Application of Neural Networks for Estimating Coseismic Slip Distribution Using Synthetic GNSS Data

Authors

  • Valentina Inzunza Departamento de Geofísica, Universidad de Concepción, Víctor Lamas 1290, Concepción, 4030000, Chile https://orcid.org/0009-0004-1404-5311
  • Marcos Moreno Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica, Santiago, Chile
  • Vicente Yáñez-Cuadra TerraSur Geofísica, Concepción, Chile
  • Francisco Ortega-Culaciati Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile | Data Observatory Foundation, ANID Technology Center No DO210001, Santiago, Chile https://orcid.org/0000-0002-2983-8646
  • Ignacia Calisto Departamento de Geofísica, Universidad de Concepción, Víctor Lamas 1290, Concepción, 4030000, Chile https://orcid.org/0000-0001-7213-4567
  • Matt Miller Departamento de Geofísica, Universidad de Concepción, Víctor Lamas 1290, Concepción, 4030000, Chile https://orcid.org/0000-0002-4846-3173

DOI:

https://doi.org/10.26443/seismica.v4i1.1509

Keywords:

GNSS, Neural networks, Coseismic slip

Abstract

Accurately and rapidly estimating coseismic slip is crucial for characterizing the rupture and magnitude of earthquakes and improving early warning systems. However, slip inversions often involve hyperparameters related to prior information, whose selection significantly affects solution efficiency and quality. In this study, we present a novel method for estimating fault slip distributions from GNSS displacements using neural networks. The method was initially developed with synthetic models to define an optimal architecture for accurately recovering target slip. This approach demonstrated exceptional computational efficiency, delivering accurate slip distribution predictions in just 0.07 seconds without specialized hardware. The method was then validated with real-world data from the 2015 Mw 8.3 Illapel earthquake, achieving a GNSS displacement RMSE of 0.07 m and yielding a slip distribution consistent with published solutions. Compared to Regularized Least Squares (RLS) inversion, the neural network estimated slip closer to the trench, aligning with tsunami observations despite slightly higher residuals. Additionally, hyperparameter exploration revealed that using the GELU activation function and a 35% dropout rate provided the best balance. Model performance improved with larger datasets, and while reducing GNSS stations increased uncertainty, more data enhanced accuracy. These findings highlight the importance of hyperparameter tuning and data selection in improving slip estimations, offering insights for future improvements.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems [Software]. https://www.tensorflow.org/

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131. https://doi.org/10.1002/2016jb013098

Aster, R. C., Borchers, B., & Thurber, C. H. (2013). Parameter estimation and inverse problems. Elsevier. https://doi.org/10.1016/c2009-0-61134-x

Awaluddin, M., Meilano, I., & Widiyantoro, S. (2012). Estimation of Slip Distribution of the 2007 Bengkulu Earthquake from GPS Observations Using the Least-Squares Inversion Method. ITB Journal of Engineering Science, 44(2), 187–206. https://doi.org/10.5614/itbj.eng.sci.2012.44.2.6

Barra, S., Moreno, M., Ortega-Culaciati, F., Benavente, R., Araya, R., Bedford, J., & Calisto, I. (2024). A supervised machine learning approach for estimating plate interface locking: Application to Central Chile. Physics of the Earth and Planetary Interiors, 352, 107207. https://doi.org/10.1016/j.pepi.2024.107207

Barrientos, S. E., & Ward, S. N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophysical Journal International, 103(3), 589–598. https://doi.org/10.1111/j.1365-246x.1990.tb05673.x

Bedford, J., Moreno, M., Baez, J. C., Lange, D., Tilmann, F., Rosenau, M., Heidbach, O., Oncken, O., Bartsch, M., Rietbrock, A., Tassara, A., Bevis, M., & Vigny, C. (2013). A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake. Earth and Planetary Science Letters, 383, 26–36. https://doi.org/10.1016/j.epsl.2013.09.020

Caballero, E., Duputel, Z., Twardzik, C., Rivera, L., Klein, E., Jiang, J., Liang, C., Zhu, L., Jolivet, R., Fielding, E., & Simons, M. (2023). Revisiting the 2015 M w = 8.3 Illapel earthquake: unveiling complex fault slip properties using Bayesian inversion. Geophysical Journal International, 235(3), 2828–2845. https://doi.org/10.1093/gji/ggad380

Carr Agnew, D. (2013). Realistic Simulations of Geodetic Network Data: The Fakenet Package. Seismological Research Letters, 84(3), 426–432. https://doi.org/10.1785/0220120185

Carrasco, S., Ruiz, J. A., Contreras-Reyes, E., & Ortega-Culaciati, F. (2019). Shallow intraplate seismicity related to the Illapel 2015 Mw 8.4 earthquake: Implications from the seismic source. Tectonophysics, 766, 205–218. https://doi.org/10.1016/j.tecto.2019.06.011

Chen, K., Ge, M., Li, X., Babeyko, A., Ramatschi, M., & Bradke, M. (2015). Retrieving real-time precise co-seismic displacements with a standalone single-frequency GPS receiver. Advances in Space Research, 56(4), 634–647. https://doi.org/10.1016/j.asr.2015.04.029

Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., Sladen, A., Hebert, H., Prawirodirdjo, L., Bock, Y., & Galetzka, J. (2007). Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra–Andaman Earthquake of 2004. Bulletin of the Seismological Society of America, 97(1A), S152–S173. https://doi.org/10.1785/0120050631

Cisternas, M., Carvajal, M., Wesson, R., Ely, L. L., & Gorigoitia, N. (2017). Exploring the Historical Earthquakes Preceding the Giant 1960 Chile Earthquake in a Time‐Dependent Seismogenic Zone. Bulletin of the Seismological Society of America, 107(6), 2664–2675. https://doi.org/10.1785/0120170103

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv. https://doi.org/10.48550/ARXIV.1511.07289

Coleman, T. F., & Li, Y. (1996). An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6(2), 418–445. https://doi.org/10.1137/0806023

Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31(4), 377–403. https://doi.org/10.1007/bf01404567

Cui, W., Chen, K., Wei, G., Lyu, M., & Zhu, F. (2024). Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events. Geophysical Journal International, 238(1), 91–108. https://doi.org/10.1093/gji/ggae140

Delouis, B., Nocquet, J., & Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37(17). https://doi.org/10.1029/2010gl043899

Donoso, F., Moreno, M., Ortega-Culaciati, F., Bedford, J. R., & Benavente, R. (2021). Automatic Detection of Slow Slip Events Using the PICCA: Application to Chilean GNSS Data. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.788054

Duputel, Z., Jiang, J., Jolivet, R., Simons, M., Rivera, L., Ampuero, J. ‐P., Riel, B., Owen, S. E., Moore, A. W., Samsonov, S. V., Ortega Culaciati, F., & Minson, S. E. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophysical Research Letters, 42(19), 7949–7957. https://doi.org/10.1002/2015gl065402

Duputel, Zacharie, Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L. (2014). Accounting for prediction uncertainty when inferring subsurface fault slip. Geophysical Journal International, 197(1), 464–482. https://doi.org/10.1093/gji/ggt517

Fujii, Y., & Satake, K. (2012). Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data. Pure and Applied Geophysics, 170(9–10), 1493–1509. https://doi.org/10.1007/s00024-012-0524-2

Fujii, Y., Satake, K., Sakai, S., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 815–820. https://doi.org/10.5047/eps.2011.06.010

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org

Hansen, P. C., & O’Leary, D. P. (1993). The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM Journal on Scientific Computing, 14(6), 1487–1503. https://doi.org/10.1137/0914086

Harris, R. A., & Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 92(B8), 7945–7962. https://doi.org/10.1029/jb092ib08p07945

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723

Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2016). Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2), 643–650. https://doi.org/10.1002/2015gl067297

Hendrycks D., K., Gimpel. (2016). Gaussian error linear units (GELUs). ArXiv Preprint, ArXiv:1606.08415.

Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M., Tsushima, H., Suzuki, S., Fujimoto, H., & Miura, S. (2012). Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. Journal of Geophysical Research: Solid Earth, 117(B7). https://doi.org/10.1029/2012jb009186

Inzunza, V. (2025). Supplentary Materials for “Application of Neural Networks for Estimating Coseismic Slip Distribution Using Synthetic GNSS Data.” https://doi.org/10.5281/zenodo.14051275

Jara, J., Sánchez-Reyes, H., Socquet, A., Cotton, F., Virieux, J., Maksymowicz, A., Díaz-Mojica, J., Walpersdorf, A., Ruiz, J., Cotte, N., & Norabuena, E. (2018). Kinematic study of Iquique 2014 M 8.1 earthquake: Understanding the segmentation of the seismogenic zone. Earth and Planetary Science Letters, 503, 131–143. https://doi.org/10.1016/j.epsl.2018.09.025

Kingma, D., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-Normalizing Neural Networks. https://doi.org/10.48550/ARXIV.1706.02515

Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E., & Métois, M. (2017). A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123–134. https://doi.org/10.1016/j.epsl.2017.04.010

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

Lawson, C. L., & Hanson, R. J. (1995). Solving Least Squares Problems. Society for Industrial. https://doi.org/10.1137/1.9781611971217

Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R., Ekström, G., Satake, K., & Sipkin, S. (2005). The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 308(5725), 1127–1133. https://doi.org/10.1126/science.1112250

Lay, T., Li, L., & Cheung, K. F. (2016). Modeling tsunami observations to evaluate a proposed late tsunami earthquake stage for the 16 September 2015 Illapel, Chile, Mw 8.3 earthquake. Geophysical Research Letters, 43(15), 7902–7912. https://doi.org/10.1002/2016gl070002

Lin, J. ‐T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early Warning for Great Earthquakes From Characterization of Crustal Deformation Patterns With Deep Learning. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022703

Lohman, R. B. (2004). The Inversion of Geodetic Data for Earthquake Parameters [Phdthesis, California Institute of Technology]. https://doi.org/10.7907/9FYH-HD84

Lorenzo-Martín, F., Roth, F., & Wang, R. (2006). Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile. Geophysical Journal International, 164(1), 75–87. https://doi.org/10.1111/j.1365-246x.2005.02803.x

Luo, H., Ambrosius, B., Russo, R. M., Mocanu, V., Wang, K., Bevis, M., & Fernandes, R. (2020). A recent increase in megathrust locking in the southernmost rupture area of the giant 1960 Chile earthquake. Earth and Planetary Science Letters, 537, 116200. https://doi.org/10.1016/j.epsl.2020.116200

Melgar, D., Fan, W., Riquelme, S., Geng, J., Liang, C., Fuentes, M., Vargas, G., Allen, R. M., Shearer, P. M., & Fielding, E. J. (2016). Slip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake. Geophysical Research Letters, 43(3), 961–966. https://doi.org/10.1002/2015gl067369

Meng, L., Huang, H., Bürgmann, R., Ampuero, J. P., & Strader, A. (2015). Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth and Planetary Science Letters, 411, 177–187. https://doi.org/10.1016/j.epsl.2014.11.041

Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.

Minson, S. E., Simons, M., & Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I—theory and algorithm. Geophysical Journal International, 194(3), 1701–1726. https://doi.org/10.1093/gji/ggt180

Misra, D. (2019). Mish: A Self Regularized Non-Monotonic Activation Function. arXiv. https://doi.org/10.48550/ARXIV.1908.08681

Moreno, M., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., Tassara, A., Chen, J., Bataille, K., Bevis, M., Socquet, A., Bolte, J., Vigny, C., Brooks, B., Ryder, I., Grund, V., Smalley, B., Carrizo, D., Bartsch, M., & Hase, H. (2012). Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters, 321–322, 152–165. https://doi.org/10.1016/j.epsl.2012.01.006

Moreno, Marcos, Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198–202. https://doi.org/10.1038/nature09349

Münchmeyer, J., Giffard-Roisin, S., Malfante, M., Frank, W., Poli, P., Marsan, D., & Socquet, A. (2024). Deep learning detects uncataloged low-frequency earthquakes across regions. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1185

Nikkhoo, M., & Walter, T. R. (2015). Triangular dislocation: an analytical, artefact-free solution. Geophysical Journal International, 201(2), 1119–1141. https://doi.org/10.1093/gji/ggv035

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135

Okal, E. A., & Stein, S. (2009). Observations of ultra-long period normal modes from the 2004 Sumatra–Andaman earthquake. Physics of the Earth and Planetary Interiors, 175(1–2), 53–62. https://doi.org/10.1016/j.pepi.2009.03.002

Ortega‐Culaciati, F., Simons, M., Ruiz, J., Rivera, L., & Díaz‐Salazar, N. (2021). An EPIC Tikhonov Regularization: Application to Quasi‐Static Fault Slip Inversion. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2020jb021141

Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2012). Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. Journal of Geophysical Research: Solid Earth, 117(B7). https://doi.org/10.1029/2011jb009120

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Swish: a Self-Gated Activation Function. arXiv. https://doi.org/10.48550/ARXIV.1710.05941

Ruegg, J. C., Rudloff, A., Vigny, C., Madariaga, R., de Chabalier, J. B., Campos, J., Kausel, E., Barrientos, S., & Dimitrov, D. (2009). Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Physics of the Earth and Planetary Interiors, 175(1–2), 78–85. https://doi.org/10.1016/j.pepi.2008.02.015

Shrivastava, M. N., González, G., Moreno, M., Chlieh, M., Salazar, P., Reddy, C. D., Báez, J. C., Yáñez, G., González, J., & de la Llera, J. C. (2016). Coseismic slip and afterslip of the 2015 Mw 8.3 Illapel (Chile) earthquake determined from continuous GPS data. Geophysical Research Letters, 43(20). https://doi.org/10.1002/2016gl070684

Simons, M., Minson, S., Sladen, A., Ortega Culaciati, F., Jiang, J., Owen, S., Meng, L., Ampuero, J. P., Chu, R., Helmberger, D., Kanamori, H., Hetland, E., Moore, A., & Webb, F. (2011). The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science, 332. https://doi.org/10.1126/science.1206731

Tajima, F., Mori, J., & Kennett, B. L. N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics, 586, 15–34. https://doi.org/10.1016/j.tecto.2012.09.014

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial. https://doi.org/10.1137/1.9780898717921

Thomas, A., Melgar, D., Dybing, S. N., & Searcy, J. R. (2023). Deep learning for denoising High-Rate Global Navigation Satellite System data. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.240

Tilmann, F., Zhang, Y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., Deng, Z., Babeyko, A., Chen, K., Baez, J. C., Schurr, B., Wang, R., & Dahm, T. (2016). The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake? Geophysical Research Letters, 43(2), 574–583. https://doi.org/10.1002/2015gl066963

Tung, S., & Masterlark, T. (2016). Coseismic slip distribution of the 2015 Mw7.8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3‐D heterogeneous Domain. Journal of Geophysical Research: Solid Earth, 121(5), 3479–3503. https://doi.org/10.1002/2015jb012497

Wang, S.-C. (2003). Interdisciplinary Computing in Java Programming. Springer US. https://doi.org/10.1007/978-1-4615-0377-4

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47), 579–579. https://doi.org/10.1029/98eo00426

Williamson, A., Newman, A., & Cummins, P. (2017). Reconstruction of coseismic slip from the 2015 Illapel earthquake using combined geodetic and tsunami waveform data. Journal of Geophysical Research: Solid Earth, 122(3), 2119–2130. https://doi.org/10.1002/2016jb013883

Yáñez-Cuadra, V., Moreno, M., Ortega-Culaciati, F., Donoso, F., Báez, J. C., & Tassara, A. (2023). Mosaicking Andean morphostructure and seismic cycle crustal deformation patterns using GNSS velocities and machine learning. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1096238

Yegnanarayana, B. (2009). Artificial Neural Networks (p. 476). PHI Learning Pvt. Ltd.

Zhang, Y., Zhang, G., Hetland, E. A., Shan, X., Wen, S., & Zuo, R. (2017). Coseismic Fault Slip of the September 16, 2015 Mw 8.3 Illapel, Chile Earthquake Estimated from InSAR Data. In The Chile-2015 (Illapel) Earthquake and Tsunami (pp. 73–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-57822-4_7

Downloads

Published

2025-05-18

How to Cite

Inzunza, V., Moreno, M., Yáñez-Cuadra, V., Ortega-Culaciati, F., Calisto, I., & Miller, M. (2025). Application of Neural Networks for Estimating Coseismic Slip Distribution Using Synthetic GNSS Data. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1509

Issue

Section

Articles

Funding data