Characterization and validation of tidally calibrated strains from the Alto Tiberina Near Fault Observatory Strainmeter Array (TABOO-NFO-STAR)

Authors

  • Catherine Hanagan USGS Earthquake Science Center
  • Eugenio Mandler Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
  • Rick Bennett NOAA National Geodetic Survey, Silver Spring, USA
  • Lauro Chiaraluce Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy https://orcid.org/0000-0002-9697-6504
  • Mike Gottlieb The EarthScope Consortium, USA
  • Adriano Gualandi Department of Earth Sciences, University of Cambridge, UK
  • Amanda Hughes Department of Geosciences, The University of Arizona, Tucson, AZ, USA https://orcid.org/0000-0002-1121-3680
  • Wade Johnson The EarthScope Consortium, USA
  • Dave Mencin The EarthScope Consortium, USA https://orcid.org/0000-0001-9984-6724
  • Simone Marzorati Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy https://orcid.org/0000-0002-5803-4882

DOI:

https://doi.org/10.26443/seismica.v4i1.1471

Keywords:

Borehole Strainmeters, Near-Fault Observatory, Earthquakes, Strain, Calibration

Abstract

Six horizontal borehole tensor strainmeters (TSM1-6) installed from Fall 2021 to Spring 2022 comprise the Alto Tiberina Near Fault Observatory Strainmeter Array (STAR), providing an unprecedented opportunity to investigate seismic and aseismic deformation from hazardous high- and low-angle normal faults in Italy. Prior to use in tectonic applications, they require in-situ calibration and correction for non-tectonic signals. We tidally calibrate the instruments, characterize the calibration uncertainty, and test the results against environmental and earthquake signals originating from local to teleseismic distances. The STAR sites demonstrably deviate from assumptions common to the standard manufacturer's calibrations, including negative areal coupling at TSM3-6. While the tidally calibrated strains have ~3-56% uncertainty, the calibrated dynamic strains show interstation precision and accuracy to nanostrain levels, and static coseismic offsets in the array footprint are within uncertainty. TSM3 records a complex series of strains that may arise from dynamically triggered near-borehole fracture slip and fluid flow that does not appear to affect its sensitivity to lower strain rate deformation. Future calibration improvement may be afforded with longer stable timeseries, particularly for TSM4. Overall, our analyses demonstrate expanded geodetic capability for detecting deformation in the Alto Tiberina Near Fault Observatory.

References

Agnew, D. C. (2012). SPOTL: Some Programs for Ocean-Tide Loading. Scripps Institution of Oceanography. https://escholarship.org/uc/item/954322pg

Agnew, D. C., & Hodgkinson, K. (2007). Designing Compact Causal Digital Filters for Low-Frequency Strainmeter Data. Bulletin of the Seismological Society of America, 97(1B), 91–99. https://doi.org/10.1785/0120060088

Amoruso, A., & Crescentini, L. (2009). The geodetic laser interferometers at Gran Sasso, Italy: Recent modifications and correction for local effects. Journal of Geodynamics, 48(3–5), 120–125. https://doi.org/10.1016/j.jog.2009.09.025

Anderlini, L., Serpelloni, E., & Belardinelli, M. E. (2016). Creep and locking of a low‐angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy). Geophysical Research Letters, 43(9), 4321–4329. https://doi.org/10.1002/2016gl068604

Attewell, P. B., & Farmer, I. W. (1976). Principles of Engineering Geology. Springer Netherlands. https://doi.org/10.1007/978-94-009-5707-7

Bailo, D., Paciello, R., Michalek, J., Cocco, M., Freda, C., Jeffery, K., & Atakan, K. (2023). The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02697-9

Barbour, A. J. (2015). Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions. Journal of Geophysical Research: Solid Earth, 120(8), 5863–5883. https://doi.org/10.1002/2015jb012201

Barbour, A. J., Agnew, D. C., & Wyatt, F. K. (2014). Coseismic Strains on Plate Boundary Observatory Borehole Strainmeters in Southern California. Bulletin of the Seismological Society of America, 105(1), 431–444. https://doi.org/10.1785/0120140199

Beaumont, C., & Berger, J. (1975). An analysis of tidal strain observations from the United States of America: I. The laterally homogeneous tide. Bulletin of the Seismological Society of America, 65(6), 1613–1629. https://doi.org/10.1785/bssa0650061613

Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GPS station velocities without step detection. Journal of Geophysical Research: Solid Earth, 121(3), 2054–2068. https://doi.org/10.1002/2015jb012552

Canitano, A., Bernard, P., Linde, A. T., Sacks, S., & Boudin, F. (2013). Correcting High-Resolution Borehole Strainmeter Data from Complex External Influences and Partial-Solid Coupling: the Case of Trizonia, Rift of Corinth (Greece). Pure and Applied Geophysics, 171(8), 1759–1790. https://doi.org/10.1007/s00024-013-0742-2

Canitano, Alexandre, Hsu, Y.-J., Lee, H.-M., Linde, A. T., & Sacks, S. (2017). Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling. Journal of Geodesy, 92(3), 223–240. https://doi.org/10.1007/s00190-017-1056-4

Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., & Cocco, M. (2007). Architecture and mechanics of an active low‐angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. Journal of Geophysical Research: Solid Earth, 112(B10). https://doi.org/10.1029/2007jb005015

Chiaraluce, Lauro, Amato, A., Carannante, S., Castelli, V., Cattaneo, M., Cocco, M., Collettini, C., D’Alema, E., Stefano, R. D., Latorre, D., Marzorati, S., Mirabella, F., Monachesi, G., Piccinini, D., Nardi, A., Piersanti, A., Stramondo, S., & Valoroso, L. (2014). The Alto Tiberina Near Fault Observatory (northern Apennines, Italy). Annals of Geophysics, 57(3). https://doi.org/10.4401/ag-6426

Chiaraluce, Lauro, Bennett, R., Mencin, D., Johnson, W., Barchi, M. R., Bohnhoff, M., Baccheschi, P., Caracausi, A., Calamita, C., Cavaliere, A., Gualandi, A., Mandler, E., Mariucci, M. T., Martelli, L., Marzorati, S., Montone, P., Pantaleo, D., Pucci, S., Serpelloni, E., … Schenato, L. (2024). A strainmeter array as the fulcrum of novel observatory sites along the Alto Tiberina Near Fault Observatory. Scientific Drilling, 33(2), 173–190. https://doi.org/10.5194/sd-33-173-2024

Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research: Solid Earth, 107(B2). https://doi.org/10.1029/2000jb000138

Currenti, G., Zuccarello, L., Bonaccorso, A., & Sicali, A. (2017). Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano. Journal of Geophysical Research: Solid Earth, 122(10), 7729–7738. https://doi.org/10.1002/2017jb014663

Dziewonski, A. M., Chou, T. ‐A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441(7097), 1135–1138. https://doi.org/10.1038/nature04798

Farr, T. G. (2007). The Shuttle Radar Topography Mission. Rev. Geophys, 45, 2004.

Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761–797. https://doi.org/10.1029/rg010i003p00761

Farrell, W. E. (1973). A discussion on the measurement and interpretation of changes of strain in the Earth-Earth tides, ocean tides and tidal loading. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 274(1239), 253–259. https://doi.org/10.1098/rsta.1973.0050

Gladwin, M. T. (1984). High-precision multicomponent borehole deformation monitoring. Review of Scientific Instruments, 55(12), 2011–2016. https://doi.org/10.1063/1.1137704

Gladwin, M. T., & Hart, R. (1985). Design parameters for borehole strain instrumentation. Pure and Applied Geophysics, 123(1), 59–80. https://doi.org/10.1007/bf00877049

Gottlieb, M., & Hanagan, C. (2024). EarthScope/earthscopestraintools: v0.1.42 (V0.1.42-beta) [Software]. Zenodo. https://doi.org/10.5281/zenodo.12193840

Grant, E. B., & Langston, C. A. (2009). Gladwin Tensor Strain-Meter calibration and wave gradiometry applications. AGU Fall Meeting Abstracts, 2009, 53–0070.

Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M. E., & Avouac, J. ‐P. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706–7714. https://doi.org/10.1002/2017gl073687

Guangyu, F., Xuzhang, S., Yoichi, F., Shanghua, G., & Satoshi, Y. (2011). Co-seismic strain changes of Wenchuan Mw7. 9 earthquake recorded by borehole strainmeters on Tibetan plateau. Geodesy and Geodynamics, 2(3), 42–49. https://doi.org/10.3724/sp.j.1246.2011.00042

Harkrider, D. G. (1970). Surface waves in multilayered elastic media. Part II. Higher mode spectra and spectral ratios from point sources in plane layered Earth models. Bulletin of the Seismological Society of America, 60(6), 1937–1987. https://doi.org/10.1785/bssa0600061937

Hart, R. H. G., Gladwin, M. T., Gwyther, R. L., Agnew, D. C., & Wyatt, F. K. (1996). Tidal calibration of borehole strain meters: Removing the effects of small‐scale inhomogeneity. Journal of Geophysical Research: Solid Earth, 101(B11), 25553–25571. https://doi.org/10.1029/96jb02273

Hodgkinson, K., Langbein, J., Henderson, B., Mencin, D., & Borsa, A. (2013). Tidal calibration of plate boundary observatory borehole strainmeters. Journal of Geophysical Research: Solid Earth, 118(1), 447–458. https://doi.org/10.1029/2012jb009651

Hreinsdottir, S., & Bennett, R. A. (2009). Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology, 37(8), 683–686. https://doi.org/10.1130/g30194a.1

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x

Langbein, J. (2010). Effect of error in theoretical Earth tide on calibration of borehole strainmeters. Geophysical Research Letters, 37(21). https://doi.org/10.1029/2010gl044454

Langbein, J. (2015). Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration. Journal of Geophysical Research: Solid Earth, 120(10), 7190–7202. https://doi.org/10.1002/2015jb012278

Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L., & Bilham, R. G. (1996). A slow earthquake sequence on the San Andreas fault. Nature, 383(6595), 65–68. https://doi.org/10.1038/383065a0

Mandler, E., Canitano, A., Belardinelli, M. E., Nespoli, M., Serpelloni, E., & Linde, A. (2024). Tidal Calibration of the Gladwin Tensor Strain Monitor (GTSM) Array in Taiwan. Pure and Applied Geophysics, 182(3), 1001–1021. https://doi.org/10.1007/s00024-024-03453-9

Matsumoto, K., Sato, T., Takanezawa, T., & Ooe, M. (2001). GOTIC2: A program for computation of oceanic tidal loading effect. Journal of the Geodetic Society of Japan, 47(1), 243–248. https://doi.org/10.11366/sokuchi1954.47.243

Menke, W. (2014). Review of the Generalized Least Squares Method. Surveys in Geophysics, 36(1), 1–25. https://doi.org/10.1007/s10712-014-9303-1

mikegottlieb84, & cehanagan. (2024). EarthScope/earthscopestraintools: v0.1.42. Zenodo. https://doi.org/10.5281/ZENODO.12193840

Mirabella, F., Brozzetti, F., Lupattelli, A., & Barchi, M. R. (2011). Tectonic evolution of a low‐angle extensional fault system from restored cross‐sections in the Northern Apennines (Italy). Tectonics, 30(6). https://doi.org/10.1029/2011tc002890

Nespoli, M., Belardinelli, M. E., Gualandi, A., Serpelloni, E., & Bonafede, M. (2018). Poroelasticity and Fluid Flow Modeling for the 2012 Emilia-Romagna Earthquakes: Hints from GPS and InSAR Data. Geofluids, 2018, 1–15. https://doi.org/10.1155/2018/4160570

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135

Peltzer, G., Rosen, P., Rogez, F., & Hudnut, K. (1998). Poroelastic rebound along the Landers 1992 earthquake surface rupture. Journal of Geophysical Research: Solid Earth, 103(B12), 30131–30145. https://doi.org/10.1029/98jb02302

Pollitz, F. F. (1996). Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth. Geophysical Journal International, 125(1), 1–14. https://doi.org/10.1111/j.1365-246x.1996.tb06530.x

Roeloffs, E. (2010). Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling. Journal of Geophysical Research: Solid Earth, 115(B6). https://doi.org/10.1029/2009jb006407

Scognamiglio, L., Tinti, E., & Quintiliani, M. (2006). Time Domain Moment Tensor (TDMT) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/TDMT

Segall, P., Jónsson, S., & Ágústsson, K. (2003). When is the strain in the meter the same as the strain in the rock? Geophysical Research Letters, 30(19). https://doi.org/10.1029/2003gl017995

Sun, W., Okubo, S., Fu, G., & Araya, A. (2009). General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point. Geophysical Journal International, 177(3), 817–833. https://doi.org/10.1111/j.1365-246x.2009.04113.x

Tamura, Y., & Agnew, D. C. (2008). Baytap08 User’s Manual. Scripps Institution of Oceanography. https://escholarship.org/uc/item/4c27740c

Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophysical Journal International, 104(3), 507–516. https://doi.org/10.1111/j.1365-246x.1991.tb05697.x

Valoroso, L., Chiaraluce, L., Di Stefano, R., & Monachesi, G. (2017). Mixed‐Mode Slip Behavior of the Altotiberina Low‐Angle Normal Fault System (Northern Apennines, Italy) through High‐Resolution Earthquake Locations and Repeating Events. Journal of Geophysical Research: Solid Earth, 122(12). https://doi.org/10.1002/2017jb014607

Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R., & Michele, M. (2020). Intermittent Slip Along the Alto Tiberina Low‐Angle Normal Fault in Central Italy. Geophysical Research Letters, 47(17). https://doi.org/10.1029/2020gl089039

Wang, C.-Y., & Barbour, A. J. (2017). Influence of pore pressure change on coseismic volumetric strain. Earth and Planetary Science Letters, 475, 152–159. https://doi.org/10.1016/j.epsl.2017.07.034

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515

Wolfe, J. E., Berg, E., & Sutton, G. H. (1981). “The change in strain comes mainly from the rain”: Kipapa, Oahu. Bulletin of the Seismological Society of America, 71(5), 1625–1635. https://doi.org/10.1785/bssa0710051625

Zhang, Y., Wang, C., Fu, L., Yan, R., & Chen, X. (2016). Mechanism of the Coseismic Change of Volumetric Strain in the Far Field of Earthquakes. Bulletin of the Seismological Society of America, 107(1), 475–481. https://doi.org/10.1785/0120160253

Downloads

Published

2025-06-02

How to Cite

Hanagan, C., Mandler, E., Bennett, R., Chiaraluce, L., Gottlieb, M., Gualandi, A., Hughes, A., Johnson, W., Mencin, D., & Marzorati, S. (2025). Characterization and validation of tidally calibrated strains from the Alto Tiberina Near Fault Observatory Strainmeter Array (TABOO-NFO-STAR). Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1471

Issue

Section

Articles

Funding data