Possible Shallow Tectonic Tremor Signals Near the Deformation Front in Central Cascadia

Authors

DOI:

https://doi.org/10.26443/seismica.v2i4.1540

Abstract

To better constrain the locking state of the shallow Cascadia megathrust, we investigate whether shallow tectonic tremor occurs near the deformation front at ~44.5°N during 2015-2024. We focus on two cabled buried ocean bottom seismometers (OBSs) on the portion of Cascadia that has evidence of partial locking offshore: one at Slope Base on the incoming plate ~5 km from the deformation front, and another ~20 km east on the overriding plate at Southern Hydrate Ridge. We first use in situ measured bottom currents to show that shallow burial successfully prevents current-generated noise on OBSs. We then develop a single-station approach to isolate tectonic tremor-like signals based on waveform and spectral characteristics. This technique allows the use of isolated stations and small networks and accounts for emergent signals specific to the marine environment, namely T-phases and ship noise. Application of this approach to the buried OBSs in central Cascadia detects tectonic tremor-like signals at the Slope Base site only that cannot easily be attributed to instrumental or environmental noise. Additional observations are required to verify the origin of these signals, but possible sources include localized slow slip on the décollement, protothrusts, faults on the incoming plate, nearby strike-slip faults, or deformation within the outermost accretionary wedge.

References

Andrew, R. K., Howe, B. M., & Mercer, J. A. (2011). Long-time trends in ship traffic noise for four sites off the North American West Coast. The Journal of the Acoustical Society of America, 129(2), 642–651. https://doi.org/10.1121/1.3518770 DOI: https://doi.org/10.1121/1.3518770

Annoura, S., Hashimoto, T., Kamaya, N., & Katsumata, A. (2017). Shallow episodic tremor near the Nankai Trough axis off southeast Mie prefecture, Japan. Geophysical Research Letters, 44(8), 3564–3571. https://doi.org/10.1002/2017gl073006 DOI: https://doi.org/10.1002/2017GL073006

Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., Ide, S., Davis, E., Toczko, S., Carr, S., Kinoshita, C., Kobayashi, R., & Rösner, A. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120 DOI: https://doi.org/10.1126/science.aan3120

Azimi, A. (1968). Impulse and transient characteristics of media with linear and quadratic absorption laws, Izvestiya. Phys. of the Solid Earth, 88–93.

Barcheck, G., Abers, G. A., Adams, A. N., Bécel, A., Collins, J., Gaherty, J. B., Haeussler, P. J., Li, Z., Moore, G., Onyango, E., Roland, E., Sampson, D. E., Schwartz, S. Y., Sheehan, A. F., Shillington, D. J., Shore, P. J., Webb, S., Wiens, D. A., & Worthington, L. L. (2020). The Alaska Amphibious Community Seismic Experiment. Seismological Research Letters, 91(6), 3054–3063. https://doi.org/10.1785/0220200189 DOI: https://doi.org/10.1785/0220200189

Batsi, E., Tsang‐Hin‐Sun, E., Klingelhoefer, F., Bayrakci, G., Chang, E. T. Y., Lin, J., Dellong, D., Monteil, C., & Géli, L. (2019). Nonseismic Signals in the Ocean: Indicators of Deep Sea and Seafloor Processes on Ocean‐Bottom Seismometer Data. Geochemistry, Geophysics, Geosystems, 20(8), 3882–3900. https://doi.org/10.1029/2019gc008349 DOI: https://doi.org/10.1029/2019GC008349

Beroza, G. C., & Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. Annual Review of Earth and Planetary Sciences, 39(1), 271–296. https://doi.org/10.1146/annurev-earth-040809-152531 DOI: https://doi.org/10.1146/annurev-earth-040809-152531

Borghi, A., Aoudia, A., Javed, F., & Barzaghi, R. (2016). Precursory slow-slip loaded the 2009 L’Aquila earthquake sequence. Geophysical Journal International, 205(2), 776–784. https://doi.org/10.1093/gji/ggw046 DOI: https://doi.org/10.1093/gji/ggw046

Bostock, M. G., & Christensen, N. I. (2012). Split from slip and schist: Crustal anisotropy beneath northern Cascadia from non‐volcanic tremor. Journal of Geophysical Research: Solid Earth, 117(B8). https://doi.org/10.1029/2011jb009095 DOI: https://doi.org/10.1029/2011JB009095

Brown, J. R., Beroza, G. C., & Shelly, D. R. (2008). An autocorrelation method to detect low frequency earthquakes within tremor. Geophysical Research Letters, 35(16). https://doi.org/10.1029/2008gl034560 DOI: https://doi.org/10.1029/2008GL034560

Brudzinski, M. R., & Allen, R. M. (2007). Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10), 907. https://doi.org/10.1130/g23740a.1 DOI: https://doi.org/10.1130/G23740A.1

Burgette, R. J., Weldon, R. J., & Schmidt, D. A. (2009). Interseismic uplift rates for western Oregon and along‐strike variation in locking on the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2008jb005679 DOI: https://doi.org/10.1029/2008JB005679

Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062 DOI: https://doi.org/10.1016/j.epsl.2018.04.062

Buskirk, R. E., Frohlich, C., Latham, G. V., Chen, A. T., & Lawton, J. (1981). Evidence that biological activity affects Ocean Bottom Seismograph recordings. Marine Geophysical Researches, 5(2), 189–205. https://doi.org/10.1007/bf00163479 DOI: https://doi.org/10.1007/BF00163479

Canales, J. P., Miller, N. C., Baldwin, W., Carbotte, S. M., Han, S., Boston, B., Jian, H., Collins, J., & Lizarralde, D. (2023). CASIE21-OBS: An Open-Access, OBS Controlled-Source Seismic Data Set for Investigating the Structure and Properties of the Cascadia Accretionary Wedge and the Downgoing Explorer-Juan de Fuca-Gorda Plate System. Seismological Research Letters. https://doi.org/10.1785/0220230010 DOI: https://doi.org/10.1785/0220230010

Caplan‐Auerbach, J., Dziak, R. P., Bohnenstiehl, D. R., Chadwick, W. W., & Lau, T. ‐K. (2014). Hydroacoustic investigation of submarine landslides at West Mata volcano, Lau Basin. Geophysical Research Letters, 41(16), 5927–5934. https://doi.org/10.1002/2014gl060964 DOI: https://doi.org/10.1002/2014GL060964

Carbotte, S. M., Boston, B., Han, S., Shuck, B., Beeson, J., Canales, J. P., Tobin, H., Miller, N., Nedimovic, M., Tréhu, A., Lee, M., Lucas, M. C., Jian, H., Jiang, D., Moser, L., Anderson, C., Judd, D., Fernandez, J., Campbell, C., … Gahlawat, R. (2024). Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia. Science Advances, 10(23). https://doi.org/10.1126/sciadv.adl3198 DOI: https://doi.org/10.1126/sciadv.adl3198

Carvajal, M., Sun, T., Wang, K., Luo, H., & Zhu, Y. (2022). Evaluating the Tsunamigenic Potential of Buried Versus Trench‐Breaching Megathrust Slip. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2021jb023722 DOI: https://doi.org/10.1029/2021JB023722

Chadwick, W. W., Dziak, R. P., Haxel, J. H., Embley, R. W., & Matsumoto, H. (2011). Submarine landslide triggered by volcanic eruption recorded by in situ hydrophone. Geology, 40(1), 51–54. https://doi.org/10.1130/g32495.1 DOI: https://doi.org/10.1130/G32495.1

Chaudhuri, K., & Ghosh, A. (2022). Widespread Very Low Frequency Earthquakes (VLFEs) Activity Offshore Cascadia. Geophysical Research Letters, 49(13). https://doi.org/10.1029/2022gl097962 DOI: https://doi.org/10.1029/2022GL097962

Chouet, B. (1988). Resonance of a fluid‐driven crack: Radiation properties and implications for the source of long‐period events and harmonic tremor. Journal of Geophysical Research: Solid Earth, 93(B5), 4375–4400. https://doi.org/10.1029/jb093ib05p04375 DOI: https://doi.org/10.1029/JB093iB05p04375

Cochrane, G. R., Moore, J. C., MacKay, M. E., & Moore, G. F. (1994). Velocity and inferred porosity model of the Oregon accretionary prism from multichannel seismic reflection data: Implications on sediment dewatering and overpressure. Journal of Geophysical Research: Solid Earth, 99(B4), 7033–7043. https://doi.org/10.1029/93jb03206 DOI: https://doi.org/10.1029/93JB03206

Collins, J. A., Vernon, F. L., Orcutt, J. A., Stephen, R. A., Peal, K. R., Wooding, F. B., Spiess, F. N., & Hildebrand, J. A. (2001). Broadband seismology in the oceans: Lessons from the Ocean Seismic Network Pilot Experiment. Geophysical Research Letters, 28(1), 49–52. https://doi.org/10.1029/2000gl011638 DOI: https://doi.org/10.1029/2000GL011638

Corela, C., Loureiro, A., Duarte, J. L., Matias, L., Rebelo, T., & Bartolomeu, T. (2023). The effect of deep ocean currents on ocean- bottom seismometers records. Natural Hazards and Earth System Sciences, 23(4), 1433–1451. https://doi.org/10.5194/nhess-23-1433-2023 DOI: https://doi.org/10.5194/nhess-23-1433-2023

Curtis, K. R., Howe, B. M., & Mercer, J. A. (1999). Low-frequency ambient sound in the North Pacific: Long time series observations. The Journal of the Acoustical Society of America, 106(6), 3189–3200. https://doi.org/10.1121/1.428173 DOI: https://doi.org/10.1121/1.428173

Dahl, P. H., Dall’Osto, D. R., & Harrington, M. J. (2021). Trends in low-frequency underwater noise off the Oregon coast and impacts of COVID-19 pandemic. The Journal of the Acoustical Society of America, 149(6), 4073–4077. https://doi.org/10.1121/10.0005192 DOI: https://doi.org/10.1121/10.0005192

Davis, E. E., Villinger, H., & Sun, T. (2015). Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica. Earth and Planetary Science Letters, 410, 117–127. https://doi.org/10.1016/j.epsl.2014.11.015 DOI: https://doi.org/10.1016/j.epsl.2014.11.015

De Caro, M., Montuori, C., Frugoni, F., Monna, S., Cammarano, F., & Beranzoli, L. (2020). T-Phases Observed at the Ionian Seafloor: Seismic Source and Bathymetric Effects. Seismological Research Letters, 92(1), 481–493. https://doi.org/10.1785/0220200096 DOI: https://doi.org/10.1785/0220200096

de Groot-Hedlin, C. D., & Orcutt, J. A. (2001). Excitation of T-phases by seafloor scattering. The Journal of the Acoustical Society of America, 109(5), 1944–1954. https://doi.org/10.1121/1.1361057 DOI: https://doi.org/10.1121/1.1361057

DeSanto, J. B., Schmidt, D. A., Zumberge, M., Sasagawa, G., & Chadwell, C. D. (2025). Near full locking on the shallow megathrust of the central Cascadia subduction zone revealed by GNSS-Acoustic. Earth and Planetary Science Letters, 665, 119463. https://doi.org/10.1016/j.epsl.2025.119463 DOI: https://doi.org/10.1016/j.epsl.2025.119463

Díaz, J., Gallart, J., & Gaspà, O. (2007). Atypical seismic signals at the Galicia Margin, North Atlantic Ocean, related to the resonance of subsurface fluid-filled cracks. Tectonophysics, 433(1–4), 1–13. https://doi.org/10.1016/j.tecto.2007.01.004 DOI: https://doi.org/10.1016/j.tecto.2007.01.004

Duennebier, F. K., & Sutton, G. H. (2007). Why bury ocean bottom seismometers? Geochemistry, Geophysics, Geosystems, 8(2). https://doi.org/10.1029/2006gc001428 DOI: https://doi.org/10.1029/2006GC001428

Dziak, R., Hammond, S., & Fox, C. (2011). A 20-Year Hydroacoustic Time Series of Seismic and Volcanic Events in the Northeast Pacific Ocean. Oceanography, 24(3), 280–293. https://doi.org/10.5670/oceanog.2011.79 DOI: https://doi.org/10.5670/oceanog.2011.79

Essing, D., Schlindwein, V., Schmidt-Aursch, M. C., Hadziioannou, C., & Stähler, S. C. (2021). Characteristics of Current-Induced Harmonic Tremor Signals in Ocean-Bottom Seismometer Records. Seismological Research Letters, 92(5), 3100–3112. https://doi.org/10.1785/0220200397 DOI: https://doi.org/10.1785/0220200397

Flinn, E. A. (1965). Signal analysis using rectilinearity and direction of particle motion. Proceedings of the IEEE, 53(12), 1874–1876. https://doi.org/10.1109/proc.1965.4462 DOI: https://doi.org/10.1109/PROC.1965.4462

Goldfinger, C., Kulm, L. D., Yeats, R. S., McNeill, L., & Hummon, C. (1997). Oblique strike‐slip faulting of the central Cascadia submarine forearc. Journal of Geophysical Research: Solid Earth, 102(B4), 8217–8243. https://doi.org/10.1029/96jb02655 DOI: https://doi.org/10.1029/96JB02655

Gomberg, J. (2010). Lessons from (triggered) tremor. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/10.1029/2009jb007011 DOI: https://doi.org/10.1029/2009JB007011

Gomberg, J., Rubinstein, J. L., Peng, Z., Creager, K. C., Vidale, J. E., & Bodin, P. (2008). Widespread Triggering of Nonvolcanic Tremor in California. Science, 319(5860), 173–173. https://doi.org/10.1126/science.1149164 DOI: https://doi.org/10.1126/science.1149164

Gomberg, J., Schulz, W., Bodin, P., & Kean, J. (2011). Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory. Journal of Geophysical Research, 116(B9). https://doi.org/10.1029/2011jb008304 DOI: https://doi.org/10.1029/2011JB008304

Hamada, N. (1985). T waves recorded by ocean bottom seismographs off the south coast of Tokai area, central Honshu, Japan. Journal of Physics of the Earth, 33(5), 391–410. https://doi.org/10.4294/jpe1952.33.391 DOI: https://doi.org/10.4294/jpe1952.33.391

Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., Carton, H., Gibson, J. C., & Horning, G. W. (2016). Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research: Solid Earth, 121(3), 1849–1872. https://doi.org/10.1002/2015jb012416 DOI: https://doi.org/10.1002/2015JB012416

Hanson, J. A., & Bowman, J. R. (2006). Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean. Journal of Geophysical Research: Solid Earth, 111(B2). https://doi.org/10.1029/2004jb003609 DOI: https://doi.org/10.1029/2004JB003609

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803 DOI: https://doi.org/10.1002/qj.3803

Hill, J. C., Watt, J. T., & Brothers, D. S. (2022). Mass wasting along the Cascadia subduction zone: Implications for abyssal turbidite sources and the earthquake record. Earth and Planetary Science Letters, 597, 117797. https://doi.org/10.1016/j.epsl.2022.117797 DOI: https://doi.org/10.1016/j.epsl.2022.117797

Hilmo, R., & Wilcock, W. S. D. (2020). Physical Sources of High‐Frequency Seismic Noise on Cascadia Initiative Ocean Bottom Seismometers. Geochemistry, Geophysics, Geosystems, 21(10). https://doi.org/10.1029/2020gc009085 DOI: https://doi.org/10.1029/2020GC009085

Hirose, H., Asano, Y., Obara, K., Kimura, T., Matsuzawa, T., Tanaka, S., & Maeda, T. (2010). Slow Earthquakes Linked Along Dip in the Nankai Subduction Zone. Science, 330(6010), 1502–1502. https://doi.org/10.1126/science.1197102 DOI: https://doi.org/10.1126/science.1197102

Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018). Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field. Science Advances, 4(5). https://doi.org/10.1126/sciadv.aao2929 DOI: https://doi.org/10.1126/sciadv.aao2929

Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T. F., Jan, S., Lin, J.-Y., & Chen, S.-C. (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369–370, 98–107. https://doi.org/10.1016/j.epsl.2013.03.013 DOI: https://doi.org/10.1016/j.epsl.2013.03.013

Husker, A., Frank, W. B., Gonzalez, G., Avila, L., Kostoglodov, V., & Kazachkina, E. (2019). Characteristic Tectonic Tremor Activity Observed Over Multiple Slow Slip Cycles in the Mexican Subduction Zone. Journal of Geophysical Research: Solid Earth, 124(1), 599–608. https://doi.org/10.1029/2018jb016517 DOI: https://doi.org/10.1029/2018JB016517

Ide, S. (2010). Quantifying the time function of nonvolcanic tremor based on a stochastic model. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2009jb000829 DOI: https://doi.org/10.1029/2009JB000829

Ide, S. (2012). Variety and spatial heterogeneity of tectonic tremor worldwide. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011jb008840 DOI: https://doi.org/10.1029/2011JB008840

Ide, S., Shelly, D. R., & Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non‐volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 34(3). https://doi.org/10.1029/2006gl028890 DOI: https://doi.org/10.1029/2006GL028890

IRIS OBSIP. (2011). Cascadia Initiative Community Experiment - OBS Component. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/7D_2011

Ito, Y., Hino, R., Suzuki, S., & Kaneda, Y. (2015). Episodic tremor and slip near the Japan Trench prior to the 2011 Tohoku‐Oki earthquake. Geophysical Research Letters, 42(6), 1725–1731. https://doi.org/10.1002/2014gl062986 DOI: https://doi.org/10.1002/2014GL062986

Iwasaki, Y., Mochizuki, K., Ishise, M., Todd, E. K., Schwartz, S. Y., Zal, H., Savage, M. K., Henrys, S., Sheehan, A. F., Ito, Y., Wallace, L. M., Webb, S. C., Yamada, T., & Shinohara, M. (2022). Continuous Tremor Activity With Stable Polarization Direction Following the 2014 Large Slow Slip Event in the Hikurangi Subduction Margin Offshore New Zealand. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021jb022161 DOI: https://doi.org/10.1029/2021JB022161

Johnson, R. H., Norris, R. A., & Duennebier, F. K. (1967). Abyssally Generated T-phases. Defense Technical Information Center. https://doi.org/10.21236/ad0649315 DOI: https://doi.org/10.21236/AD0649315

Johnston, M. J. S., & Linde, A. T. (2002). Implications of Crustal Strain During Conventional, Slow, and Silent Earthquakes. In International Handbook of Earthquake and Engineering Seismology (pp. 589–605). Elsevier. https://doi.org/10.1016/s0074-6142(02)80239-x DOI: https://doi.org/10.1016/S0074-6142(02)80239-X

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141 DOI: https://doi.org/10.1126/science.1215141

Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091), 777–793. https://doi.org/10.1098/rspa.2007.0277 DOI: https://doi.org/10.1098/rspa.2007.0277

Kelley, D. S., Delaney, J. R., & Team, C. A. (2016, September). NSF’s Cabled Array: A wired tectonic plate and overlying ocean. OCEANS 2016 MTS/IEEE Monterey. https://doi.org/10.1109/oceans.2016.7761398 DOI: https://doi.org/10.1109/OCEANS.2016.7761398

Kimura, G., Shiraishi, K., Nakamura, Y., Kodaira, S., Fujie, G., Arai, R., & Moore, G. F. (2024). Frontal Thrust Ramp-Up and Slow Earthquakes Due To Underthrusting of Basement High in the Nankai Trough. Geochemistry, Geophysics, Geosystems, 25(7). https://doi.org/10.1029/2024gc011468 DOI: https://doi.org/10.1029/2024GC011468

Krauss, Z. zoekrauss/obs_tremor. (2024). https://doi.org/10.5281/zenodo.14532861.

La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B., & Del Pezzo, E. (2004). Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867. https://doi.org/10.1785/012003238 DOI: https://doi.org/10.1785/012003238

Lawrence, M. W. (2004). Acoustic monitoring of the global ocean for the CTBT. Proceedings of ACOUSTICS, 1, 455–460.

Li, S., Wang, K., Wang, Y., Jiang, Y., & Dosso, S. E. (2018). Geodetically Inferred Locking State of the Cascadia Megathrust Based on a Viscoelastic Earth Model. Journal of Geophysical Research: Solid Earth, 123(9), 8056–8072. https://doi.org/10.1029/2018jb015620 DOI: https://doi.org/10.1029/2018JB015620

Lin, P.-Y. P., Gaherty, J. B., Jin, G., Collins, J. A., Lizarralde, D., Evans, Rob. L., & Hirth, G. (2016). High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 535(7613), 538–541. https://doi.org/10.1038/nature18012 DOI: https://doi.org/10.1038/nature18012

Liu, H., & Tan, Y. J. (2025). Automatic Cataloging of Earthquakes in the Northeast Pacific Ocean based on Hydroacoustic T-phases Recorded by Cabled Seafloor Observatories. https://doi.org/10.22541/au.174405179.94193080/v1 DOI: https://doi.org/10.22541/au.174405179.94193080/v1

Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(857), 1–35. https://doi.org/10.1098/rsta.1950.0012 DOI: https://doi.org/10.1098/rsta.1950.0012

MacLeod, L. M. F., & Wilcock, W. S. D. (2025). Nonseismic Short‐Duration Events Offshore Cascadia: Characteristics and Potential Origin. Seismological Research Letters, 96(2A), 706–720. https://doi.org/10.1785/0220240367 DOI: https://doi.org/10.1785/0220240367

Massel, S. R. (2013). Ocean Surface Waves: Their Physics and Prediction. In Advanced Series on Ocean Engineering. WORLD SCIENTIFIC. https://doi.org/10.1142/8682 DOI: https://doi.org/10.1142/8682

McCreery, C. S., Duennebier, F. K., & Sutton, G. H. (1993). Correlation of deep ocean noise (0.4–30 Hz) with wind, and the Holu Spectrum—A worldwide constant. The Journal of the Acoustical Society of America, 93(5), 2639–2648. https://doi.org/10.1121/1.405838 DOI: https://doi.org/10.1121/1.405838

McGuire, J. J., Collins, J. A., Davis, E., Becker, K., & Heesemann, M. (2018). A Lack of Dynamic Triggering of Slow Slip and Tremor Indicates That the Shallow Cascadia Megathrust Offshore Vancouver Island Is Likely Locked. Geophysical Research Letters, 45(20). https://doi.org/10.1029/2018gl079519 DOI: https://doi.org/10.1029/2018GL079519

Meng, L., Huang, H., Bürgmann, R., Ampuero, J. P., & Strader, A. (2015). Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth and Planetary Science Letters, 411, 177–187. https://doi.org/10.1016/j.epsl.2014.11.041 DOI: https://doi.org/10.1016/j.epsl.2014.11.041

Merle, S. G., Embley, R. W., Johnson, H. P., Lau, T.-K., Phrampus, B. J., Raineault, N. A., & Gee, L. J. (2021). Distribution of Methane Plumes on Cascadia Margin and Implications for the Landward Limit of Methane Hydrate Stability. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.531714 DOI: https://doi.org/10.3389/feart.2021.531714

Moore, J. C., Moore, G. F., Cochrane, G. R., & Tobin, H. J. (1995). Negative‐polarity seismic reflections along faults of the Oregon accretionary prism: Indicators of overpressuring. Journal of Geophysical Research: Solid Earth, 100(B7), 12895–12906. https://doi.org/10.1029/94jb02049 DOI: https://doi.org/10.1029/94JB02049

Morton, E. A., Bilek, S. L., & Rowe, C. A. (2018). Newly detected earthquakes in the Cascadia subduction zone linked to seamount subduction and deformed upper plate. Geology, 46(11), 943–946. https://doi.org/10.1130/g45354.1 DOI: https://doi.org/10.1130/G45354.1

Morton, E. A., Bilek, S. L., & Rowe, C. A. (2023). Cascadia Subduction Zone Fault Heterogeneities From Newly Detected Small Magnitude Earthquakes. Journal of Geophysical Research: Solid Earth, 128(6). https://doi.org/10.1029/2023jb026607 DOI: https://doi.org/10.1029/2023JB026607

Nakano, M., Hori, T., Araki, E., Kodaira, S., & Ide, S. (2018). Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03431-5 DOI: https://doi.org/10.1038/s41467-018-03431-5

NSF Ocean Observatories Initiative. (2013). Ocean Observatories Initiative. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OO

Obana, K., & Kodaira, S. (2009). Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth and Planetary Science Letters, 287(1–2), 168–174. https://doi.org/10.1016/j.epsl.2009.08.005 DOI: https://doi.org/10.1016/j.epsl.2009.08.005

Obara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378 DOI: https://doi.org/10.1126/science.1070378

Ogiso, M., & Tamaribuchi, K. (2022). Spatiotemporal evolution of tremor activity near the Nankai Trough trench axis inferred from the spatial distribution of seismic amplitudes. Earth, Planets and Space, 74(1). https://doi.org/10.1186/s40623-022-01601-w DOI: https://doi.org/10.1186/s40623-022-01601-w

Okal, E. A. (2008). The generation of T waves by earthquakes. In Advances in Geophysics Volume 49 (pp. 1–65). Elsevier. https://doi.org/10.1016/s0065-2687(07)49001-x DOI: https://doi.org/10.1016/S0065-2687(07)49001-X

Peng, Z., & Gomberg, J. (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3(9), 599–607. https://doi.org/10.1038/ngeo940 DOI: https://doi.org/10.1038/ngeo940

Philip, B. T., Solomon, E. A., Kelley, D. S., Tréhu, A. M., Whorley, T. L., Roland, E., Tominaga, M., & Collier, R. W. (2023). Fluid sources and overpressures within the central Cascadia Subduction Zone revealed by a warm, high-flux seafloor seep. Science Advances, 9(4). https://doi.org/10.1126/sciadv.add6688 DOI: https://doi.org/10.1126/sciadv.add6688

Plata-Martinez, R., Ide, S., Shinohara, M., Garcia, E. S., Mizuno, N., Dominguez, L. A., Taira, T., Yamashita, Y., Toh, A., Yamada, T., Real, J., Husker, A., Cruz-Atienza, V. M., & Ito, Y. (2021). Shallow slow earthquakes to decipher future catastrophic earthquakes in the Guerrero seismic gap. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24210-9 DOI: https://doi.org/10.1038/s41467-021-24210-9

Provost, F., Malet, J.-P., Hibert, C., Helmstetter, A., Radiguet, M., Amitrano, D., Langet, N., Larose, E., Abancó, C., Hürlimann, M., Lebourg, T., Levy, C., Le Roy, G., Ulrich, P., Vidal, M., & Vial, B. (2018). Towards a standard typology of endogenous landslide seismic sources. Earth Surface Dynamics, 6(4), 1059–1088. https://doi.org/10.5194/esurf-6-1059-2018 DOI: https://doi.org/10.5194/esurf-6-1059-2018

Ragland, J., Schwock, F., Munson, M., & Abadi, S. (2022). An overview of ambient sound using Ocean Observatories Initiative hydrophones. The Journal of the Acoustical Society of America, 151(3), 2085–2100. https://doi.org/10.1121/10.0009836 DOI: https://doi.org/10.1121/10.0009836

Ramos, M. D., Huang, Y., Ulrich, T., Li, D., Gabriel, A., & Thomas, A. M. (2021). Assessing Margin‐Wide Rupture Behaviors Along the Cascadia Megathrust With 3‐D Dynamic Rupture Simulations. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb022005 DOI: https://doi.org/10.1029/2021JB022005

Remitti, F., Festa, A., Nirta, G., Barbero, E., & Mittempergher, S. (2024). Role of folding-related deformation in the seismicity of shallow accretionary prisms. Nature Geoscience, 17(7), 600–607. https://doi.org/10.1038/s41561-024-01474-6 DOI: https://doi.org/10.1038/s41561-024-01474-6

Romanowicz, B., Stakes, D., Dolenc, D., Neuhauser, D., McGill, P., Uhrhammer, R., & Ramirez, T. (2006). The monterey bay broadband ocean bottom seismic observatory. Annals of Geophysics, 49(2–3). https://doi.org/10.4401/ag-3132 DOI: https://doi.org/10.4401/ag-3132

Ross, D., & Kuperman, W. A. (1989). Mechanics of Underwater Noise. The Journal of the Acoustical Society of America, 86(4), 1626–1626. https://doi.org/10.1121/1.398685 DOI: https://doi.org/10.1121/1.398685

Rubinstein, J. L., Gomberg, J., Vidale, J. E., Wech, A. G., Kao, H., Creager, K. C., & Rogers, G. (2009). Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island. Journal of Geophysical Research: Solid Earth, 114(B2). https://doi.org/10.1029/2008jb005875 DOI: https://doi.org/10.1029/2008JB005875

Rubinstein, J. L., Shelly, D. R., & Ellsworth, W. L. (2009). Non-volcanic Tremor: A Window into the Roots of Fault Zones. In New Frontiers in Integrated Solid Earth Sciences (pp. 287–314). Springer Netherlands. https://doi.org/10.1007/978-90-481-2737-5_8 DOI: https://doi.org/10.1007/978-90-481-2737-5_8

Rubinstein, J. L., Vidale, J. E., Gomberg, J., Bodin, P., Creager, K. C., & Malone, S. D. (2007). Non-volcanic tremor driven by large transient shear stresses. Nature, 448(7153), 579–582. https://doi.org/10.1038/nature06017 DOI: https://doi.org/10.1038/nature06017

Rudebusch, J. A., Prouty, N. G., Conrad, J. E., Watt, J. T., Kluesner, J. W., Hill, J. C., Miller, N. C., Watson, S. J., & Hillman, J. I. T. (2023). Diving deeper into seep distribution along the Cascadia convergent margin, United States. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1205211 DOI: https://doi.org/10.3389/feart.2023.1205211

Sáez, M., Ruiz, S., Ide, S., & Sugioka, H. (2019). Shallow Nonvolcanic Tremor Activity and Potential Repeating Earthquakes in the Chile Triple Junction: Seismic Evidence of the Subduction of the Active Nazca–Antarctic Spreading Center. Seismological Research Letters. https://doi.org/10.1785/0220180394 DOI: https://doi.org/10.1785/0220180394

Schmalzle, G. M., McCaffrey, R., & Creager, K. C. (2014). Central Cascadia subduction zone creep. Geochemistry, Geophysics, Geosystems, 15(4), 1515–1532. https://doi.org/10.1002/2013gc005172 DOI: https://doi.org/10.1002/2013GC005172

Schöpa, A., Chao, W.-A., Lipovsky, B. P., Hovius, N., White, R. S., Green, R. G., & Turowski, J. M. (2018). Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath. Earth Surface Dynamics, 6(2), 467–485. https://doi.org/10.5194/esurf-6-467-2018 DOI: https://doi.org/10.5194/esurf-6-467-2018

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum‐Pacific subduction zones. Reviews of Geophysics, 45(3). https://doi.org/10.1029/2006rg000208 DOI: https://doi.org/10.1029/2006RG000208

Seydoux, L., Balestriero, R., Poli, P., Hoop, M. de, Campillo, M., & Baraniuk, R. (2020). Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17841-x DOI: https://doi.org/10.1038/s41467-020-17841-x

Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307. https://doi.org/10.1038/nature05666 DOI: https://doi.org/10.1038/nature05666

Shen, Z., & Wu, W. (2023). Ocean bottom distributed acoustic sensing for T-wave detection and seismic ocean thermometry. https://doi.org/10.22541/essoar.169186309.95288597/v1 DOI: https://doi.org/10.22541/essoar.169186309.95288597/v1

Sit, S., Brudzinski, M., & Kao, H. (2012). Detecting tectonic tremor through frequency scanning at a single station: Application to the Cascadia margin. Earth and Planetary Science Letters, 353–354, 134–144. https://doi.org/10.1016/j.epsl.2012.08.002 DOI: https://doi.org/10.1016/j.epsl.2012.08.002

Smith, L., Barth, J., Kelley, D., Plueddemann, A., Rodero, I., Ulses, G., Vardaro, M., & Weller, R. (2018). The Ocean Observatories Initiative. Oceanography, 31(1), 16–35. https://doi.org/10.5670/oceanog.2018.105 DOI: https://doi.org/10.5670/oceanog.2018.105

Stone, I., Vidale, J. E., Han, S., & Roland, E. (2018). Catalog of Offshore Seismicity in Cascadia: Insights Into the Regional Distribution of Microseismicity and its Relation to Subduction Processes. Journal of Geophysical Research: Solid Earth, 123(1), 641–652. https://doi.org/10.1002/2017jb014966 DOI: https://doi.org/10.1002/2017JB014966

Takemura, S., Hamada, Y., Okuda, H., Okada, Y., Okubo, K., Akuhara, T., Noda, A., & Tonegawa, T. (2023). A review of shallow slow earthquakes along the Nankai Trough. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01920-6 DOI: https://doi.org/10.1186/s40623-023-01920-6

Talandier, J., & Okal, E. A. (2001). Identification Criteria for Sources of T Waves Recorded in French Polynesia. Pure and Applied Geophysics, 158(3), 567–603. https://doi.org/10.1007/pl00001195 DOI: https://doi.org/10.1007/PL00001195

Tamaribuchi, K., Ogiso, M., & Noda, A. (2022). Spatiotemporal Distribution of Shallow Tremors Along the Nankai Trough, Southwest Japan, as Determined From Waveform Amplitudes and Cross‐Correlations. Journal of Geophysical Research: Solid Earth, 127(8). https://doi.org/10.1029/2022jb024403 DOI: https://doi.org/10.1029/2022JB024403

Tary, J. B., Géli, L., Guennou, C., Henry, P., Sultan, N., Çağatay, N., & Vidal, V. (2012). Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara: Microevents produced by gas migration. Geophysical Journal International, 190(2), 993–1007. https://doi.org/10.1111/j.1365-246x.2012.05533.x DOI: https://doi.org/10.1111/j.1365-246X.2012.05533.x

Tary, Jean Baptiste. (2023). Atypical Signals: Characteristics and Sources of Short‐Duration Events. In Noisy Oceans (pp. 119–141). Wiley. https://doi.org/10.1002/9781119750925.ch8 DOI: https://doi.org/10.1002/9781119750925.ch8

Todd, E. K., Schwartz, S. Y., Mochizuki, K., Wallace, L. M., Sheehan, A. F., Webb, S. C., Williams, C. A., Nakai, J., Yarce, J., Fry, B., Henrys, S., & Ito, Y. (2018). Earthquakes and Tremor Linked to Seamount Subduction During Shallow Slow Slip at the Hikurangi Margin, New Zealand. Journal of Geophysical Research: Solid Earth, 123(8), 6769–6783. https://doi.org/10.1029/2018jb016136 DOI: https://doi.org/10.1029/2018JB016136

Toomey, D., Allen, R., Barclay, A., Bell, S., Bromirski, P., Carlson, R., Chen, X., Collins, J., Dziak, R., Evers, B., Forsyth, D., Gerstoft, P., Hooft, E., Livelybrooks, D., Lodewyk, J., Luther, D., McGuire, J., Schwartz, S., Tolstoy, M., … Wilcock, W. (2014). The Cascadia Initiative: A Sea Change In Seismological Studies of Subduction Zones. Oceanography, 27(2), 138–150. https://doi.org/10.5670/oceanog.2014.49 DOI: https://doi.org/10.5670/oceanog.2014.49

Tréhu, A. (1985). A note on the effect of bottom currents on an ocean bottom seismometer. Bulletin of the Seismological Society of America, 75(4), 1195–1204. https://doi.org/10.1785/BSSA0750041195 DOI: https://doi.org/10.1785/BSSA0750010271

Tréhu, A. M., Braunmiller, J., & Davis, E. (2015). Seismicity of the Central Cascadia Continental Margin near 44.5 N: A Decadal View. Seismological Research Letters, 86(3), 819–829. https://doi.org/10.1785/0220140207 DOI: https://doi.org/10.1785/0220140207

Tréhu, Anne M., Blakely, R. J., & Williams, M. C. (2012). Subducted seamounts and recent earthquakes beneath the central Cascadia forearc. Geology, 40(2), 103–106. https://doi.org/10.1130/g32460.1 DOI: https://doi.org/10.1130/G32460.1

Tréhu, Anne M., de Moor, A., Madrid, J. M., Sáez, M., Chadwell, C. D., Ortega-Culaciati, F., Ruiz, J., Ruiz, S., & Tryon, M. D. (2019). Post-seismic response of the outer accretionary prism after the 2010 Maule earthquake, Chile. Geosphere, 16(1), 13–32. https://doi.org/10.1130/ges02102.1 DOI: https://doi.org/10.1130/GES02102.1

Trowbridge, J., Weller, R., Kelley, D., Dever, E., Plueddemann, A., Barth, J. A., & Kawka, O. (2019). The Ocean Observatories Initiative. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00074 DOI: https://doi.org/10.3389/fmars.2019.00074

Tsang-Hin-Sun, E., Batsi, E., Klingelhoefer, F., & Géli, L. (2018). Spatial and temporal dynamics of gas-related processes in the Sea of Marmara monitored with ocean bottom seismometers. Geophysical Journal International, 216(3), 1989–2003. https://doi.org/10.1093/gji/ggy535 DOI: https://doi.org/10.1093/gji/ggy535

Vouillamoz, N., Rothmund, S., & Joswig, M. (2018). Characterizing the complexity of microseismic signals at slow-moving clay-rich debris slides: the Super-Sauze (southeastern France) and Pechgraben (Upper Austria) case studies. Earth Surface Dynamics, 6(2), 525–550. https://doi.org/10.5194/esurf-6-525-2018 DOI: https://doi.org/10.5194/esurf-6-525-2018

Wagstaff, R. A. (2005). An Ambient Noise Model for the Northeast Pacific Ocean Basin. IEEE Journal of Oceanic Engineering, 30(2), 286–294. https://doi.org/10.1109/joe.2004.836993 DOI: https://doi.org/10.1109/JOE.2004.836993

Walker, D. A., McCreery, C. S., & Hiyoshi, Y. (1992). T-phase spectra, seismic moments, and tsunamigenesis. Bulletin of the Seismological Society of America, 82(3), 1275–1305. https://doi.org/10.1785/BSSA0820031275

Wallace, L. M., Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S. Y., & Sheehan, A. F. (2016). Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–704. https://doi.org/10.1126/science.aaf2349 DOI: https://doi.org/10.1126/science.aaf2349

Wallace, L., Sheehan, A., Schwartz, S., & Webb, S. (2014). Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/YH_2014

Walter, J. I., Schwartz, S. Y., Protti, J. M., & Gonzalez, V. (2011). Persistent tremor within the northern Costa Rica seismogenic zone. Geophysical Research Letters, 38(1). https://doi.org/10.1029/2010gl045586 DOI: https://doi.org/10.1029/2010GL045586

Walter, J. I., Schwartz, S. Y., Protti, M., & Gonzalez, V. (2013). The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. Geophysical Research Letters, 40(8), 1517–1522. https://doi.org/10.1002/grl.50213 DOI: https://doi.org/10.1002/grl.50213

Webb, S. C. (1998). Broadband seismology and noise under the ocean. Reviews of Geophysics, 36(1), 105–142. https://doi.org/10.1029/97rg02287 DOI: https://doi.org/10.1029/97RG02287

Wech, A. G. (2010). Interactive Tremor Monitoring. Seismological Research Letters, 81(4), 664–669. https://doi.org/10.1785/gssrl.81.4.664 DOI: https://doi.org/10.1785/gssrl.81.4.664

Wech, A. G., Sheehan, A. F., Boese, C. M., Townend, J., Stern, T. A., & Collins, J. A. (2013). Tectonic Tremor Recorded by Ocean Bottom Seismometers. Seismological Research Letters, 84(5), 752–758. https://doi.org/10.1785/0220120184 DOI: https://doi.org/10.1785/0220120184

Wech, Aaron G. (2021). Cataloging Tectonic Tremor Energy Radiation in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022523 DOI: https://doi.org/10.1029/2021JB022523

Wech, Aaron G., & Creager, K. C. (2008). Automated detection and location of Cascadia tremor. Geophysical Research Letters, 35(20). https://doi.org/10.1029/2008gl035458 DOI: https://doi.org/10.1029/2008GL035458

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/tau.1967.1161901 DOI: https://doi.org/10.1109/TAU.1967.1161901

Wilcock, W. S. D., Stafford, K. M., Andrew, R. K., & Odom, R. I. (2014). Sounds in the Ocean at 1–100 Hz. Annual Review of Marine Science, 6(1), 117–140. https://doi.org/10.1146/annurev-marine-121211-172423 DOI: https://doi.org/10.1146/annurev-marine-121211-172423

Williams, M. C., Trehu, A. M., & Braunmiller, J. (2011). Seismicity at the Cascadia Plate Boundary beneath the Oregon Continental Shelf. Bulletin of the Seismological Society of America, 101(3), 940–950. https://doi.org/10.1785/0120100198 DOI: https://doi.org/10.1785/0120100198

Woods, K., Wallace, L. M., Williams, C. A., Hamling, I. J., Webb, S. C., Ito, Y., Palmer, N., Hino, R., Suzuki, S., Savage, M. K., Warren‐Smith, E., & Mochizuki, K. (2024). Spatiotemporal Evolution of Slow Slip Events at the Offshore Hikurangi Subduction Zone in 2019 Using GNSS, InSAR, and Seafloor Geodetic Data. Journal of Geophysical Research: Solid Earth, 129(8). https://doi.org/10.1029/2024jb029068 DOI: https://doi.org/10.1029/2024JB029068

Yamashita, Y., Yakiwara, H., Asano, Y., Shimizu, H., Uchida, K., Hirano, S., Umakoshi, K., Miyamachi, H., Nakamoto, M., Fukui, M., Kamizono, M., Kanehara, H., Yamada, T., Shinohara, M., & Obara, K. (2015). Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface. Science, 348(6235), 676–679. https://doi.org/10.1126/science.aaa4242 DOI: https://doi.org/10.1126/science.aaa4242

Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534(7607), 374–377. https://doi.org/10.1038/nature17632 DOI: https://doi.org/10.1038/nature17632

Downloads

Published

2025-08-19

How to Cite

Krauss, Z., Wilcock, W., & Creager, K. (2025). Possible Shallow Tectonic Tremor Signals Near the Deformation Front in Central Cascadia. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1540

Issue

Section

Special Issue: the Cascadia Subduction Zone