WMSAN Python Package: From Oceanic Forcing to Synthetic Cross-correlations of Microseismic Noise
DOI:
https://doi.org/10.26443/seismica.v4i1.1483Keywords:
Ambient seismic noise, Python, Modeling, OceanographyAbstract
Seismic ambient noise spectra ubiquitously show two amplitude peaks corresponding to distinct oceanic wave interaction mechanisms called primary (seismic period (T) ~ 14 s) and secondary (T ~ 7 s) microseism. Seismic noise records are used in a wide range of applications including crustal monitoring, imaging of the Earth's deep interior using noise correlations, and studies on the coupling between oceans and solid Earth. All of these applications could benefit from a robust knowledge of spatiotemporal dynamics of microseismic sources. Consequently, seismologists have been studying how to model microseismic sources of ambient noise with the recent improvements in ocean wave models. Global sea state and its derivative products are now covering the past decades in models such as the WAVEWATCHIII hindcast. This paper introduces the Wave Model Sources of Ambient Noise (WMSAN, pronounced [wam-san]) Python package. This modular package uses standardized wave model outputs to visualize ambient noise source maps and efficiently compute synthetics of seismic spectrograms and cross-correlations for surface waves (Rayleigh) and body waves (P, SV), in a user-friendly way.
References
Aki, K., & Richards, P. G. (2002). Quantitative seismology. Cambridge University Press.
Alday, M., & Ardhuin, F. (2023). On Consistent Parameterizations for Both Dominant Wind-Waves and Spectral Tail Directionality. Journal of Geophysical Research: Oceans, 128(4), e2022JC019581.
Ardhuin, F. (2018). Large-scale forces under surface gravity waves at a wavy bottom: A mechanism for the generation of primary microseisms. Geophysical Research Letters, 45(16), 8173–8181.
Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2015). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42(3), 765–772. https://doi.org/10.1002/2014GL062782
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E., Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., & others. (2019). Observing sea states. Frontiers in Marine Science, 6, 124.
Ardhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. (2011). Ocean wave sources of seismic noise. Journal of Geophysical Research, 116(C9), C09004. https://doi.org/10.1029/2011JC006952
Aster, R. C., Ringler, A. T., Anthony, R. E., & Lee, T. A. (2023). Increasing ocean wave energy observed in Earth’s seismic wavefield since the late 20th century. Nature Communications, 14(1), 6984. https://doi.org/10.1038/s41467-023-42673-w
Bensen, G., Ritzwoller, M., Barmin, M., Levshin, A. L., Lin, F., Moschetti, M., Shapiro, N., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260.
Bensen, G., Ritzwoller, M., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research: Solid Earth, 113(B5).
Bertelli, T. (1872). Osservazioni sui piccoli movimenti dei pendoli in relazione ad alcuni fenomeni meteorologici del p.d. Timoteo Bertelli barnabita. Tip. delle scienze matematiche e fisiche. https://books.google.fr/books?id=SCZeoq3Z7AQC
Boué, P., Poli, P., Campillo, M., Pedersen, H., Briand, X., & Roux, P. (2013). Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth. Geophysical Journal International, 194(2), 844–848. https://doi.org/10.1093/gji/ggt160
Boué, Pierre, & Tomasetto, L. (2024). Opportune detections of global P-wave propagation from microseisms interferometry. Comptes Rendus. Géoscience, 356(S4), 1–16.
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126–130.
Darbyshire, J., & Okeke, E. (1969). A study of primary and secondary microseisms recorded in Anglesey. Geophysical Journal International, 17(1), 63–92.
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.
Ermert, L., Igel, J., Sager, K., Stutzmann, E., Nissen-Meyer, T., & Fichtner, A. (2020). Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion. Solid Earth, 11(4), 1597–1615. https://doi.org/10.5194/se-11-1597-2020
Farra, V., Stutzmann, E., Schimmel, M., Gualtieri, L., & Ardhuin, F. (2016). Ray-theoretical modeling of secondary microseism P-waves. Geophysical Journal International, 206, 1730–1739. https://doi.org/doi: 10.1093/gji/ggw242
Fukao, Y., Nishida, K., & Kobayashi, N. (2010). Seafloor topography, ocean infragravity waves, and background Love and Rayleigh waves. Journal of Geophysical Research: Solid Earth, 115(B4).
GEOSCOPE, French Global Network of broad band seismic stations. (1982). Institut de physique du globe de Paris (IPGP) and École et Observatoire des Sciences de la Terre de Strasbourg (EOST). Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G
Gimbert, F., & Tsai, V. C. (2015). Predicting short-period, wind-wave-generated seismic noise in coastal regions. Earth and Planetary Science Letters, 426, 280–292.
Gualtieri, L., Stutzmann, E., Capdeville, Y., Ardhuin, F., Schimmel, M., Mangeney, A., & Morelli, A. (2013). Modelling secondary microseismic noise by normal mode summation. Geophysical Journal International, 193(3), 1732–1745. https://doi.org/10.1093/gji/ggt090
Gualtieri, L., Stutzmann, E., Farra, V., Capdeville, Y., Schimmel, M., Ardhuin, F., & Morelli, A. (2014). Modelling the ocean site effect on seismic noise body waves. Geophysical Journal International, 197(2), 1096–1106. https://doi.org/10.1093/gji/ggu042
Gualtieri, Lucia, Bachmann, E., Simons, F. J., & Tromp, J. (2020). The origin of secondary microseism Love waves. Proceedings of the National Academy of Sciences, 117(47), 29504–29511.
Gualtieri, Lucia, Bachmann, E., Simons, F. J., & Tromp, J. (2021). Generation of secondary microseism Love waves: effects of bathymetry, 3-D structure and source seasonality. Geophysical Journal International, 226(1), 192–219. https://doi.org/10.1093/gji/ggab095
Haned, A., Stutzmann, E., Schimmel, M., Kiselev, S., Davaille, A., & Yelles-Chaouche, A. (2016). Global tomography using seismic hum. Geophysical Journal International, 204(2), 1222–1236.
Hasselmann, K. (1963). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1(2), 177–210. https://doi.org/10.1029/RG001i002p00177
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., & others. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
Igel, J. K. H., Bowden, D. C., & Fichtner, A. (2023). SANS: Publicly Available Daily Multi-Scale Seismic Ambient Noise Source Maps. Journal of Geophysical Research: Solid Earth, 128(1), e2022JB025114. https://doi.org/10.1029/2022JB025114
Igel, J. K. H., Ermert, L. A., & Fichtner, A. (2021). Rapid finite-frequency microseismic noise source inversion at regional to global scales. Geophysical Journal International, 227(1), 169–183. https://doi.org/10.1093/gji/ggab210
Jiang, C., & Denolle, M. A. (2020). NoisePy: A New High‐Performance Python Tool for Ambient‐Noise Seismology. Seismological Research Letters, 91(3), 1853–1866. https://doi.org/10.1785/0220190364
Juretzek, C., & Hadziioannou, C. (2016). Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios. Journal of Geophysical Research: Solid Earth, 121(9), 6741–6756.
Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091), 777–793.
Kennett, B. L., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124.
Kibblewhite, A. C., & Ewans, K. C. (1985). Wave–wave interactions, microseisms, and infrasonic ambient noise in the ocean. The Journal of the Acoustical Society of America, 78(3), 981–994.
Kozlovskaya, E. (2007). Seismic network XK:LAPNET/POLENET seismic temporary array (RESIF-SISMOB). RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.XK2007
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science and Discovery, 8(1), 14003. https://doi.org/10.1088/1749-4699/8/1/014003
Lecocq, T., Ardhuin, F., Collin, F., & Camelbeeck, T. (2020). On the extraction of microseismic ground motion from analog seismograms for the validation of ocean-climate models. Seismological Research Letters, 91(3), 1518–1530.
Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715–726. https://doi.org/10.1785/0220130073
Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281–298.
Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1–35.
Lu, Y., Stehly, L., Paul, A., & Group, A. W. (2018). High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophysical Journal International, 214(2), 1136–1150.
Meschede, M., Stutzmann, E., & Schimmel, M. (2019). Blind source separation of temporally independent microseisms. Geophysical Journal International, 216(2), 1260–1275.
Nakata, N., Gualtieri, L., & Fichtner, A. (2019). Seismic ambient noise. Cambridge University Press.
Neale, J., Harmon, N., & Srokosz, M. (2017). Monitoring remote ocean waves using P-wave microseisms. Journal of Geophysical Research: Oceans, 122(1), 470–483.
Nishida, K. (2013). Global propagation of body waves revealed by cross-correlation analysis of seismic hum: BODY WAVE PROPAGATION EXTRACTED FROM SEISMIC HUM. Geophysical Research Letters, 40(9), 1691–1696. https://doi.org/10.1002/grl.50269
Nishida, Kiwamu. (2014). Source spectra of seismic hum. Geophysical Journal International, 199(1), 416–429.
Nishida, Kiwamu, & Takagi, R. (2016). Teleseismic S wave microseisms. Science, 353(6302), 919–921. https://doi.org/10.1126/science.aaf7573
Nishida, Kiwamu, & Takagi, R. (2022). A Global Centroid Single Force Catalog of P-Wave Microseisms. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023484. https://doi.org/10.1029/2021JB023484
Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., Colombi, A., & Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425–445.
NOAA National Centers for Environmental Information. (2022). ETOPO 2022 15 arc-second global relief model. NOAA National Centers for Environmental Information Asheville, NC, USA.
Oliver, J. (1962). A worldwide storm of microseisms with periods of about 27 seconds. Bulletin of the Seismological Society of America, 52(3), 507–517.
Poli, P., Campillo, M., Pedersen, H., & Group, L. W. (2012). Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science, 338(6110), 1063–1065.
Poli, P., Pedersen, H. A., Campillo;, M., & the POLENET/LAPNET Working Group. (2012). Noise directivity and group velocity tomography in a region with small velocity contrasts: the northern Baltic shield. Geophysical Journal International, 192(1), 413–424. https://doi.org/10.1093/gji/ggs034
Retailleau, L., & Gualtieri, L. (2019). Toward High-Resolution Period-Dependent Seismic Monitoring of Tropical Cyclones. Geophysical Research Letters, 46(3), 1329–1337. https://doi.org/10.1029/2018GL080785
Retailleau, L., & Gualtieri, L. (2021). Multi-phase seismic source imprint of tropical cyclones. Nature Communications, 12(1), 2064.
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W., & Fehler, M. C. (2005). Surface wave tomography from microseisms in Southern California. Geophysical Research Letters, 32(14).
Sager, K., Tsai, V. C., Sheng, Y., Brenguier, F., Boué, P., Mordret, A., & Igel, H. (2021). Modelling P waves in seismic noise correlations: advancing fault monitoring using train traffic sources. Geophysical Journal International, 228(3), 1556–1567. https://doi.org/10.1093/gji/ggab389
Sanchez-Sesma, F. J., & Campillo, M. (2006). Retrieval of the Green’s Function from Cross Correlation: The Canonical Elastic Problem. Bulletin of the Seismological Society of America, 96(3), 1182–1191. https://doi.org/10.1785/0120050181
Schippkus, S., Safarkhani, M., & Hadziioannou, C. (2023). Continuous isolated noise sources induce repeating waves in the coda of ambient noise correlations. Seismica.
Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618.
Stehly, L., Campillo, M., & Shapiro, N. M. (n.d.). A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10).
Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C., & Hopper, J. R. (2019). GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756–1772.
Stutzmann, E., Ardhuin, F., Schimmel, M., Mangeney, A., & Patau, G. (2012). Modelling long-term seismic noise in various environments. Geophysical Journal International, 191(2), 707–722. https://doi.org/10.1111/j.1365-246X.2012.05638.x
The HDF Group. (n.d.). Hierarchical Data Format, version 5. https://github.com/HDFGroup/hdf5
Tomasetto, L., Boué, P., Stehly, L., Ardhuin, F., & Nataf, H.-C. (2024). On the stability of mantle-sensitive P-wave interference during a secondary microseismic event. Geophysical Research Letters, 51(8), e2023GL108018.
UCAR/Unidata. (n.d.). Network Common Data Form (netCDF), 2024, Boulder, CO (version 4.3.3.1) [Computer software]. https://doi.org/http://doi.org/10.5065/D6H70CW6
Valero Cano, E., Fichtner, A., Peter, D., & Mai, P. M. (2024). The impact of ambient noise sources in subsurface models estimated from noise correlation waveforms. Geophysical Journal International, 239(1), 85–98.
van Driel, M., Krischer, L., Stahler, S. C., Hosseini, K., & Nissen-Meyer, T. (2015). Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth, 6(2), 701–717. https://doi.org/10.5194/se-6-701-2015
Vinnik, L. (1973). Sources of microseismic P waves. Pure and Applied Geophysics, 103, 282–289.
Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. GEOPHYSICS, 71(4), SI33–SI46. https://doi.org/10.1190/1.2213955
Weaver, R., & Lobkis, O. (2002). On the emergence of the Green’s function in the correlations of a diffuse field: pulse-echo using thermal phonons. Ultrasonics, 40(1–8), 435–439.
WW3DG. (2019). User Manual and System Documentation of WAVEWATCH III version 6.07, The WAVEWATCH III Development Group. Tech. Note 326 Pp. + Appendices, NOAA/NWS/NCEP/MMAB.
Xu, Z., Stutzmann, E., Farra, V., & Crawford, W. (2025). Theoretical Modelling of Secondary Microseisms Considering Source and Receiver Site Structures, with a Focus on Ocean-Bottom Sediment Effects. Submitted to Journal of Geophysical Research.
Zhang, R., Boué, P., Campillo, M., & Ma, J. (2023). Quantifying P-wave secondary microseisms events: a comparison of observed and modelled backprojection. Geophysical Journal International, 234(2), 933–947.
Ziane, D., & Hadziioannou, C. (2019). The contribution of multiple scattering to Love wave generation in the secondary microseism. Geophysical Journal International, 217(2), 1108–1122.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lisa Tomasetto, Pierre Boué, Fabrice Ardhuin, Éléonore Stutzmann, Zongbo Xu, Raphaël De Plaen, Laurent Stehly

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Agence Nationale de la Recherche
Grant numbers ANR-20-CE49-0003