(19). https://doi.org/10.1029/2003gl017995
Sun, W., Okubo, S., Fu, G., & Araya, A. (2009). General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point. Geophysical Journal International, 177(3), 817–833. https://doi.org/10.1111/j.1365-246x.2009.04113.x
Tamura, Y., & Agnew, D. C. (2008). Baytap08 User’s Manual. Scripps Institution of Oceanography. https://escholarship.org/uc/item/4c27740c
Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophysical Journal International, 104(3), 507–516. https://doi.org/10.1111/j.1365-246x.1991.tb05697.x
Valoroso, L., Chiaraluce, L., Di Stefano, R., & Monachesi, G. (2017). Mixed‐Mode Slip Behavior of the Altotiberina Low‐Angle Normal Fault System (Northern Apennines, Italy) through High‐Resolution Earthquake Locations and Repeating Events. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017jb014607
Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R., & Michele, M. (2020). Intermittent Slip Along the Alto Tiberina Low‐Angle Normal Fault in Central Italy. Geophysical Research Letters, 47(17). https://doi.org/10.1029/2020gl089039
Wang, C.-Y., & Barbour, A. J. (2017). Influence of pore pressure change on coseismic volumetric strain. Earth and Planetary Science Letters, 475, 152–159. https://doi.org/10.1016/j.epsl.2017.07.034
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515
Wolfe, J. E., Berg, E., & Sutton, G. H. (1981). “The change in strain comes mainly from the rain”: Kipapa, Oahu. Bulletin of the Seismological Society of America, 71(5), 1625–1635. https://doi.org/10.1785/bssa0710051625
Zhang, Y., Wang, C., Fu, L., Yan, R., & Chen, X. (2016). Mechanism of the Coseismic Change of Volumetric Strain in the Far Field of Earthquakes. Bulletin of the Seismological Society of America, 107(1), 475–481. https://doi.org/10.1785/0120160253
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Catherine Hanagan, Eugenio Mandler, Rick Bennett, Lauro Chiaraluce, Mike Gottlieb, Adriano Gualandi, Amanda Hughes, Wade Johnson, Dave Mencin, Simone Marzorati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers 1723045 -
National Aeronautics and Space Administration
Grant numbers 21-DSI-21-0003 -
U.S. Geological Survey