Unlocking DAS amplitude information through coherency coupling quantification
DOI:
https://doi.org/10.26443/seismica.v4i1.1488Keywords:
Distributed Acoustic Sensing, fiber-optic seismology, Seismology, cryoseismologyAbstract
Distributed Acoustic Sensing (DAS) allows one to measure strain at metre-resolution along a fibreoptic cable, increasing the density of spatial sampling of a seismic wavefield compared to conventional instrumentation. However, the challenge of measuring DAS-derived strain amplitude currently limits applications of this technology. Amplitude measurements are required in passive seismology for estimating earthquake magnitudes, moment tensor inversion and attenuation tomography, for example. For active seismic studies, amplitude information is essential for methods such as Amplitude Versus Offset (AVO) analysis. Central to this challenge is quantifying how well the fibre is coupled to the subsurface. Here, we present a method using coherency to pragmatically estimate coupling of fibre to the medium. We first introduce a theoretical justification relating coherency to relative coupling between channels and calibrating this to obtain absolute coupling coefficients, before evidencing the performance of the method using various examples from glaciers to downhole geothermal deployments. We apply the method to estimate earthquake magnitudes, comparing values to independent geophone estimates. The results allow us to explore whether quantifying coupling is possible or indeed necessary to account for in certain instances. We find that although coupling of fibre to the medium is important, results suggest that practically in many cases, it may be appropriate to simply make the binary first-order assumption that fibre is either approximately perfectly coupled or too poorly coupled for any amplitude analysis. While our findings do not comprehensively solve the fibre-optic coupling problem, the theory and results provide a practical foundation with which to start using DAS-derived amplitude information in earnest.
References
Agnew, R. S., Clark, R. A., Booth, A. D., Brisbourne, A. M., & Smith, A. M. (2023). Measuring seismic attenuation in polar firn: method and application to Korff Ice Rise, West Antarctica. Journal of Glaciology, 1–12. https://doi.org/10.1017/jog.2023.82
Aki, K., & Richards, P. G. (2002). Quantitative Seismology. University Science Books.
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997–5009. https://doi.org/10.1029/jb075i026p04997
Butcher, A., Luckett, R., Kendall, J.-M., & Baptie, B. (2020). Seismic Magnitudes, Corner Frequencies, and Microseismicity: Using Ambient Noise to Correct for High-Frequency Attenuation. Bulletin of the Seismological Society of America, 110(3), 1260–1275. https://doi.org/10.1785/0120190032
Capdeville, Y., & Sladen, A. (2024). DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1007
Castagna, J. P. (1993). Petrophysical imaging using AVO. The Leading Edge, 12(3), 172–178. https://doi.org/10.1190/1.1436939
Celli, N. L., Bean, C. J., & O’Brien, G. S. (2023). Full-waveform simulation of DAS records, response and cable-ground coupling. Geophysical Journal International, 236(1), 659–674. https://doi.org/10.1093/gji/ggad449
Chen, X. (2023). Source parameter analysis using distributed acoustic sensing – an example with the PoroTomo array. Geophysical Journal International, 233(3), 2208–2214. https://doi.org/10.1093/gji/ggad061
Chen, Y., Savvaidis, A., Fomel, S., Chen, Y., Saad, O. M., Wang, H., Oboué, Y. A. S. I., Yang, L., & Chen, W. (2022). Denoising of Distributed Acoustic Sensing Seismic Data Using an Integrated Framework. Seismological Research Letters, 94(1), 457–472. https://doi.org/10.1785/0220220117
De Siena, L., Thomas, C., & Aster, R. (2014). Multi-scale reasonable attenuation tomography analysis (MuRAT): An imaging algorithm designed for volcanic regions. Journal of Volcanology and Geothermal Research, 277, 22–35. https://doi.org/10.1016/j.jvolgeores.2014.03.009
Delsanto, P. P. (2006). Universality of nonclassical nonlinearity. Springer.
Du, Z., Foulger, G. R., & Mao, W. (2000). Noise reduction for broad-band, three-component seismograms using data-adaptive polarization filters. Geophysical Journal International, 141(3), 820–828. https://doi.org/10.1046/j.1365-246x.2000.00156.x
Edwards, B., Kraft, T., Cauzzi, C., Kastli, P., & Wiemer, S. (2015). Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophysical Journal International, 201(2), 1022–1039. https://doi.org/10.1093/gji/ggv059
Feigl, K., Reinisch, E., Patterson, J., Jreij, S., Parker, L., Nayak, A., Zeng, X., Cardiff, M., Lord, N. E., Fratta, D., Thurber, C., Wang, H., Robertson, M., Coleman, T., Miller, D. E., Spielman, P., Akerley, J., Kreemer, C., Morency, C., … Davatzes, N. (2016a). PoroTomo Natural Laboratory Horizontal and Vertical Distributed Acoustic Sensing Data. DOE Geothermal Data Repository; University of Wisconsin. https://doi.org/10.15121/1778858
Feigl, K., Reinisch, E., Patterson, J., Jreij, S., Parker, L., Nayak, A., Zeng, X., Cardiff, M., Lord, N. E., Fratta, D., Thurber, C., Wang, H., Robertson, M., Coleman, T., Miller, D. E., Spielman, P., Akerley, J., Kreemer, C., Morency, C., … Davatzes, N. (2016b). PoroTomo Natural Laboratory Horizontal and Vertical Distributed Acoustic Sensing Data. DOE Geothermal Data Repository; University of Wisconsin. https://doi.org/10.15121/1778858
Fernandez-Ruiz, M. R., Martins, H. F., Williams, E. F., Becerril, C., Magalhaes, R., Costa, L., Martin-Lopez, S., Jia, Z., Zhan, Z., & Gonzalez-Herraez, M. (2022). Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. Journal of Lightwave Technology, 40(5), 1453–1463. https://doi.org/10.1109/jlt.2021.3128138
Grandi, S., Dean, M., & Tucker, O. (2017). Efficient Containment Monitoring with Distributed Acoustic Sensing: Feasibility Studies for the Former Peterhead CCS Project. Energy Procedia, 114, 3889–3904. https://doi.org/10.1016/j.egypro.2017.03.1521
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile, T. A., Dost, B., Fernandez, M. G., Wiemer, S., & Dahm, T. (2017). Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Reviews of Geophysics, 55(2), 310–340. https://doi.org/10.1002/2016rg000542
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/jb084ib05p02348
Harmon, N., Rychert, C. A., Davis, J., Brambilla, G., Buffet, W., Chichester, B., Dai, Y., Bogiatzis, P., Snook, J., van Putten, L., & Masoudi, A. (2022). Surface deployment of DAS systems: Coupling strategies and comparisons to geophone data. Near Surface Geophysics, 20(5), 465–477. https://doi.org/10.1002/nsg.12232
Hubbard, P. G., Vantassel, J. P., Cox, B. R., Rector, J. W., Yust, M. B. S., & Soga, K. (2022). Quantifying the Surface Strain Field Induced by Active Sources with Distributed Acoustic Sensing: Theory and Practice. Sensors, 22(12), 4589. https://doi.org/10.3390/s22124589
Hudson, T. (2024). Data associated with the study: Unlocking DAS amplitude information through coherency coupling quantification. Zenodo. https://doi.org/10.5281/ZENODO.13684046
Hudson, T., Klaasen, S., Fontaine, O., Bacon, C., Jonsdottir, K., & Fichtner, A. (2024). Towards a widely applicable earthquake detection algorithm for fibreoptic and hybrid fibreoptic-seismometer networks. https://doi.org/10.31223/x5zd7w
Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., & Clarke, A. (2021). Distributed Acoustic Sensing (DAS) for Natural Microseismicity Studies: A Case Study From Antarctica. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2020jb021493
Hudson, T. S., Kendall, J. M., Blundy, J. D., Pritchard, M. E., MacQueen, P., Wei, S. S., Gottsmann, J. H., & Lapins, S. (2023). Hydrothermal Fluids and Where to Find Them: Using Seismic Attenuation and Anisotropy to Map Fluids Beneath Uturuncu Volcano, Bolivia. Geophysical Research Letters, 50(5). https://doi.org/10.1029/2022gl100974
Hudson, T S, Klaasen, S., Fontaine, O., Bacon, C. A., Jónsdóttir, K., & Fichtner, A. (2025). Towards a widely applicable earthquake detection algorithm for fibreoptic and hybrid fibreoptic-seismometer networks. Geophysical Journal International, 240(3), 1965–1985. https://doi.org/10.1093/gji/ggae459
Hudson, Thomas S., Smith, J., Brisbourne, A. M., & White, R. S. (2019). Automated detection of basal icequakes and discrimination from surface crevassing. Annals of Glaciology, 60(79), 167–181. https://doi.org/10.1017/aog.2019.18
Hudson, Thomas Samuel, Asplet, J., & Walker, A. M. (2023). Automated shear-wave splitting analysis for single- and multi- layer anisotropic media. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1031
Igel, J. K. H., Klaasen, S., Noe, S., Nomikou, P., Karantzalos, K., & Fichtner, A. (2024). Challenges in submarine fiber-optic earthquake monitoring. https://doi.org/10.22541/essoar.171691177.74747140/v1
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., & Krawczyk, C. M. (2022). Fibre optic distributed acoustic sensing of volcanic events. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29184-w
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., & Fichtner, A. (2021). Distributed Acoustic Sensing in Volcano‐Glacial Environments—Mount Meager, British Columbia. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022358
Kufner, S. ‐K., Wookey, J., Brisbourne, A. M., Martín, C., Hudson, T. S., Kendall, J. M., & Smith, A. M. (2023). Strongly Depth‐Dependent Ice Fabric in a Fast‐Flowing Antarctic Ice Stream Revealed With Icequake Observations. Journal of Geophysical Research: Earth Surface, 128(3). https://doi.org/10.1029/2022jf006853
Lapins, S., Butcher, A., Kendall, J.-M., Hudson, T. S., Stork, A. L., Werner, M. J., Gunning, J., & Brisbourne, A. M. (2023). DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophysical Journal International, 236(2), 1026–1041. https://doi.org/10.1093/gji/ggad460
Lawrence, J. F., & Prieto, G. A. (2011). Attenuation tomography of the western United States from ambient seismic noise. Journal of Geophysical Research, 116(B6). https://doi.org/10.1029/2010jb007836
Lecoulant, J., Ma, Y., Dettmer, J., & Eaton, D. (2023). Strain-based forward modeling and inversion of seismic moment tensors using distributed acoustic sensing (DAS) observations. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1176921
Lellouch, A., Schultz, R., Lindsey, N. J., Biondi, B. L., & Ellsworth, W. L. (2020). Low‐Magnitude Seismicity With a Downhole Distributed Acoustic Sensing Array—Examples From the FORGE Geothermal Experiment. Journal of Geophysical Research: Solid Earth, 126(1). https://doi.org/10.1029/2020jb020462
Lellouch, Ariel, & Biondi, B. L. (2021). Seismic Applications of Downhole DAS. Sensors, 21(9), 2897. https://doi.org/10.3390/s21092897
Lellouch, Ariel, Lindsey, N. J., Ellsworth, W. L., & Biondi, B. L. (2020). Comparison between Distributed Acoustic Sensing and Geophones: Downhole Microseismic Monitoring of the FORGE Geothermal Experiment. Seismological Research Letters, 91(6), 3256–3268. https://doi.org/10.1785/0220200149
Li, J., Zhu, W., Biondi, E., & Zhan, Z. (2023). Earthquake focal mechanisms with distributed acoustic sensing. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39639-3
Lindsey, N. J., & Martin, E. R. (2021). Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213
Lindsey, N. J., Rademacher, H., & Ajo‐Franklin, J. B. (2020). On the Broadband Instrument Response of Fiber‐Optic DAS Arrays. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb018145
Lior, I., Rivet, D., Ampuero, J.-P., Sladen, A., Barrientos, S., Sánchez-Olavarría, R., Villarroel Opazo, G. A., & Bustamante Prado, J. A. (2023). Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27444-3
Liu, X., Beroza, G. C., Yang, L., & Ellsworth, W. L. (2021). Ambient noise Love wave attenuation tomography for the LASSIE array across the Los Angeles basin. Science Advances, 7(22). https://doi.org/10.1126/sciadv.abe1030
Martin, E. R. (2018). Passive imaging and characterization of the subsurface with DAS. PhD Thesis.
Martin, T., & Nash, G. (2019). Utah FORGE: High-Resolution DAS Microseismic Data from Well 78-32. DOE Geothermal Data Repository; Energy. https://doi.org/10.15121/1603679
Muir, J. B., & Zhan, Z. (2021). Wavefield-based evaluation of DAS instrument response and array design. Geophysical Journal International, 229(1), 21–34. https://doi.org/10.1093/gji/ggab439
Naderyan, V., Hickey, C. J., & Raspet, R. (2016). Wind‐induced ground motion. Journal of Geophysical Research: Solid Earth, 121(2), 917–930. https://doi.org/10.1002/2015jb012478
Nakata, N., Chang, J. P., Lawrence, J. F., & Boué, P. (2015). Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry. Journal of Geophysical Research: Solid Earth, 120(2), 1159–1173. https://doi.org/10.1002/2015jb011870
Ostrander, W. J. (1984). Plane‐wave reflection coefficients for gas sands at nonnormal angles of incidence. GEOPHYSICS, 49(10), 1637–1648. https://doi.org/10.1190/1.1441571
Ostrovsky, L. A. (1991). Wave processes in media with strong acoustic nonlinearity. The Journal of the Acoustical Society of America, 90(6), 3332–3337. https://doi.org/10.1121/1.401444
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., & Fichtner, A. (2020). Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bulletin of the Seismological Society of America, 111(1), 1–10. https://doi.org/10.1785/0120200185
Prieto, G. A., Lawrence, J. F., & Beroza, G. C. (2009). Anelastic Earth structure from the coherency of the ambient seismic field. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008jb006067
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007
Reinsch, T., Thurley, T., & Jousset, P. (2017). On the mechanical coupling of a fiber optic cable used for distributed acoustic/vibration sensing applications - A theoretical consideration. Measurement Science and Technology, 28(12), 127003. https://doi.org/10.1088/1361-6501/aa8ba4
Reiss, M. C., De Siena, L., & Muirhead, J. D. (2022). The Interconnected Magmatic Plumbing System of the Natron Rift. Geophysical Research Letters, 49(15). https://doi.org/10.1029/2022gl098922
Samson, J. C., & Olson, J. V. (1981). Data‐adaptive polarization filters for multichannel geophysical data. GEOPHYSICS, 46(10), 1423–1431. https://doi.org/10.1190/1.1441149
Shearer, P. M., & Orcutt, J. A. (1987). Surface and near-surface effects on seismic waves—theory and borehole seismometer results. Bulletin of the Seismological Society of America, 77(4), 1168–1196. https://doi.org/10.1785/bssa0770041168
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13793-z
Spica, Z. J., Castellanos, J. C., Viens, L., Nishida, K., Akuhara, T., Shinohara, M., & Yamada, T. (2022). Subsurface Imaging With Ocean‐Bottom Distributed Acoustic Sensing and Water Phases Reverberations. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl095287
Stork, A. L., Verdon, J. P., & Kendall, J. ‐M. (2014). The robustness of seismic moment and magnitudes estimated using spectral analysis. Geophysical Prospecting, 62(4), 862–878. https://doi.org/10.1111/1365-2478.12134
Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., Scotto di Uccio, F., Festa, G., Rivet, D., Sladen, A., Ampuero, J. P., Métaxian, J.-P., & Stutzmann, É. (2023). From strain to displacement: using deformation to enhance distributed acoustic sensing applications. Geophysical Journal International, 235(3), 2372–2384. https://doi.org/10.1093/gji/ggad365
van den Ende, M., Lior, I., Ampuero, J.-P., Sladen, A., Ferrari, A., & Richard, C. (2023). A Self-Supervised Deep Learning Approach for Blind Denoising and Waveform Coherence Enhancement in Distributed Acoustic Sensing Data. IEEE Transactions on Neural Networks and Learning Systems, 34(7), 3371–3384. https://doi.org/10.1109/tnnls.2021.3132832
Viens, L., & Delbridge, B. G. (2024). Shallow Soil Response to a Buried Chemical Explosion With Geophones and Distributed Acoustic Sensing. Journal of Geophysical Research: Solid Earth, 129(7). https://doi.org/10.1029/2023jb028416
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., & Fichtner, A. (2014). Distributed Acoustic Sensing of Microseismic Sources and Wave Propagation in Glaciated Terrain. In Climate Change 2013 – The Physical Science Basis (pp. 1–30). Cambridge University Press. https://doi.org/10.1017/cbo9781107415324.004
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. (2018). Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 213(3), 2020–2036. https://doi.org/10.1093/gji/ggy102
Williams, E. F., Zhan, Z., Martins, H. F., Fernández‐Ruiz, M. R., Martín‐López, S., González‐Herráez, M., & Callies, J. (2022). Surface Gravity Wave Interferometry and Ocean Current Monitoring With Ocean‐Bottom DAS. Journal of Geophysical Research: Oceans, 127(5). https://doi.org/10.1029/2021jc018375
Wuestefeld, A., Stokkan, S., Baird, A., & Oye, V. (2021). NOR-FROST: A near-surface test site for fibre optic sensing. EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing. https://doi.org/10.3997/2214-4609.202131027
Yang, L., Fomel, S., Wang, S., Chen, X., & Chen, Y. (2023). Denoising distributed acoustic sensing data using unsupervised deep learning. GEOPHYSICS, 88(4), V317–V332. https://doi.org/10.1190/geo2022-0460.1
Yang, X., Bryan, J., Okubo, K., Jiang, C., Clements, T., & Denolle, M. A. (2022). Optimal stacking of noise cross-correlation functions. Geophysical Journal International, 232(3), 1600–1618. https://doi.org/10.1093/gji/ggac410
Yin, J., Zhu, W., Li, J., Biondi, E., Miao, Y., Spica, Z. J., Viens, L., Shinohara, M., Ide, S., Mochizuki, K., Husker, A. L., & Zhan, Z. (2023). Earthquake Magnitude With DAS: A Transferable Data‐Based Scaling Relation. Geophysical Research Letters, 50(10). https://doi.org/10.1029/2023gl103045
Zhan, Z. (2019). Distributed Acoustic Sensing Turns Fiber‐Optic Cables into Sensitive Seismic Antennas. Seismological Research Letters, 91(1), 1–15. https://doi.org/10.1785/0220190112
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tom Hudson, Anna Stork, Jack Muir, Andreas Fichtner

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Leverhulme Trust
Grant numbers ECF-2022-499 -
John Fell Fund, University of Oxford
Grant numbers 0013666