On the location uncertainty of early-instrumental earthquakes

Authors

  • Domenico Di Giacomo International Seismological Centre https://orcid.org/0000-0001-8472-8979
  • Tom Garth International Seismological Centre
  • István Bondár Seismic Location Services, Lagos, Portugal
  • Natalia Poiata
  • Ryan Gallacher
  • James Harris International Seismological Centre
  • Dmitry A. Storchak International Seismological Centre

DOI:

https://doi.org/10.26443/seismica.v4i1.1499

Keywords:

earthquake location, location uncertainty, observational errors

Abstract

Uncertainty in reported body-wave arrival times is a key contributor to earthquakes location error estimates, especially in the early-instrumental period (e.g., prior to the early 1960s). As such, a reliable assessment of the observational errors in the early-instrumental period is an important element of the earthquake location problem. Standard location procedures at the International Seismological Centre assume seismic arrival time picking errors defined for the most recent decades of instrumental seismology (i.e., from the early 1960s). However, the error measurements currently used fail to capture the uncertainty in the seismic arrival time pickings of earthquakes occurred before the early 1960s (early-instrumental period). The larger observational uncertainty in the early-instrumental period is due to a range of error sources arising from reading arrival times on analogue seismographs. Such errors have been drastically reduced since the 1960s thanks to the significant improvements in seismometry and time keeping as well as the migration from analogue to digital stations worldwide. Since observational errors play a key role in the uncertainty estimations of an earthquake location, it follows that error ellipses for early-instrumental earthquakes are underestimated in our current procedures. To address this feature, we modify the error assumptions used in the early-instrumental period with a time dependent term enabling more reliable error ellipses for early-instrumental earthquakes.

References

Adams, R. (2004). Re-evaluation of early instrumental earthquake locations: methodology and examples. Annals of Geophysics, 47(2-3), 859–871.

Agnew, D. C. History of seismology. In Lee, W., Kanamori, H., Jennings, J., and Kisslinger, C., editors, International Handbook of

Earthquake and Engineering Seismology, volume A, chapter 1, pages 3–11. Academic Press, San Diego, 2002.

Agnew, D. (2020). Time Marks and Clock Corrections: A Century of Seismological Timekeeping. Seismological Research Letters, 91(3), 1417–1429. DOI: https://doi.org/10.1785/0220190284

Ammon, C., Lay, T., & Simpson, D. (2010). Great Earthquakes and Global Seismic Networks. Seismological Research Letters, 81(6), 965–971. DOI: https://doi.org/10.1785/gssrl.81.6.965

Anderson, K. (1982). Robust earthquake location using M-estimates. Physics of the Earth and Planetary Interiors, 30(2–3), 119–130. DOI: https://doi.org/10.1016/0031-9201(82)90096-6

BCIS. (1933–1968). Bureau Central International de Seismologie. .

Billings, S., Sambridge, M., & Kennett, B. (1994). Errors in hypocenter location: Picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84(6), 1978–1990. DOI: https://doi.org/10.1785/BSSA0840061978

Bondár, I., Myers, S., Engdahl, E., & Bergman, E. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. DOI: https://doi.org/10.1111/j.1365-246X.2004.02070.x

Bondár, I., & McLaughlin, K. (2009). Seismic Location Bias and Uncertainty in the Presence of Correlated and Non-Gaussian Travel-Time Errors. Bulletin of the Seismological Society of America, 99(1), 172–193. DOI: https://doi.org/10.1785/0120080922

Bondár, I., & McLaughlin, K. (2009). A New Ground Truth Data Set For Seismic Studies. Seismological Research Letters, 80(3), 465–472. DOI: https://doi.org/10.1785/gssrl.80.3.465

Bondár, I., & Storchak, D. (2011). Improved location procedures at the International Seismological Centre. Geophysical Journal International, 186(3), 1220-1244. DOI: https://doi.org/10.1111/j.1365-246X.2011.05107.x

Bondár, I., Engdahl, E., Villaseñor, A., Harris, J., & Storchak, D. (2015). ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), II. Location and seismicity patterns. Physics of the Earth and Planetary Interiors, 239, 2–13. DOI: https://doi.org/10.1016/j.pepi.2014.06.002

Buland, R. (1976). The mechanics of locating earthquakes. Bulletin of the Seismological Society of America, 66(1), 173–187. DOI: https://doi.org/10.1785/BSSA0660010173

Bungum, H., Pettenati, F., Schweitzer, J., Sirovich, L., & Faleide, J. (2009). The 23 October 1904 MS 5.4 Oslofjord Earthquake: Reanalysis Based on Macroseismic and Instrumental Data. Bulletin of the Seismological Society of America, 99(5), 2836–2854. DOI: https://doi.org/10.1785/0120080357

Di Giacomo, D., Engdahl, E., & Storchak, D. (2018). The ISC-GEM Earthquake Catalogue (1904textendash2014): status after the Extension Project. Earth System Science Data, 10(4), 1877–1899. DOI: https://doi.org/10.5194/essd-10-1877-2018

Di Giacomo, D., & Storchak, D. (2023). Digitization of BCIS bulletins and the ISC quest to verify pre-digital earthquakes. Comptes Rendus. Géoscience, 355, 23–34. DOI: https://doi.org/10.5802/crgeos.185

Doser, D. (2001). A Study of Historic Earthquakes of the Prince William Sound, Alaska, Region. Bulletin of the Seismological Society of America, 91(4), 842–857. DOI: https://doi.org/10.1785/0120000241

Doser, D. (2004). Seismicity of the Denali-Totschunda Fault Zone in Central Alaska (1912-1988) and Its Relation to the 2002 Denali Fault Earthquake Sequence. Bulletin of the Seismological Society of America, 94(6B), S132–S144. DOI: https://doi.org/10.1785/0120040611

Doser, D. (2005). Historical Seismicity (1918-1964) of the Kodiak Island Region. Bulletin of the Seismological Society of America, 95(3), 878–895. DOI: https://doi.org/10.1785/0120040175

Doser, D. (2006). Relocations of Earthquakes (1899–1917) in South-Central Alaska. Pure and Applied Geophysics, 163(8), 1461–1476. DOI: https://doi.org/10.1007/s00024-006-0085-3

Douglas, A., Bowers, D., & Young, J. (1997). On the onset of phP seismograms. Geophysical Journal International, 129(3), 681–690. DOI: https://doi.org/10.1111/j.1365-246X.1997.tb04503.x

Engdahl, E., Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722–743. DOI: https://doi.org/10.1785/BSSA0880030722

Engdahl, E., Di Giacomo, D., Sakarya, B., Gkarlaouni, C., Harris, J., & Storchak, D. (2020). ISC‐EHB 1964–2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity. Earth and Space Science, 7(1), e2019EA000897. DOI: https://doi.org/10.1029/2019EA000897

Evernden, J. (1969). Precision of epicenters obtained by small numbers of world-wide stations. Bulletin of the Seismological Society of America, 59(3), 1365–1398. DOI: https://doi.org/10.1785/BSSA0590031365

Fernández Arce, M., & Doser, D. (2009). Relocation and waveform modeling of the 1924 Orotina, Costa Rica, earthquake (MS 7.0). Tectonophysics, 479(3–4), 197–202. DOI: https://doi.org/10.1016/j.tecto.2009.08.010

Flinn, E. (1965). Confidence regions and error determinations for seismic event location. Reviews of Geophysics, 3(1), 157-185. DOI: https://doi.org/10.1029/RG003i001p00157

Freedman, H. (1968). Seismological measurements and measurement error. Bulletin of the Seismological Society of America, 58(4), 1261–1271. DOI: https://doi.org/10.1785/BSSA0580041261

Freedman, H. (1967). A statistical discussion of P residuals from explosions. Bulletin of the Seismological Society of America, 57(3), 545–561. DOI: https://doi.org/10.1785/BSSA0570030545

Freedman, H. (1966). The “little variable factor” a statistical discussion of the reading of seismograms. Bulletin of the Seismological Society of America, 56(2), 593–604. DOI: https://doi.org/10.1785/BSSA0560020593

Geiger, L. (1910). Herdbestimmung bei Erdbebenaus den Ankunftzeite. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1910, 331-349.

ISS. (1918–1963). International Seismological Summary. .

International Seismological Centre. (2023). ISC-GEM Earthquake Catalogue.

International Seismological Centre. (2023). On-line Bulletin.

International Seismological Centre. (2023). IASPEI Reference Event List.

Jeffreys, H. (1931). The Revision of Seismological Tables. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 2(7), 329-348. DOI: https://doi.org/10.1111/j.1365-246X.1931.tb05419.x

Jordan, T., & Sverdrup, K. (1981). Teleseismic location techniques and their application to earthquake clusters in the south-central Pacific. Bulletin of the Seismological Society of America, 71(4), 1105–1130.

Kanamori, H. The importance of historical seismograms for geophysical research. In Lee, W., editor, Historical Seismograms and

Earthquakes of the World, pages 16–33. Academic Press, New York, 1988

Kanamori, H., Rivera, L., & Lee, W. (2010). Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra Earthquake. Geophysical Journal International, 183(1), 358–374. DOI: https://doi.org/10.1111/j.1365-246X.2010.04731.x

Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x

Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. DOI: https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Lomax, A., Virieux, J., Volant, P., and Berge-Thierry, C. Probabilistic Earthquake Location in 3D and Layered Models. In Thurber C.H.,

R. N., editor, Modern Approaches in Geophysics, pages 101–134. Springer Netherlands, 2000.

Martin, S., Li, L., Okal, E., Morin, J., Tetteroo, A., Switzer, A., & Sieh, K. (2019). Reassessment of the 1907 Sumatra textquotedblleftTsunami Earthquaketextquotedblright Based on Macroseismic, Seismological, and Tsunami Observations, and Modeling. Pure and Applied Geophysics, 176(7), 2831–2868. DOI: https://doi.org/10.1007/s00024-019-02134-2

Morozov, A., Vaganova, N., Dulentsova, L., Asming, V., & Evtyugina, Z. (2020). The 1927 earthquakes and aftershocks in the Crimea: relocation based on instrumental data. Journal of Seismology, 25(2), 393–417. DOI: https://doi.org/10.1007/s10950-020-09972-x

Morozov, A., Vaganova, N., Shakhova, E., Konechnaya, Y., Asming, V., Antonovskaya, G., & Evtyugina, Z. (2019). Seismicity of the Arctic in the Early Twentieth Century: Relocation of the 1904–1920 Earthquakes. Bulletin of the Seismological Society of America, 109(5), 2000–2008. DOI: https://doi.org/10.1785/0120190018

Morozov, A., Vaganova, N., & Konechnaya, Y. (2019). The October 14, 1908 MW 6.6 earthquake in the Barents and Kara sea region of the Arctic: Relocation based on instrumental data. Polar Science, 20, 160–166. DOI: https://doi.org/10.1016/j.polar.2019.05.001

Myers, S., Begnaud, M., Ballard, S., Pasyanos, M., Phillips, W., Ramirez, A., Antolik, M., Hutchenson, K., Dwyer, J., Rowe, C., & Wagner, G. (2010). A Crust and Upper-Mantle Model of Eurasia and North Africa for Pn Travel-Time Calculation. Bulletin of the Seismological Society of America, 100(2), 640–656. DOI: https://doi.org/10.1785/0120090198

NOAA National Geophysical Data Center. (2009). ETOPO1 1 Arc-Minute Global Relief Model.

Niemz, P., & Amorese, D. (2016). Relocalizing a historical earthquake using recent methods: The 10 November 1935 Earthquake near Montserrat, Lesser Antilles. Journal of South American Earth Sciences, 66, 166–179. DOI: https://doi.org/10.1016/j.jsames.2015.12.010

Nishenko, S., & Singh, S. (1987). The Acapulco-Ometepec, Mexico, earthquakes of 1907-1982: Evidence for a variable recurrence history. Bulletin of the Seismological Society of America, 77(4), 1359–1367.

Okal, E., Borrero, J., & Chagué-Goff, C. (2011). Tsunamigenic predecessors to the 2009 Samoa earthquake. Earth-Science Reviews, 107(1–2), 128–140. DOI: https://doi.org/10.1016/j.earscirev.2010.12.007

Okal, E., Synolakis, C., & Kalligeris, N. (2010). Tsunami Simulations for Regional Sources in the South China and Adjoining Seas. Pure and Applied Geophysics, 168(6–7), 1153–1173. DOI: https://doi.org/10.1007/s00024-010-0230-x

Okal, C. (2009). The South Sandwich Islands Earthquake of 27 June 1929: Seismological Study and Inference on Tsunami Risk for the South Atlantic. South African Journal of Geology, 112(3–4), 359–370. DOI: https://doi.org/10.2113/gssajg.112.3-4.359

Okal, E., & Borrero, J. (2011). The `tsunami earthquake' of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations: The 1932 June Mexican tsunami earthquake. Geophysical Journal International, 187(3), 1443–1459. DOI: https://doi.org/10.1111/j.1365-246X.2011.05199.x

Okal, E. (2005). A re-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17. Geophysical Journal International, 161(2), 268–282. DOI: https://doi.org/10.1111/j.1365-246X.2005.02582.x

Oliver, J., & Murphy, L. (1971). WWNSS: Seismology's Global Network of Observing Stations. Science, 174(4006), 254–261. DOI: https://doi.org/10.1126/science.174.4006.254

Peterson, J., & Hutt, C.. (2014). World-Wide Standardized Seismograph Network: a data users guide. . DOI: https://doi.org/10.3133/ofr20141218

Petroy, D., & Wiens, D. (1989). Historical seismicity and implications for diffuse plate convergence in the northeast Indian Ocean. Journal of Geophysical Research: Solid Earth, 94(B9), 12301–12319. DOI: https://doi.org/10.1029/JB094iB09p12301

Poupinet, G. (1979). On the relation between P-wave travel time residuals and the age of continental plates. Earth and Planetary Science Letters, 43(1), 149–161. DOI: https://doi.org/10.1016/0012-821X(79)90163-8

R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,

https://www.R-project.org/.

Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm–-I. Searching a parameter space. Geophysical Journal International, 138(2), 479–-494. DOI: https://doi.org/10.1046/j.1365-246X.1999.00876.x

Schweitzer, J. (2001). HYPOSAT – An Enhanced Routine to Locate Seismic Events. Pure and Applied Geophysics, 158(1), 277–289. DOI: https://doi.org/10.1007/PL00001160

Storchak, D., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., Di Giacomo, D., & Korger, E. (2017). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964textendash1979. Geoscience Letters, 4, 32. DOI: https://doi.org/10.1186/s40562-017-0098-z

Storchak, D., Harris, J., Brown, L., Lieser, K., Shumba, B., & Di Giacomo, D. (2020). Rebuild of the Bulletin of the International Seismological Centre (ISC)–-part 2: 1980–2010. Geoscience Letters, 7(1), 18. DOI: https://doi.org/10.1186/s40562-020-00164-6

Storchak, D., Di Giacomo, D., Engdahl, E., Harris, J., Bondár, I., Lee, W., Bormann, P., & Villasenor, A. (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction. Physics of the Earth and Planetary Interiors, 239, 48–63. DOI: https://doi.org/10.1016/j.pepi.2014.06.009

Suleiman, A., & Doser, D. (1995). The seismicity, seismotectonics and earthquake hazards of Libya, with detailed analysis of the 1935 April 19, M = 7.1 earthquake sequence. Geophysical Journal International, 120(2), 312–322. DOI: https://doi.org/10.1111/j.1365-246X.1995.tb01820.x

Tape, C., & Lomax, A. (2022). Aftershock Regions of Aleutian‐Alaska Megathrust Earthquakes, 1938–2021. Journal of Geophysical Research: Solid Earth, 127(7). DOI: https://doi.org/10.1029/2022JB024336

Tape, C., Lomax, A., Silwal, V., Agnew, J., & Brettschneider, B. (2017). The 1904 Ms 7.3 Earthquake in Central Alaska. Bulletin of the Seismological Society of America, 107(3), 1147–1174. DOI: https://doi.org/10.1785/0120160178

Udias, A., & Stauder, W. (1996). The Jesuit Contribution to Seismology. Seismological Research Letters, 67(3), 10–19. DOI: https://doi.org/10.1785/gssrl.67.3.10

Wessel, P., Smith, W., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. DOI: https://doi.org/10.1002/2013EO450001

Wiechert, E. (1903). Ein astatisches Pendel hoher Empfindlichkeit zur mechanischen Registrierung von Erdbeben. Phys. Zeit., 4, 821-829.

Wielandt, E. Seismometry. In Lee, W., Kanamori, H., Jennings, J., and Kisslinger, C., editors, International Handbook of Earthquake and Engineering Seismology, volume A, chapter 18, pages

–304. Academic Press, San Diego, 2002.

Wysession, M., Okal, E., & Miller, K. (1991). Intraplate seismicity of the Pacific Basin, 1913-1988. Pure and Applied Geophysics, 135(2), 261–359. DOI: https://doi.org/10.1007/BF00880241

Zeiler, C., & Velasco, A. (2009). Seismogram Picking Error from Analyst Review (SPEAR): Single-Analyst and Institution Analysis. Bulletin of the Seismological Society of America, 99(5), 2759–2770. DOI: https://doi.org/10.1785/0120080131

Downloads

Published

2025-02-24

How to Cite

Di Giacomo, D., Garth, T., Bondár, I., Poiata, N., Gallacher, R., Harris, J., & Storchak, D. A. (2025). On the location uncertainty of early-instrumental earthquakes. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1499

Issue

Section

Articles

Funding data