Optimized Workflows with a Single Phase-Only Response Correction for Building Empirical Green's Functions for Ambient-Noise Tomography
DOI:
https://doi.org/10.26443/seismica.v5i1.1554Abstract
We present simple and optimized workflows for computing empirical Green's functions in ambient-noise tomography that enhance computational efficiency and numerical stability. A key improvement is a phase-only instrument-response correction applied only once after stacking instead of to the raw data before correlation. This prevents instability in spectral division, simplifies computations, and reduces execution time. While some of the additional optimizations we employ are already in use within the ambient-noise tomography community, we provide a detailed description along with systematic benchmarks that quantify their actual impact on runtime and stability. Key improvements include reducing redundant Fourier transforms and combining spectral equalization, cross-correlation, and stacking into a single frequency-domain step. An additional optimization reuses spectral representations of individual stations across multiple station pairs, maintaining linear complexity. We also propose a completely new optimization: applying a phase-only instrument-response correction only once after stacking instead of before correlation. This prevents instability in spectral division, simplifies computations, and reduces execution time. We validate the workflows using datasets from Southern California, Brazil, and Uganda. For individual station pairs, our primary optimized workflow (WF2) reduces execution time by approximately 67–75% (speed-up factors of 3.0–3.9), closely matching theoretical expectations (~5.1). A more scalable variant (WF3) achieves speed-up factors of 15–60 for moderate-sized networks. Furthermore, we demonstrate that a partial implementation into existing codes, requiring only minimal modifications, yields about 10% execution-time savings and improved numerical stability. The proposed workflows produce EGFs nearly indistinguishable from conventional methods and are particularly suitable for large-scale ambient-noise tomography in computationally limited environments.
References
Aki, K., Christoffersson, A., & Husebye, E. S. (1977). Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82(2), 277–296. https://doi.org/10.1029/jb082i002p00277
Akkar, S., & Boore, D. M. (2009). On Baseline Corrections and Uncertainty in Response Spectra for Baseline Variations Commonly Encountered in Digital Accelerograph Records. Bulletin of the Seismological Society of America, 99(3), 1671–1690. https://doi.org/10.1785/0120080206
Albert Kabanda, Suzan van der Lee, Lawrence Kabenge, Joseph Nyago, Fred Tugume, Geraldine Paula Babirye, & Yoweri Nseko. (2022). Dry Rifting In the Albertine–Rhino graben (DRIAR), Uganda. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/Z5_2022
Albuquerque Seismological Laboratory/USGS. (1988). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU
Almeida, F. F. M. de, Brito Neves, B. B. de, & Dal Ré Carneiro, C. (2000). The origin and evolution of the South American Platform. Earth-Science Reviews, 50(1–2), 77–111. https://doi.org/10.1016/s0012-8252(99)00072-0
Artemieva, I. (2011). The Lithosphere: An Interdisciplinary Approach. Cambridge University Press. https://doi.org/10.1017/cbo9780511975417
Audhkhasi, P., & Singh, S. C. (2022). Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean. Science Advances, 8(24). https://doi.org/10.1126/sciadv.abn5404
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x
Bianchi, M. B., Assumpção, M., Rocha, M. P., Carvalho, J. M., Azevedo, P. A., Fontes, S. L., Dias, F. L., Ferreira, J. M., Nascimento, A. F., Ferreira, M. V., & Costa, I. S. L. (2018). The Brazilian Seismographic Network (RSBR): Improving Seismic Monitoring in Brazil. Seismological Research Letters, 89(2A), 452–457. https://doi.org/10.1785/0220170227
California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI
Cathles, L., Fjeldskar, W., Lenardic, A., Romanowicz, B., Seales, J., & Richards, M. (2023). Influence of the asthenosphere on earth dynamics and evolution. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-39973-y
Ciardelli, C., Assumpção, M., Bozdağ, E., & van der Lee, S. (2022). Adjoint Waveform Tomography of South America. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021jb022575
Clayton, R. W., & Wiggins, R. A. (1976). Source shape estimation and deconvolution of teleseismic bodywaves. Geophysical Journal International, 47(1), 151–177. https://doi.org/10.1111/j.1365-246x.1976.tb01267.x
Clements, T., & Denolle, M. A. (2020). SeisNoise.jl: Ambient Seismic Noise Cross Correlation on the CPU and GPU in Julia. Seismological Research Letters, 92(1), 517–527. https://doi.org/10.1785/0220200192
Clouzet, P., Masson, Y., & Romanowicz, B. (2018). Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent. Geophysical Journal International, 213(3), 1849–1875. https://doi.org/10.1093/gji/ggy078
Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301. https://doi.org/10.1090/s0025-5718-1965-0178586-1
Dziewonski, A. M. (1979). Elastic and anelastic structure of the Earth. Reviews of Geophysics, 17(2), 303–312. https://doi.org/10.1029/rg017i002p00303
EarthScope Consortium. (1986). Global Seismograph Network - II. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II
Fichtner, A., Bowden, D., & Ermert, L. (2020). Optimal processing for seismic noise correlations. Geophysical Journal International, 223(3), 1548–1564. https://doi.org/10.1093/gji/ggaa390
Fichtner, A., Ermert, L., & Gokhberg, A. (2017). Seismic Noise Correlation on Heterogeneous Supercomputers. Seismological Research Letters, 88(4), 1141–1145. https://doi.org/10.1785/0220170043
Fishwick, S. (2010). Surface wave tomography: Imaging of the lithosphere–asthenosphere boundary beneath central and southern Africa? Lithos, 120(1–2), 63–73. https://doi.org/10.1016/j.lithos.2010.05.011
Frigo, M. (1999). A fast Fourier transform compiler. Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation, 169–180. https://doi.org/10.1145/301618.301661
Hadziioannou, C., & Rijal, A. (2024). Noise Correlation Wrapper: Ambient Seismic Noise Correlation. SeismoLive. https://seismo-live.github.io/html/Ambient%20Seismic%20Noise/NoiseCorrelation_wrapper.html
Havskov, J., & Alguacil, G. (2016). Correction for Instrument Response. In Instrumentation in Earthquake Seismology (pp. 197–230). Springer International Publishing. https://doi.org/10.1007/978-3-319-21314-9_6
Herrmann, R. B. (2013). Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096
Jiang, C., & Denolle, M. A. (2020). NoisePy: A New High-Performance Python Tool for Ambient-Noise Seismology. Seismological Research Letters, 91(3), 1853–1866. https://doi.org/10.1785/0220190364
Kabanda, A., Alonzo, B., van der Lee, S., Stamps, D. S., Atekwana, E. A., Nyago, J., Kabenge, L., Tugume, F., Fishwick, S., Kolawole, F., Evans, R. L., Taylor, M. H., Katumwehe, A. B., Atekwana, E. A., & Kiberu, J. M. (2023). Interferometry of Ambient Seismic Noise Recorded by DRIAR Stations in the Northern Western Branch of the East African Rift System, Uganda.
Kumar, P., Yuan, X., Kind, R., & Mechie, J. (2012). The lithosphere-asthenosphere boundary observed with USArray receiver functions. Solid Earth, 3(1), 149–159. https://doi.org/10.5194/se-3-149-2012
Larose, E., Margerin, L., Derode, A., van Tiggelen, B., Campillo, M., Shapiro, N., Paul, A., Stehly, L., & Tanter, M. (2006). Correlation of random wavefields: An interdisciplinary review. Geophysics, 71(4), SI11–SI21. https://doi.org/10.1190/1.2213356
Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715–726. https://doi.org/10.1785/0220130073
Li, Z., Zhou, J., Wu, G., Wang, J., Zhang, G., Dong, S., Pan, L., Yang, Z., Gao, L., Ma, Q., Ren, H., & Chen, X. (2021). CC-FJpy: A Python Package for seismic ambient noise cross-correlation and the frequency-Bessel transform method. https://doi.org/10.1002/essoar.10506115.1
Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281–298. https://doi.org/10.1111/j.1365-246x.2008.03720.x
Lin, F.-C., & Ritzwoller, M. H. (2011). Apparent anisotropy in inhomogeneous isotropic media. Geophysical Journal International, 186(3), 1205–1219. https://doi.org/10.1111/j.1365-246x.2011.05100.x
Magrini, F., Lauro, S., Kästle, E., & Boschi, L. (2022). Surface-wave tomography using SeisLib: a Python package for multiscale seismic imaging. Geophysical Journal International, 231(2), 1011–1030. https://doi.org/10.1093/gji/ggac236
Makus, P., & Sens-Schönfelder, C. (2024). SeisMIC - an Open Source Python Toolset to Compute Velocity Changes from Ambient Seismic Noise. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1099
Martin, M., & Wenzel, F. (2006). High-resolution teleseismic body wave tomography beneath SE-Romania - II. Imaging of a slab detachment scenario. Geophysical Journal International, 164(3), 579–595. https://doi.org/10.1111/j.1365-246x.2006.02884.x
Moschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007gc001655
Muir, J. B., & Ross, Z. E. (2023). A deep Gaussian process model for seismicity background rates. Geophysical Journal International, 234(1), 427–438. https://doi.org/10.1093/gji/ggad074
Nolet, G. (2008). A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun. Cambridge University Press. https://doi.org/10.1017/cbo9780511984709
Nolet, G., & Kennett, B. L. N. (1990). The interaction of the S-wavefield with upper mantle heterogeneity. Geophysical Journal International, 101(3), 751–762. https://doi.org/10.1111/j.1365-246x.1990.tb05581.x
NVIDIA Corporation. (2025). cuFFT Library. NVIDIA. https://docs.nvidia.com/cuda/cufft/
Ojo, A. (2021). ROSES 2021 Session 03: Ambient Noise Tomography. https://www.youtube.com/watch?v=-xQyvV-oZjU
Petersen, M. D., Harmsen, S. C., Jaiswal, K. S., Rukstales, K. S., Luco, N., Haller, K. M., Mueller, C. S., & Shumway, A. M. (2018). Seismic Hazard, Risk, and Design for South America. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120170002
Plomerová, J., & Babuška, V. (2010). Long memory of mantle lithosphere fabric — European LAB constrained from seismic anisotropy. Lithos, 120(1–2), 131–143. https://doi.org/10.1016/j.lithos.2010.01.008
Priestley, K., & Tilmann, F. (2009). Relationship between the upper mantle high velocity seismic lid and the continental lithosphere. Lithos, 109(1–2), 112–124. https://doi.org/10.1016/j.lithos.2008.10.021
Prieto, G. A., Lawrence, J. F., & Beroza, G. C. (2009). Anelastic Earth structure from the coherency of the ambient seismic field. Journal of Geophysical Research: Solid Earth, 114(B7). https://doi.org/10.1029/2008jb006067
Prieto, G. A., Parker, R. L., & Vernon III, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences, 35(8), 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007
Rawlinson, N., & Sambridge, M. (2003). Seismic traveltime tomography of the crust and lithosphere. In Advances in Geophysics (pp. 81–198). Elsevier. https://doi.org/10.1016/s0065-2687(03)46002-0
Ritzwoller, M. H., & Feng, L. (2019). Overview of Pre- and Post-Processing of Ambient Noise Correlations. In Seismic Ambient Noise (pp. 144–187). Cambridge University Press. https://doi.org/10.1017/9781108264808.007
Ritzwoller, M. H., Lin, F.-C., & Shen, W. (2011). Ambient noise tomography with a large seismic array. Comptes Rendus. Géoscience, 343(8–9), 558–570. https://doi.org/10.1016/j.crte.2011.03.007
Routh, P., Neelamani, R., Lu, R., Lazaratos, S., Braaksma, H., Hughes, S., Saltzer, R., Stewart, J., Naidu, K., Averill, H., Gottumukkula, V., Homonko, P., Reilly, J., & Leslie, D. (2017). Impact of high-resolution FWI in the Western Black Sea: Revealing overburden and reservoir complexity. The Leading Edge, 36(1), 60–66. https://doi.org/10.1190/tle36010060.1
Scherbaum, F. (1996). Inverse and simulation filtering of digital seismograms. In Of Poles and Zeros (pp. 132–160). Springer Netherlands. https://doi.org/10.1007/978-94-010-9572-3_9
Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339
Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4). https://doi.org/10.1103/physreve.69.046610
Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10). https://doi.org/10.1029/2005jb004237
Thurber, C. H. (2003). Seismic Tomography of the Lithosphere with Body Waves. In Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume (pp. 717–737). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8010-7_12
Vaddineni, V. A., & Singh, S. C. (2023). The lithosphere–asthenosphere boundary structure at 11–21 Ma from wide-angle seismic data in the equatorial Atlantic Ocean. Geophysical Journal International, 235(3), 2743–2757. https://doi.org/10.1093/gji/ggad392
Weaver, R. L., & Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function (L). The Journal of the Acoustical Society of America, 116(5), 2731–2734. https://doi.org/10.1121/1.1810232
Witek, M., van der Lee, S., Kang, T. ‐S., Chang, S. ‐J., Ning, J., & Ning, S. (2018). S Velocity Model of East Asia From a Cluster Analysis of Localized Dispersion. Journal of Geophysical Research: Solid Earth, 123(11), 9712–9732. https://doi.org/10.1029/2018jb016060
Yang, Y., & Ritzwoller, M. H. (2008). Characteristics of ambient seismic noise as a source for surface wave tomography. Geochemistry, Geophysics, Geosystems, 9(2). https://doi.org/10.1029/2007gc001814
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Caio Ciardelli, Yoweri Nseko, Albert Kabanda, Suzan van der Lee

This work is licensed under a Creative Commons Attribution 4.0 International License.

