No evidence for an active margin-spanning megasplay fault at the Cascadia Subduction Zone
DOI:
https://doi.org/10.26443/seismica.v2i4.1477Abstract
It has been previously proposed that a megasplay fault within the Cascadia accretionary wedge, spanning from offshore Vancouver Island to Oregon, has the potential to slip during a future Cascadia subduction zone earthquake. This hypothetical fault has major implications for tsunami size and arrival times and is included in disaster-planning scenarios currently in use in the region. This hypothesis is evaluated in this study using CASIE21 deep-penetrating and U.S. Geological Survey high-resolution seismic reflection profiles. We map changes in wedge structural style and seismic character to identify the inner-outer wedge transition zone where a megasplay fault has been previously hypothesized to exist and evaluate evidence for active faulting within this zone. Our results indicate that there is not an active, through-going megasplay fault in Cascadia, but instead, the structure and activity of faulting at the inner-outer wedge transition zone is highly variable and segmented along strike, consistent with the segmentation of other physical and mechanical properties in Cascadia. Wedge sedimentation, plate dip, and subducting topography are proposed to play a major role in controlling megasplay fault development and evolution. Incorporating updated megasplay fault location, geometry, and activity into modeling of Cascadia earthquakes and tsunamis could help better constrain associated hazards.
References
Adam, J., Klaeschen, D., Kukowski, N., & Flueh, E. (2004). Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics, 23(3). https://doi.org/10.1029/2002tc001475
Aslam, K. S., Thomas, A. M., & Melgar, D. (2021). The Effect of Fore‐Arc Deformation on Shallow Earthquake Rupture Behavior in the Cascadia Subduction Zone. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021gl093941
Baba, T., & Cummins, P. R. (2005). Contiguous rupture areas of two Nankai Trough earthquakes revealed by high‐resolution tsunami waveform inversion. Geophysical Research Letters, 32(8). https://doi.org/10.1029/2004gl022320
Balster-Gee, A. F., Miller, N. C., Watt, J. T., Roland, E. C., Kluesner, J. W., Heller, S. J., Hart, P. E., Sliter, R. W., Myers, E. K., Wyland, R. M., Marcuson, R. K., Johnson, C., Nichols, A. R., Pszczola, K., & Williams, C. (2023). High-resolution multichannel sparker seismic-reflection and chirp sub-bottom data acquired along the Cascadia margin during USGS field activity 2019-024-FA [Dataset]. U.S. Geological Survey. https://doi.org/10.5066/P96ZBXK8
Barnes, P. M., Nicol, A., & Harrison, T. (2002). Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone, New Zealand. Geological Society of America Bulletin, 114(11), 1379–1405. https://doi.org/10.1130/0016-7606(2002)114<1379:lceaep>2.0.co;2
Bernard, E. N. (2022). Tsunami Preparedness: Is Zero Casualties Possible? Pure and Applied Geophysics, 180(5), 1573–1586. https://doi.org/10.1007/s00024-022-02948-7
Berndt, C., Bünz, S., Clayton, T., Mienert, J., & Saunders, M. (2004). Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21(6), 723–733. https://doi.org/10.1016/j.marpetgeo.2004.02.003
Biemiller, J., Gabriel, A. ‐A., May, D. A., & Staisch, L. (2024). Subduction Zone Geometry Modulates the Megathrust Earthquake Cycle: Magnitude, Recurrence, and Variability. Journal of Geophysical Research: Solid Earth, 129(8). https://doi.org/10.1029/2024jb029191
Booth‐Rea, G., Klaeschen, D., Grevemeyer, I., & Reston, T. (2008). Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics, 27(4). https://doi.org/10.1029/2007tc002209
Breen, N. A., Silver, E. A., & Hussong, D. M. (1986). Structural styles of an accretionary wedge south of the island of Sumba, Indonesia, revealed by SeaMARC II side scan sonar. Geological Society of America Bulletin, 97(10), 1250. https://doi.org/10.1130/0016-7606(1986)97<1250:ssoaaw>2.0.co;2
Byrne, D. E., Wang, W., & Davis, D. M. (1993). Mechanical role of backstops in the growth of forearcs. Tectonics, 12(1), 123–144. https://doi.org/10.1029/92tc00618
Carbotte, S., Han, S., Boston, B., & Canales, J. (2023). Processed pre-stack depth-migrated seismic reflection data from the 2021 CASIE21 multi-channel seismic survey (MGL2104) [Dataset]. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/331274
Carbotte, S.M., Han, S., & Boston, B. (2021). Cascadia seismic imaging experiment—CASIE21 MGL2104 [Cruise report]. https://doi.org/10.26022/IEDA/330904
Carbotte, Suzanne M., Boston, B., Han, S., Shuck, B., Beeson, J., Canales, J. P., Tobin, H., Miller, N., Nedimovic, M., Tréhu, A., Lee, M., Lucas, M., Jian, H., Jiang, D., Moser, L., Anderson, C., Judd, D., Fernandez, J., Campbell, C., … Gahlawat, R. (2024). Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia. Science Advances, 10(23). https://doi.org/10.1126/sciadv.adl3198
Chaytor, J. D., Goldfinger, C., Dziak, R. P., & Fox, C. G. (2004). Active deformation of the Gorda plate: Constraining deformation models with new geophysical data. Geology, 32(4), 353. https://doi.org/10.1130/g20178.2
Clark, J., Mitrovica, J. X., & Alder, J. (2014). Coastal paleogeography of the California–Oregon–Washington and Bering Sea continental shelves during the latest Pleistocene and Holocene: implications for the archaeological record. Journal of Archaeological Science, 52, 12–23. https://doi.org/10.1016/j.jas.2014.07.030
Collot, J. ‐Y., Agudelo, W., Ribodetti, A., & Marcaillou, B. (2008). Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin. Journal of Geophysical Research: Solid Earth, 113(B12). https://doi.org/10.1029/2008jb005691
Cook, B. J., Henstock, T. J., McNeill, L. C., & Bull, J. M. (2014). Controls on spatial and temporal evolution of prism faulting and relationships to plate boundary slip offshore north‐central Sumatra. Journal of Geophysical Research: Solid Earth, 119(7), 5594–5612. https://doi.org/10.1002/2013jb010834
Cowan, D. S. (1985). Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geological Society of America Bulletin, 96(4), 451. https://doi.org/10.1130/0016-7606(1985)96<451:ssimac>2.0.co;2
Cummins, P. R., & Kaneda, Y. (2000). Possible splay fault slip during the 1946 Nankai earthquake. Geophysical Research Letters, 27(17), 2725–2728. https://doi.org/10.1029/1999gl011139
Dahlen, F. A. (1990). Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18(1), 55–99. https://doi.org/10.1146/annurev.ea.18.050190.000415
Dartnell, P., Conrad, J. E., Watt, J. T., & Hill, J. C. (2021). Composite multibeam bathymetry surface and data sources of the southern Cascadia Margin offshore Oregon and northern California [Dataset]. U.S. Geological Survey. https://doi.org/10.5066/P9C5DBMR
Dartnell, P., Watt, J. T., Hill, J. C., & Conrad, J. E. (2023). Composite multibeam bathymetry surface and data sources of the central Cascadia Margin offshore Oregon [Dataset]. U.S. Geological Survey. https://doi.org/10.5066/P9PERGFK
Davis, E. E., & Hyndman, R. D. (1989). Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geological Society of America Bulletin, 101(11), 1465–1480. https://doi.org/10.1130/0016-7606(1989)101<1465:aardos>2.3.co;2
Dolcimascolo, A., Eungard, D. W., Allen, C., LeVeque, R. J., Adams, L., Arcas, D., Titov, V. V., González, F. I., Moore, C., & Garrison-Laney, C. E. (2022). Tsunami Hazard Maps of the Puget Sound and Adjacent Waters–Model Results from a 2,500-year Magnitude 9.0 Cascadia Subduction Zone Earthquake Scenario. Washington Geological Survey Map Series 2021-01, 16 sheets, scale 1:48,000.
Dominguez, S., Malavieille, J., & Lallemand, S. E. (2000). Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19(1), 182–196. https://doi.org/10.1029/1999tc900055
Flinch, J., Amaral, J., Doulcet, A., Mouly, B., Osorio, C., & Pince, J. (2003). Structure Of The Offshore Sinu Accretionary Wedge. 8th Simposio Bolivariano - Exploracion Petrolera En Las Cuencas Subandinas. https://doi.org/10.3997/2214-4609-pdb.33.paper8
Flueh, E. R., Fisher, M. A., Bialas, J., Childs, J. R., Klaeschen, D., Kukowski, N., Parsons, T., Scholl, D. W., ten Brink, U., Tréhu, A. M., & Vidal, N. (1998). New seismic images of the Cascadia subduction zone from cruise SO108 — ORWELL. Tectonophysics, 293(1–2), 69–84. https://doi.org/10.1016/s0040-1951(98)00091-2
Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., & Sun, T. (2018). Defining megathrust tsunami source scenarios for northernmost Cascadia. Natural Hazards, 94(1), 445–469. https://doi.org/10.1007/s11069-018-3397-6
Geist, E., & Yoshioka, S. (1996). Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia margin. Natural Hazards, 13(2), 151–177. https://doi.org/10.1007/bf00138481
Goldfinger, C. (1994). Active deformation of the Cascadia forearc: Implications for great earthquake potential in Oregon and Washington [Phdthesis, Oregon State University]. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/w37639397
Goldfinger, Chris, Kulm, L. D., Yeats, R. S., McNeill, L., & Hummon, C. (1997). Oblique strike‐slip faulting of the central Cascadia submarine forearc. Journal of Geophysical Research: Solid Earth, 102(B4), 8217–8243. https://doi.org/10.1029/96jb02655
Haeussler, P. J., Armstrong, P. A., Liberty, L. M., Ferguson, K. M., Finn, S. P., Arkle, J. C., & Pratt, T. L. (2015). Focused exhumation along megathrust splay faults in Prince William Sound, Alaska. Quaternary Science Reviews, 113, 8–22. https://doi.org/10.1016/j.quascirev.2014.10.013
Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., & Carton, H. (2018). Along‐Trench Structural Variations of the Subducting Juan de Fuca Plate From Multichannel Seismic Reflection Imaging. Journal of Geophysical Research: Solid Earth, 123(4), 3122–3146. https://doi.org/10.1002/2017jb015059
Harding, T. P., & Lowell, J. D. (1979). Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps in Petroleum Provinces. AAPG Bulletin, 63(7), 1016–1058.
Hill, J. C., Watt, J. T., & Brothers, D. S. (2022). Mass wasting along the Cascadia subduction zone: Implications for abyssal turbidite sources and the earthquake record. Earth and Planetary Science Letters, 597, 117797. https://doi.org/10.1016/j.epsl.2022.117797
Hutchinson, J., Kao, H., Riedel, M., Obana, K., Wang, K., Kodaira, S., Takahashi, T., & Yamamoto, Y. (2023). Tectonic evolution of the Nootka fault zone and deformation of the shallow subducted Explorer plate in northern Cascadia as revealed by earthquake distributions and seismic tomography. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33310-z
Hyndman, R. D., Yorath, C. J., Clowes, R. M., & Davis, E. E. (1990). The northern Cascadia subduction zone at Vancouver Island: seismic structure and tectonic history. Canadian Journal of Earth Sciences, 27(3), 313–329. https://doi.org/10.1139/e90-030
Jurado, M. J., & Comas, M. C. (1992). Well log interpretation and seismic character of the cenozoic sequence in the northern Alboran Sea. Geo-Marine Letters, 12(2–3), 129–136. https://doi.org/10.1007/bf02084923
Klotsko, S., Skakun, M., Maloney, J., Gusick, A., Davis, L., Nyers, A., & Ball, D. (2021). Geologic controls on paleodrainage incision and morphology during sea level lowstands on the Cascadia shelf in Oregon, USA. Marine Geology, 434, 106444. https://doi.org/10.1016/j.margeo.2021.106444
Kopp, H. (2013). The control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics, 589, 1–16. https://doi.org/10.1016/j.tecto.2012.12.037
Kopp, Heidrun, & Kukowski, N. (2003). Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics, 22(6). https://doi.org/10.1029/2002tc001420
La Selle, S. M., Nelson, A. R., Witter, R. C., Jaffe, B. E., Gelfenbaum, G., & Padgett, J. S. (2024). Testing Megathrust Rupture Models Using Tsunami Deposits. Journal of Geophysical Research: Earth Surface, 129(5). https://doi.org/10.1029/2023jf007444
Ledeczi, A., Lucas, M., Tobin, H., Watt, J., & Miller, N. (2024). Late Quaternary Surface Displacements on Accretionary Wedge Splay Faults in the Cascadia Subduction Zone: Implications for Megathrust Rupture. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1158
Lee, C.-J. (2017). Tsunami Inundation Modeling of Sequim Bay Area, Washington, USA from a Mw 9.0 Cascadia Subduction Zone Earthquake [University of Washington]. http://hdl.handle.net/1773/44994
Lee, M. W., Hutchinson, D. R., Agena, W. F., Dillon, W. P., Miller, J. J., & Swift, B. A. (1994). Seismic character of gas hydrates on the Southeastern U.S. continental margin. Marine Geophysical Researches, 16(3), 163–184. https://doi.org/10.1007/bf01237512
Li, F., Lyu, B., Qi, J., Verma, S., & Zhang, B. (2021). Seismic Coherence for Discontinuity Interpretation. Surveys in Geophysics, 42(6), 1229–1280. https://doi.org/10.1007/s10712-021-09670-4
Liberty, L. M., Finn, S. P., Haeussler, P. J., Pratt, T. L., & Peterson, A. (2013). Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska. Journal of Geophysical Research: Solid Earth, 118(10), 5428–5441. https://doi.org/10.1002/jgrb.50372
Løseth, H., Gading, M., & Wensaas, L. (2009). Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26(7), 1304–1319. https://doi.org/10.1016/j.marpetgeo.2008.09.008
Lotto, G. C., Jeppson, T. N., & Dunham, E. M. (2018). Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure and Applied Geophysics, 176(9), 4009–4041. https://doi.org/10.1007/s00024-018-1990-y
Mann, D. M., & Snavely, P. D. (1984). Multichannel seismic-reflection profiles collected in 1977 in the eastern Pacific Ocean off of the Washington/Oregon coast (Open-File Report No. 2331–1258). US Geological Survey. https://doi.org/10.3133/ofr845
Mannu, U., Ueda, K., Willett, S. D., Gerya, T. V., & Strasser, M. (2016). Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling: Sedimentation in Accretionary Wedges. Tectonics, 35(12), 2828–2846. https://doi.org/10.1002/2016tc004239
McArthur, A. D., Bailleul, J., Mahieux, G., Claussmann, B., Wunderlich, A., & McCaffrey, W. D. (2021). Deformation–sedimentation feedback and the development of anomalously thick aggradational turbidite lobes: Outcrop and subsurface examples from the Hikurangi Margin, New Zealand. Journal of Sedimentary Research, 91(4), 362–389. https://doi.org/10.2110/jsr.2020.013
McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J., & Zwick, P. C. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315–1340. https://doi.org/10.1111/j.1365-246x.2007.03371.x
McNeill, L. C., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (2000). Tectonics of the Neogene Cascadia forearc basin: Investigations of a deformed late Miocene unconformity. Geological Society of America Bulletin, 112(8), 1209–1224. https://doi.org/10.1130/0016-7606(2000)112<1209:totncf>2.0.co;2
McNeill, Lisa C., & Henstock, T. J. (2014). Forearc structure and morphology along the Sumatra‐Andaman subduction zone. Tectonics, 33(2), 112–134. https://doi.org/10.1002/2012tc003264
McNeill, Lisa C., Piper, K. A., Goldfinger, C., Kulm, L. D., & Yeats, R. S. (1997). Listric normal faulting on the Cascadia continental margin. Journal of Geophysical Research: Solid Earth, 102(B6), 12123–12138. https://doi.org/10.1029/97jb00728
Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., & Tobin, H. J. (2007). Three-Dimensional Splay Fault Geometry and Implications for Tsunami Generation. Science, 318(5853), 1128–1131. https://doi.org/10.1126/science.1147195
Moore, J. C., Cowan, D. S., & Karig, D. E. (1985). Structural styles and deformation fabrics of accretionary complexes. Geology, 13(1), 77. https://doi.org/10.1130/0091-7613(1985)13<77:ssadfo>2.0.co;2
Moore, J. C., & Vrolijk, P. (1992). Fluids in accretionary prisms. Reviews of Geophysics, 30(2), 113–135. https://doi.org/10.1029/92rg00201
Morkner, P. (2019). Validation of Predicted Tsunami Inundation for the Inland Coast of the Salish Sea Associated with Cascadia Subduction Zone Earthquakes [Western Washington University]. https://cedar.wwu.edu/wwuet/895
Nedimović, M. R., Bohnenstiehl, D. R., Carbotte, S. M., Pablo Canales, J., & Dziak, R. P. (2009). Faulting and hydration of the Juan de Fuca plate system. Earth and Planetary Science Letters, 284(1–2), 94–102. https://doi.org/10.1016/j.epsl.2009.04.013
Noda, A., Koge, H., Yamada, Y., Miyakawa, A., & Ashi, J. (2020). Forearc Basin Stratigraphy Resulting From Syntectonic Sedimentation During Accretionary Wedge Growth: Insights From Sandbox Analog Experiments. Tectonics, 39(3). https://doi.org/10.1029/2019tc006033
Palmer, S. P., & Lingley, W. S. J. (1989). An Assessment Of The Oil And Gas Potential Of The Washington Outer Continental Shelf (Technical Report WASHU-T-89-001). Washington State Offshore Oil. https://repository.library.noaa.gov/view/noaa/36024/noaa_36024_DS1.pdf
Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P. R., & Kaneda, Y. (2002). Splay Fault Branching Along the Nankai Subduction Zone. Science, 297(5584), 1157–1160. https://doi.org/10.1126/science.1074111
Plafker, G. (1965). Tectonic Deformation Associated with the 1964 Alaska Earthquake. Science, 148(3678), 1675–1687. https://doi.org/10.1126/science.148.3678.1675
Plafker, G. (1969). Tectonics of the March 27, 1964, Alaska earthquake (Open-File Report No. 2330–7102). US Geological Survey. https://doi.org/10.3133/pp543i
Priest, G. R., Goldfinger, C., Wang, K., Witter, R. C., Zhang, Y., & Baptista, A. M. (2009). Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Natural Hazards, 54(1), 27–73. https://doi.org/10.1007/s11069-009-9453-5
Ren, Y., Lange, D., & Grevemeyer, I. (2023). Seismotectonics of the Blanco Transform Fault System, Northeast Pacific: Evidence for an Immature Plate Boundary. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb026045
Richter, P. P., Ring, U., Willner, A. P., & Leiss, B. (2007). Structural contacts in subduction complexes and their tectonic significance: the Late Palaeozoic coastal accretionary wedge of central Chile. Journal of the Geological Society, 164(1), 203–214. https://doi.org/10.1144/0016-76492005-181
Rohr, K. M. M., Furlong, K. P., & Riedel, M. (2018). Initiation of Strike‐Slip Faults, Serpentinization, and Methane: The Nootka Fault Zone, the Juan de Fuca‐Explorer Plate Boundary. Geochemistry, Geophysics, Geosystems, 19(11), 4290–4312. https://doi.org/10.1029/2018gc007851
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi‐Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008gc002332
Shuck, B., Boston, B., Carbotte, S. M., Han, S., Becel, A., Gurun, P., Beeson, J. W., Canales, J. P., Miller, N. C., & Tobin, H. J. (2023). The Role of the Nootka Fault Zone in the Ongoing Capture of the Explorer Microplate and Cessation of Subduction along Northern Cascadia. AGU Fall Meeting, T51A-02.
Sibuet, J., Rangin, C., LePichon, X., Singh, S., Cattaneo, A., Graindorge, D., Klingelhoefer, F., Lin, J., Malod, J., & Maury, T. (2007). 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra. Earth and Planetary Science Letters, 263(1–2), 88–103. https://doi.org/10.1016/j.epsl.2007.09.005
Silver, E. A. (1972). Pleistocene tectonic accretion of the continental slope off Washington. Marine Geology, 13(4), 239–249. https://doi.org/10.1016/0025-3227(72)90053-9
Silver, E. A., Ellis, M. J., Breen, N. A., & Shipley, T. H. (1985). Comments on the growth of accretionary wedges. Geology, 13(1), 6. https://doi.org/10.1130/0091-7613(1985)13<6:cotgoa>2.0.co;2
Simpson, G. D. H. (2010). Formation of accretionary prisms influenced by sediment subduction and supplied by sediments from adjacent continents. Geology, 38(2), 131–134. https://doi.org/10.1130/g30461.1
Snavely, P. D., Jr. (1987). Geology and Resource Potential of the Western North America and Adjacent Ocean Basins (Vol. 6). Circum-Pacific Council for Energy.
Strasser, M., Moore, G. F., Kimura, G., Kitamura, Y., Kopf, A. J., Lallemant, S., Park, J.-O., Screaton, E. J., Su, X., Underwood, M. B., & Zhao, X. (2009). Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience, 2(9), 648–652. https://doi.org/10.1038/ngeo609
Sypus, M. (2019). Models of tsunamigenic earthquake rupture along the west coast of North America. University of Victoria.
Tobin, H. J., & Kinoshita, M. (2006). NanTroSEIZE: The IODP Nankai Trough Seismogenic Zone Experiment. Scientific Drilling, 2, 23–27. https://doi.org/10.5194/sd-2-23-2006
Underwood, M. B. (2002). Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology, 30(2), 155. https://doi.org/10.1130/0091-7613(2002)030<0155:spvicm>2.0.co;2
Walton, M. A. L., Staisch, L. M., Dura, T., Pearl, J. K., Sherrod, B., Gomberg, J., Engelhart, S., Tréhu, A., Watt, J., Perkins, J., Witter, R. C., Bartlow, N., Goldfinger, C., Kelsey, H., Morey, A. E., Sahakian, V. J., Tobin, H., Wang, K., Wells, R., & Wirth, E. (2021). Toward an Integrative Geological and Geophysical View of Cascadia Subduction Zone Earthquakes. Annual Review of Earth and Planetary Sciences, 49(1), 367–398. https://doi.org/10.1146/annurev-earth-071620-065605
Wang, K., & Tréhu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. Journal of Geodynamics, 98, 1–18. https://doi.org/10.1016/j.jog.2016.03.010
Watt, J. T., & Brothers, D. S. (2020). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. Geosphere, 17(1), 95–117. https://doi.org/10.1130/ges02178.1
Webb, S. I. (2017). Interaction of structure and physical properties in accretionary wedges: Examples from the Cascadia and Nankai Trough subduction zones (p. 175) [Phdthesis]. University of Wisconsin, Madison.
Wells, R. E., Weaver, C. S., & Blakely, R. J. (1998). Fore-arc migration in Cascadia and its neotectonic significance. Geology, 26(8), 759. https://doi.org/10.1130/0091-7613(1998)026<0759:famica>2.3.co;2
Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009gl038295
Wilson, D. S. (2002). The Cascadia subduction zone and related subduction systems - seismic structure, intraslab earthquakes and processes, and earthquake hazards (S. Kirby, K. Wang, & S. Dunlop, Eds.). Natural Resources Canada. https://doi.org/10.4095/222387
Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., English, J. T., & Ferro, P. A. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803. https://doi.org/10.1130/ges00899.1
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Madeleine C Lucas, Anna M Ledeczi, Harold J Tobin, Suzanne M Carbotte, Janet T Watt, Shuoshuo Han, Brian Boston, Danqi Jiang

This work is licensed under a Creative Commons Attribution 4.0 International License.