The propagation of seismic waves, misinformation, and disinformation from the 2024-10-05 M 4.5 Iran earthquake
DOI:
https://doi.org/10.26443/seismica.v4i1.1512Keywords:
earthquake source, community studyAbstract
The 2024-10-05 Iran M 4.5 earthquake took place at a time of heightened tensions in the Middle East. We perform a discrimination and moment tensor analysis and identify a shallow-dipping, reverse fault source commensurate with the compressional setting of the Iranian interior. Nonetheless, the event's aftermath saw widespread dissemination of misinformation, and potentially active disinformation, concluding that it was in fact a test of an Iranian nuclear weapon. The `evidence' for many of these claims was based on inaccurate interpretation of seismic data. In this paper, we analyse how geophysical `fake news' propagated through social media (mainly Twitter/X) following this event, eventually gaining traction in mainstream, earned media. This event is an illustrative warning of how seismic data can be misinterpreted and/or manipulated in public discourse.
References
Alkhodair, S. A., Ding, S. H. H., Fung, B. C. M., & Liu, J. (2020). Detecting breaking news rumors of emerging topics in social media. Information Processing & Management, 57(2), 102018. https://doi.org/10.1016/j.ipm.2019.02.016
Alvizuri, C., & Tape, C. (2018). Full Moment Tensor Analysis of Nuclear Explosions in North Korea. Seismological Research Letters, 89(6), 2139–2151. https://doi.org/10.1785/0220180158
Arce-García, S., & Díaz-Campo, J. (2024). HAARP conspiracy: Analysis of its role in the 2023 Turkey & Syria earthquakes on Twitter. Estudios Sobre El Mensaje Periodístico, 30(2), 323–333. https://doi.org/10.5209/esmp.95257
Bisbee, J., & Munger, K. (2024). The Vibes Are Off: Did Elon Musk Push Academics Off Twitter? PS: Political Science & Politics, 1–8. https://doi.org/10.1017/s1049096524000416
Bondár, I., & Storchak, D. (2011). Improved location procedures at the International Seismological Centre. Geophysical Journal International, 186(3), 1220–1244. https://doi.org/10.1111/j.1365-246x.2011.05107.x
Bossu, R., Steed, R., Mazet-Roux, G., Etivant, C., & Roussel, F. (2015). The EMSC tools used to detect and diagnose the impact of global earthquakes from direct and indirect eyewitnesses’ contributions.. ISCRAM.
Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154
Dallo, I., Corradini, M., Fallou, L., & Marti, M. (2022). How to fight misinformation about earthquakes? A Communication Guide. Swiss Seismological Service at ETH Zurich.
Dryhurst, S., Mulder, F., Dallo, I., Kerr, J. R., McBride, S. K., Fallou, L., & Becker, J. S. (2022). Fighting misinformation in seismology: Expert opinion on earthquake facts vs. fiction. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.937055
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Erokhin, D., & Komendantova, N. (2023). The role of bots in spreading conspiracies: Case study of discourse about earthquakes on Twitter. International Journal of Disaster Risk Reduction, 92, 103740. https://doi.org/10.1016/j.ijdrr.2023.103740
Erokhin, D., & Komendantova, N. (2024). Earthquake conspiracy discussion on Twitter. Humanities and Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02957-y
Fallou, L., Marti, M., Dallo, I., & Corradini, M. (2022). How to Fight Earthquake Misinformation: A Communication Guide. Seismological Research Letters, 93(5), 2418–2422. https://doi.org/10.1785/0220220086
Fisk, M. D. (2006). Source Spectral Modeling of Regional P/S Discriminants at Nuclear Test Sites in China and the Former Soviet Union. Bulletin of the Seismological Society of America, 96(6), 2348–2367. https://doi.org/10.1785/0120060023
Ford, S. R., Dreger, D. S., & Walter, W. R. (2009). Identifying isotropic events using a regional moment tensor inversion. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005743
Gori, P. L. (1993). The social dynamics of a false earthquake prediction and the response by the public sector. Bulletin of the Seismological Society of America, 83(4), 963–980. https://doi.org/10.1785/bssa0830040963
Gross, S. (1996). Aftershocks of nuclear explosions compared to natural aftershocks. Bulletin of the Seismological Society of America, 86(4), 1054–1060. https://doi.org/10.1785/bssa0860041054
Hamilton, R. M., & Healy, J. H. (1969). Aftershocks of the Benham nuclear explosion. Bulletin of the Seismological Society of America, 59(6), 2271–2281. https://doi.org/10.1785/bssa0590062271
Hindman, M., & Barash, V. (2018). Disinformation, and influence campaigns on twitter. Knight Foundation: George Washington University.
Khodaverdian, A., Zafarani, H., Rahimian, M., & Dehnamaki, V. (2016). Seismicity Parameters and Spatially Smoothed Seismicity Model for Iran. Bulletin of the Seismological Society of America, 106(3), 1133–1150. https://doi.org/10.1785/0120150178
Kwanda, F. A., & Lin, T. T. C. (2020). Fake news practices in Indonesian newsrooms during and after the Palu earthquake: a hierarchy-of-influences approach. Information, Communication & Society, 23(6), 849–866. https://doi.org/10.1080/1369118x.2020.1759669
Langin, K. (2018). Fake news spreads faster than true news on Twitter—thanks to people, not bots. Science. https://doi.org/10.1126/science.aat5350
Mărcău, F. C., Peptan, C., Băleanu, V. D., Holt, A. G., Iana, S. A., & Gheorman, V. (2023). Analysis regarding the impact of ‘fake news’ on the quality of life of the population in a region affected by earthquake activity. The case of Romania–Northern Oltenia. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1244564
Massé, R. P. (1981). Review of seismic source models for underground nuclear explosions. Bulletin of the Seismological Society of America, 71(4), 1249–1268. https://doi.org/10.1785/bssa0710041249
Millward, D. (2023). Pro-Russia propagandist unmasked as New Jersey tropical fish seller. The Telegraph. https://www.telegraph.co.uk/world-news/2023/04/17/propagandist-donbas-devushka-sarah-bils-unmasked/
Murayama, T., Wakamiya, S., Aramaki, E., & Kobayashi, R. (2021). Modeling the spread of fake news on Twitter. PLOS ONE, 16(4), e0250419. https://doi.org/10.1371/journal.pone.0250419
Murphy, J. R. (1996). Types of Seismic Events and Their Source Descriptions. In Monitoring a Comprehensive Test Ban Treaty (pp. 225–245). Springer Netherlands. https://doi.org/10.1007/978-94-011-0419-7_16
NOAA. (2022). ETOPO 2022 15 arc-second global relief model. NOAA National Centers for Environmental Information Washington, DC.
Robert Engdahl, E., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778. https://doi.org/10.1111/j.1365-246x.2006.03127.x
Romanet, P. (2023). Could planet/sun conjunctions be used to predict large (moment magnitude ≥ 7) earthquakes? Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.528
S., P., C., D., & Guy, M. (2012). Twitter earthquake detection: earthquake monitoring in a social world. Annals of Geophysics, 54(6). https://doi.org/10.4401/ag-5364
Sakaki, T., Okazaki, M., & Matsuo, Y. (2010, April). Earthquake shakes Twitter users: real-time event detection by social sensors. Proceedings of the 19th International Conference on World Wide Web. https://doi.org/10.1145/1772690.1772777
Schaff, D. P., Kim, W., Richards, P. G., Jo, E., & Ryoo, Y. (2018). Using Waveform Cross Correlation for Detection, Location, and Identification of Aftershocks of the 2017 Nuclear Explosion at the North Korea Test Site. Seismological Research Letters. https://doi.org/10.1785/0220180132
Styron, R., & Pagani, M. (2020). The GEM Global Active Faults Database. Earthquake Spectra, 36, 160–180. https://doi.org/10.1177/8755293020944182
Tavakoli, B., Ghafory-Ashtiany, M., & others. (1999). Seismic hazard assessment of Iran. Annals of Geophysics. https://doi.org/10.4401/ag-3781
US Geological Survey, E. H. P. (2017). Advanced National Seismic System (ANSS) comprehensive catalog of earthquake events and products: Various.
Walter, W. R., Matzel, E., Pasyanos, M., Harris, D. B., Gok, R., & Ford, S. R. (2007). Empirical observations of earthquake-explosion discrimination using P/S ratios and implications for the sources of explosion S-waves [Techreport]. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).
Wang, R., Schmandt, B., Holt, M., & Koper, K. (2021). Advancing Local Distance Discrimination of Explosions and Earthquakes With Joint P/S and ML‐MC Classification. Geophysical Research Letters, 48(23). https://doi.org/10.1029/2021gl095721
Wang, R., Schmandt, B., & Kiser, E. (2020). Seismic discrimination of controlled explosions and earthquakes near Mount St. Helens using P/S ratios. Journal of Geophysical Research: Solid Earth, 125(10). https://doi.org/10.1029/2020JB020338
Wardle, C. (2018). The Need for Smarter Definitions and Practical, Timely Empirical Research on Information Disorder. Digital Journalism, 6(8), 951–963. https://doi.org/10.1080/21670811.2018.1502047
Zhang, M., & Wen, L. (2013). High‐precision location and yield of North Korea’s 2013 nuclear test. Geophysical Research Letters, 40(12), 2941–2946. https://doi.org/10.1002/grl.50607
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Benjamin Fernando, Ross Maguire, Brianna Fernandez; Saman Karimi, Elizabeth Koenck; Göran Ekström; Tom Rivlin; Celeste Labedz

This work is licensed under a Creative Commons Attribution 4.0 International License.