Picking first arrivals in hydroacoustic seismograms from MERMAID floats

Authors

  • Guust Nolet Université Côte d'Azur
  • Nguyen Ba Hoang University of Science and Technology, Danang, Vietnam
  • Sébastien Bonnieux Université Côte d'Azur
  • Yuko Kondo Kobe University
  • Fanchao Kong SUSTech
  • Masayuki Obayashi Research Institute for Marine Geodynamics, JAMSTEC
  • Sirawich Pipatprathanporn Princeton
  • Karin Sigloch CNRS
  • Joel D. Simon Department of Geosciences, Princeton University
  • Frederik J. Simons Department of Geosciences, Princeton University
  • Hiroko Sogioka Kobe University, Kobe, Japan
  • Junko Yoshimitsu Research Institute for Marine Geodynamics, JAMSTEC
  • Qinling Zhang SUSTech

DOI:

https://doi.org/10.26443/seismica.v4i1.1505

Abstract

Floating seismometers (‘MERMAIDs’) operating in the noisy environment of the world’s oceans pose a challenge for picking the time of earthquake first arrivals. We report on an experiment to estimate the errors in picked arrivals from 49 MERMAIDS operating in the South Pacific, using two independent strategies. For 15 events, the same arrivals were redundandly picked by several analysts, allowing for a direct estimate of error distributions. Standard errors in times from MERMAID seismograms vary from 0.2 s for close events at mantle depths in the Kermadec subduction zone to more than 2 s for crustal events at large epicentral distance. In a second experiment we analysed the a posteriori misfits after tomographically inverting all events. The residual traveltime misfit is consistent with the error estimates from the first experiment, but also shows inconsistencies with arrival times from the ISC-EHB and NEIC catalogues, which we attribute to errors in the published hypocentres and/or origin times.

References

Amaru, M. L. (2007). Global Travel Time Tomography with 3-D Reference Models (pp. 1–174) [Phdthesis]. Utrecht University.

Charléty, J., Voronin, S., Nolet, G., Loris, I., Simons, F. J., Sigloch, K., & Daubechies, I. C. (2013). Global seismic tomography with sparsity constraints: Comparison with smoothing and damping regularization. Journal of Geophysical Research: Solid Earth, 118(9), 4887–4899. https://doi.org/10.1002/jgrb.50326

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Engdahl, E. R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C. G., Harris, J., & Storchak, D. A. (2020). ISC‐EHB 1964–2016, an improved data set for studies of earth structure and global seismicity. Earth and Space Science, 7(1), e2019EA000897. https://doi.org/10.1029/2019EA000897

Goldstein, P., Dodge, D., Firpo, M., & Minner, L. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. The IASPEI International Handbook of Earthquake and Engineering Seismology, Acad. Press, London, ed. W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger.

Goldstein, P., & Snoke, A. (2005). SAC availability for the IRIS community. IRIS Data Managment Center Electronic Newsletter, https://ds.iris.edu/ds/newsletter/.

Hall, R., & Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics, 658, 14–45. https://doi.org/10.1016/j.tecto.2015.07.003

Herrin, E., & Taggart, J. (1968). Source bias in epicenter determinations. Bulletin of the Seismological Society of America, 58(6), 1791–1796. https://doi.org/10.1785/BSSA0580061791

International Seismological Centre. (2020). ISC-EHB dataset. Https://Doi.Org/10.31905/PY08W6S3. https://doi.org/10.31905/PY08W6S3

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Lomax, A., Bagagli, M., Gaviano, S., Cianetti, S., Jozinović, D., Michelini, A., Zerafa, C., & Giunchi, C. (2024). Effects on a deep-learning, seismic arrival-time picker of domain-knowledge based preprocessing of input seismograms. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1164

Motulsky, H. J., & Brown, R. E. (2006). Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, 7, 123. https://doi.org/10.1186/1471-2105-7-123

Mousavi, S. M., Sheng, Y., Zhu, W., & Beroza, G. C. (2019). STanford EArthquake Dataset (STEAD): A global dataset of seismic signals for AI. IEEE Access, 7, 179464–179476. https://doi.org/10.1109/ACCESS.2019.2947848

Naranjo, D., Parisi, L., Jónsson, S., Jousset, P., Werthmüller, D., & Weemstra, C. (2024). Ocean bottom seismometer clock correction using ambient seismic noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.367

Nolet, G. (2008). A Breviary of Seismic Tomography (p. 344). Cambridge Univ. Press.

Nolet, G. (2024). MERMAID data processing tutorial. Https://Www.Geoazur.Fr/GLOBALSEIS/Nolet/Allpubs.Html.

Nolet, Guust, Simon, J. D., & Bonnieux, S. (2024). How accurately are MERMAID seismograms located? Seismological Research Letters, 95(4), 2368–2374. https://doi.org/10.1785/0220230377

Nolet, Guust, & van der Lee, S. (2022). Error estimates for seismic body wave delay times in the ISC-EHB Bulletin. Geophysical Journal International, 231(3), 1739–1749. https://doi.org/10.1093/gji/ggac282

Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173. https://doi.org/10.1002/2013JB010626

Pipatprathanporn, S., & Simons, F. J. (2024). Waveform modelling of hydroacoustic teleseismic earthquake records from autonomous MERMAID floats. Geophysical Journal International, 239(1), 136–154. https://doi.org/10.1093/gji/ggae238

Rösler, B., Stein, S., Ringler, A., & Vackář, J. (2024). Apparent non-double-couple components as artifacts of moment tensor inversion. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1157

Rösler, B., Stein, S., & Spencer, B. (2023). When are non-double-couple components of seismic moment tensors reliable? Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.241

Sepúlveda, I., Tozer, B., Haase, J. S., Liu, P. L. ‐F., & Grigoriu, M. (2020). Modeling uncertainties of bathymetry predicted with satellite altimetry data and application to tsunami hazard assessments. Journal of Geophysical Research: Solid Earth, 125(9), e2020JB019735. https://doi.org/10.1029/2020JB019735

Simon, J. D., Simons, F. J., & Irving, J. C. E. (2021). Recording earthquakes for tomographic imaging of the mantle beneath the South Pacific by autonomous MERMAID floats. Geophysical Journal International, 228(1), 147–170. https://doi.org/10.1093/gji/ggab271

Simon, J. D., Simons, F. J., & Nolet, G. (2020). Multiscale estimation of event arrival times and their uncertainties in hydroacoustic records from autonomous oceanic floats. Bulletin of the Seismological Society of America, 110(3), 970–997. https://doi.org/10.1785/0120190173

Simons, F. J., Nolet, G., Georgief, P., Babcock, J. M., Regier, L. A., & Davis, R. E. (2009). On the potential of recording earthquakes for global seismic tomography by low‐cost autonomous instruments in the oceans. Journal of Geophysical Research: Solid Earth, 114(B5), 2008JB006088. https://doi.org/10.1029/2008JB006088

Sukhovich, A., Irisson, J.-O., Simons, F. J., Ogé, A., Hello, Y., Deschamps, A., & Nolet, G. (2011). Automatic discrimination of underwater acoustic signals generated by teleseismic P-waves: A probabilistic approach. Geophysical Research Letters, 38(18), 6469–6485. https://doi.org/10.1029/2011GL048474

Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., & Vergoz, J. (2011). SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution: Wave deconvolution and earthquake parameters. Geophysical Journal International, 184(1), 338–358. https://doi.org/10.1111/j.1365-246X.2010.04836.x

Vallée, Martin, & Douet, V. (2016). A new database of source time functions (STFs) extracted from the SCARDEC method. Physics of the Earth and Planetary Interiors, 257, 149–157. https://doi.org/10.1016/j.pepi.2016.05.012

Voronin, S., Mikesell, D., Slezak, I., & Nolet, G. (2014). Solving large tomographic linear systems: size reduction and error estimation. Geophysical Journal International, 199(1), 276–285. https://doi.org/10.1093/gji/ggu242

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345. https://doi.org/10.1002/2015EA000107

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515

Weston, J., Engdahl, E. R., Harris, J., Di Giacomo, D., & Storchak, D. A. (2018). ISC-EHB: reconstruction of a robust earthquake data set. Geophysical Journal International, 214(1), 474–484. https://doi.org/10.1093/gji/ggy155

Downloads

Additional Files

Published

2025-04-25

How to Cite

Nolet, G., Hoang, N. B., Bonnieux, S., Kondo, Y., Kong, F., Obayashi, M., Pipatprathanporn, S., Sigloch, K., Simon, J. D., Simons, F. J., Sogioka, H., Yoshimitsu, J., & Zhang, Q. (2025). Picking first arrivals in hydroacoustic seismograms from MERMAID floats. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1505

Issue

Section

Articles

Funding data