Large earthquakes are more predictable than smaller ones

Authors

  • Patricio Venegas-Aravena Independent Researcher, 4030000, Concepción, Chile https://orcid.org/0000-0003-3777-0941
  • Davide Zaccagnino Institute of Risk Analysis, Prediction & Management (Risks-X), Southern University of Science and Technology (SUSTech), 1088 Xueyuan Blvd, Nanshan, 518055, Shenzhen, China | National Institute of Geophysics and Volcanology (INGV), Via di Vigna Murata, 605, 00143, Rome, Italy https://orcid.org/0000-0001-6884-8452

DOI:

https://doi.org/10.26443/seismica.v4i1.1568

Keywords:

Earthquake predictability, Seismic rupture, Chaos theory, Residual energy, b-value, HE-B method

Abstract

Large earthquakes have been viewed as highly chaotic events regardless of their magnitude, making their prediction intrinsically challenging. Here, we develop a mathematical tool to incorporate multiscale physics, capable of describing both deterministic and chaotic systems, to model earthquake rupture. Our findings suggest that the chaotic behavior of seismic dynamics, that is, its sensitivity to initial and boundary conditions, is inversely related to its magnitude. To validate this hypothesis, we performed numerical simulations with heterogeneous fault conditions. Our results indicate that large earthquakes, usually occurring in regions with higher residual energy and lower b-value (i.e., the exponent of the Gutenberg-Richter law), are less susceptible to being affected by perturbations. This suggests that a higher variability in earthquake magnitudes (larger b-values) may be indicative of structural complexity of the fault network and heterogeneous stress conditions. We compare our theoretical predictions with the statistical properties of seismicity in Southern California; specifically, we show that our model agrees with the observed relationship between the b-value and the fractal dimension of hypocenters. The similarities observed between simulated and natural earthquakes support the hypothesis that large events may be less chaotic than smaller ones; hence, more predictable.

References

Aki, K. (1981). A Probabilistic Synthesis of Precursory Phenomena. In Earthquake Prediction (pp. 566–574). American Geophysical Union. https://doi.org/10.1029/me004p0566

Aksoy, C. G., Chupilkin, M., Koczan, Z., & Plekhanov, A. (2024). Unearthing the impact of earthquakes: A review of economic and social consequences. Journal of Policy Analysis and Management. https://doi.org/10.1002/pam.22642

Bak, P., & Tang, C. (1989). Earthquakes as a self‐organized critical phenomenon. Journal of Geophysical Research: Solid Earth, 94(B11), 15635–15637. https://doi.org/10.1029/jb094ib11p15635

Barras, F., Thøgersen, K., Aharonov, E., & Renard, F. (2023). How Do Earthquakes Stop? Insights From a Minimal Model of Frictional Rupture. Journal of Geophysical Research: Solid Earth, 128(8). https://doi.org/10.1029/2022jb026070

Bhatia, M., Ahanger, T. A., & Manocha, A. (2023). Artificial intelligence based real-time earthquake prediction. Engineering Applications of Artificial Intelligence, 120, 105856. https://doi.org/10.1016/j.engappai.2023.105856

Bletery, Q., & Nocquet, J.-M. (2023). The precursory phase of large earthquakes. Science, 381(6655), 297–301. https://doi.org/10.1126/science.adg2565

Bolton, D. C., Marone, C., Saffer, D., & Trugman, D. T. (2023). Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39399-0

Cattania, C., & Segall, P. (2021). Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 126(4). https://doi.org/10.1029/2020jb020430

Chan, C.-H., Kao, J.-C., & Chen, D.-Y. (2024). Spatial–temporal variations of b-values prior to medium-to-large earthquakes in Taiwan and the feasibility of real-time precursor monitoring. Earth, Planets and Space, 76(1). https://doi.org/10.1186/s40623-024-02065-w

Chen, Y., & Yang, H. (2016). Numerical simulation and pattern characterization of nonlinear spatiotemporal dynamics on fractal surfaces for the whole-heart modeling applications. The European Physical Journal B, 89(8). https://doi.org/10.1140/epjb/e2016-60960-6

Christensen, D. H., & Beck, S. L. (1994). The rupture process and tectonic implications of the great 1964 Prince William Sound earthquake. Pure and Applied Geophysics, 142(1), 29–53. https://doi.org/10.1007/bf00875967

Colavitti, L., Lanzano, G., Sgobba, S., Pacor, F., & Gallovič, F. (2022). Empirical Evidence of Frequency‐Dependent Directivity Effects From Small‐To‐Moderate Normal Fault Earthquakes in Central Italy. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2021jb023498

Crampin, S., & Gao, Y. (2010). Earthquakes can be stress-forecast. Geophysical Journal International, 180(3), 1124–1127. https://doi.org/10.1111/j.1365-246x.2009.04475.x

de Sousa Vieira, M. (1999). Chaos and Synchronized Chaos in an Earthquake Model. Physical Review Letters, 82(1), 201–204. https://doi.org/10.1103/physrevlett.82.201

Devi D, R., Govindarajan, P., & N, V. (2024). Towards real-time earthquake forecasting in Chile: Integrating intelligent technologies and machine learning. Computers and Electrical Engineering, 117, 109285. https://doi.org/10.1016/j.compeleceng.2024.109285

Dong, L., Zhang, L., Liu, H., Du, K., & Liu, X. (2022). Acoustic Emission b Value Characteristics of Granite under True Triaxial Stress. Mathematics, 10(3), 451. https://doi.org/10.3390/math10030451

Eden, A., Foias, C., & Temam, R. (1991). Local and Global Lyapunov exponents. Journal of Dynamics and Differential Equations, 3(1), 133–177. https://doi.org/10.1007/bf01049491

Erickson, B. A., Birnir, B., & Lavallée, D. (2011). Periodicity, chaos and localization in a Burridge–Knopoff model of an earthquake with rate-and-state friction. Geophysical Journal International, 187(1), 178–198. https://doi.org/10.1111/j.1365-246x.2011.05123.x

Geller, R. J., Jackson, D. D., Kagan, Y. Y., & Mulargia, F. (1997). Earthquakes Cannot Be Predicted. Science, 275(5306), 1616–1616. https://doi.org/10.1126/science.275.5306.1616

Goltz, C. (1997). Fractal and chaotic properties of earthquakes. In Fractal and Chaotic Properties of Earthquakes (pp. 3–164). Springer-Verlag. https://doi.org/10.1007/bfb0028316

Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9(1–2), 189–208. https://doi.org/10.1016/0167-2789(83)90298-1

Gualandi, A., Faranda, D., Marone, C., Cocco, M., & Mengaldo, G. (2023). Deterministic and stochastic chaos characterize laboratory earthquakes. Earth and Planetary Science Letters, 604, 117995. https://doi.org/10.1016/j.epsl.2023.117995

Gudmundsson, A. (2014). Elastic energy release in great earthquakes and eruptions. Frontiers in Earth Science, 2. https://doi.org/10.3389/feart.2014.00010

Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199. https://doi.org/10.1038/s41586-019-1606-4

Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform Relocated Earthquake Catalog for Southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244. https://doi.org/10.1785/0120120010

Hirata, T. (1989). A correlation between the b value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth, 94(B6), 7507–7514. https://doi.org/10.1029/jb094ib06p07507

Hoover, W. G., & Posch, H. A. (1994). Second-law irreversibility and phase-space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra. Physical Review E, 49(3), 1913–1920. https://doi.org/10.1103/physreve.49.1913

Huang, J., & Turcotte, D. L. (1990). Are earthquakes an example of deterministic chaos? Geophysical Research Letters, 17(3), 223–226. https://doi.org/10.1029/gl017i003p00223

Huang, J., & Turcotte, D. L. (1992). Chaotic seismic faulting with a mass-spring model and velocity-weakening friction. Pure and Applied Geophysics, 138(4), 569–589. https://doi.org/10.1007/bf00876339

Huang, S. L., Oelfke, S. M., & Speck, R. C. (1992). Applicability of fractal characterization and modelling to rock joint profiles. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(2), 89–98. https://doi.org/10.1016/0148-9062(92)92120-2

Iaccarino, A. G., & Picozzi, M. (2023). Detecting the Preparatory Phase of Induced Earthquakes at The Geysers (California) Using K‐Means Clustering. Journal of Geophysical Research: Solid Earth, 128(10). https://doi.org/10.1029/2023jb026429

Ito, R., & Kaneko, Y. (2023). Physical Mechanism for a Temporal Decrease of the Gutenberg‐Richter b‐Value Prior to a Large Earthquake. Journal of Geophysical Research: Solid Earth, 128(12). https://doi.org/10.1029/2023jb027413

Kagan, Y. Y. (1991). Fractal dimension of brittle fracture. Journal of Nonlinear Science, 1(1), 1–16. https://doi.org/10.1007/bf01209146

Kagan, Yan Y. (1997). Are earthquakes predictable? Geophysical Journal International, 131(3), 505–525. https://doi.org/10.1111/j.1365-246x.1997.tb06595.x

Kahandawa, K. A. R. V. D., Domingo, N. D., Park, K. S., & Uma, S. R. (2018). Earthquake damage estimation systems: Literature review. Procedia Engineering, 212, 622–628. https://doi.org/10.1016/j.proeng.2018.01.080

Kanamori, H., & Rivera, L. (2004). Static and Dynamic Scaling Relations for Earthquakes and Their Implications for Rupture Speed and Stress Drop. Bulletin of the Seismological Society of America, 94(1), 314–319. https://doi.org/10.1785/0120030159

Kato, A., & Ben-Zion, Y. (2020). The generation of large earthquakes. Nature Reviews Earth & Environment, 2(1), 26–39. https://doi.org/10.1038/s43017-020-00108-w

Kaveh, H., Avouac, J. P., & Stuart, A. M. (2024). Spatiotemporal forecast of extreme events in a chaotic model of slow slip events. Geophysical Journal International, 240(2), 870–885. https://doi.org/10.1093/gji/ggae417

Kintner, J. A., Ammon, C. J., Cleveland, K. M., & Herman, M. (2018). Rupture processes of the 2013–2014 Minab earthquake sequence, Iran. Geophysical Journal International, 213(3), 1898–1911. https://doi.org/10.1093/gji/ggy085

Knopoff, L. (1958). Energy Release in Earthquakes. Geophysical Journal International, 1(1), 44–52. https://doi.org/10.1111/j.1365-246x.1958.tb00033.x

Lacidogna, G., Borla, O., & De Marchi, V. (2023). Statistical Seismic Analysis by b-Value and Occurrence Time of the Latest Earthquakes in Italy. Remote Sensing, 15(21), 5236. https://doi.org/10.3390/rs15215236

Leonard, M. (2010). Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988. https://doi.org/10.1785/0120090189

Li, Q., Sun, J., Xi, G., & Liu, J. (2022). The Doppler effect induced by earthquakes: A case study of the Wenchuan MS8.0 earthquake. Geodesy and Geodynamics, 13(5), 435–444. https://doi.org/10.1016/j.geog.2021.12.006

Lippiello, E., & Petrillo, G. (2024). b‐More‐Incomplete and b‐More‐Positive: Insights on a Robust Estimator of Magnitude Distribution. Journal of Geophysical Research: Solid Earth, 129(2). https://doi.org/10.1029/2023jb027849

Lippiello, Eugenio, Godano, C., & de Arcangelis, L. (2019). The Relevance of Foreshocks in Earthquake Triggering: A Statistical Study. Entropy, 21(2), 173. https://doi.org/10.3390/e21020173

Martínez-Lopez, R. (2023). Study of the rupture processes of the 1989 (Mw 6.9) and 2021 (Mw 7.0) Guerrero earthquakes using teleseismic records: Sismotectonic implications. Geologica Acta, 21, 1–14. https://doi.org/10.1344/geologicaacta2023.21.9

McLaskey, G. C., & Kilgore, B. D. (2013). Foreshocks during the nucleation of stick‐slip instability. Journal of Geophysical Research: Solid Earth, 118(6), 2982–2997. https://doi.org/10.1002/jgrb.50232

Mogi, K. (1969). Some features of recent seismic activity in and near Japan (2) activity before and after great earthquakes. Bulletin of the Earthquake Research Institute, 47(4), 395–417.

Murase, K. (2004). A Characteristic Change in Fractal Dimension Prior to the 2003 Tokachi-oki Earthquake (M J = 8.0), Hokkaido, Northern Japan. Earth, Planets and Space, 56(3), 401–405. https://doi.org/10.1186/bf03353072

Nandan, S., Ram, S. K., Ouillon, G., & Sornette, D. (2021). Is Seismicity Operating at a Critical Point? Physical Review Letters, 126(12). https://doi.org/10.1103/physrevlett.126.128501

Nanjo, K., Nagahama, H., & Satomura, M. (1998). Rates of aftershock decay and the fractal structure of active fault systems. Tectonophysics, 287(1–4), 173–186. https://doi.org/10.1016/s0040-1951(98)80067-x

Nielsen, S. (2024). Earthquakes big and small: same physics, different boundary conditions. arXiv. https://doi.org/10.48550/ARXIV.2411.00544

Noda, A., Saito, T., Fukuyama, E., & Urata, Y. (2021). Energy‐Based Scenarios for Great Thrust‐Type Earthquakes in the Nankai Trough Subduction Zone, Southwest Japan, Using an Interseismic Slip‐Deficit Model. Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020jb020417

Onsager, L. (1931a). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37(4), 405–426. https://doi.org/10.1103/physrev.37.405

Onsager, L. (1931b). Reciprocal Relations in Irreversible Processes. II. Physical Review, 38(12), 2265–2279. https://doi.org/10.1103/physrev.38.2265

Otarola, C., Ruiz, S., Herrera, C., Madariaga, R., & Siegel, C. (2021). Dynamic rupture of subduction earthquakes located near the trench. Earth and Planetary Science Letters, 562, 116842. https://doi.org/10.1016/j.epsl.2021.116842

Perinelli, A., Ricci, L., De Santis, A., & Iuppa, R. (2024). Earthquakes unveil the global-scale fractality of the lithosphere. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-023-01174-w

Pétrélis, F., Chanard, K., Schubnel, A., & Hatano, T. (2021). Earthquake sensitivity to tides and seasons: theoretical studies. Journal of Statistical Mechanics: Theory and Experiment, 2021(2), 023404. https://doi.org/10.1088/1742-5468/abda29

Posadas, A., Morales, J., Ibañez, J. M., & Posadas-Garzon, A. (2021). Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes. Chaos, Solitons & Fractals, 151, 111243. https://doi.org/10.1016/j.chaos.2021.111243

Renou, J., Vallée, M., & Aochi, H. (2022). Deciphering the Origins of Transient Seismic Moment Accelerations by Realistic Dynamic Rupture Simulations. Bulletin of the Seismological Society of America, 112(3), 1240–1251. https://doi.org/10.1785/0120210221

Rivera, L., & Kanamori, H. (2005). Representations of the radiated energy in earthquakes. Geophysical Journal International, 162(1), 148–155. https://doi.org/10.1111/j.1365-246x.2005.02648.x

Rivière, J., Lv, Z., Johnson, P. A., & Marone, C. (2018). Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 482, 407–413. https://doi.org/10.1016/j.epsl.2017.11.036

Rodriguez Padilla, A. M., Oskin, M. E., Brodsky, E. E., Dascher‐Cousineau, K., Herrera, V., & White, S. (2024). The Influence of Fault Geometrical Complexity on Surface Rupture Length. Geophysical Research Letters, 51(20). https://doi.org/10.1029/2024gl109957

Rubinstein, J. L., La Rocca, M., Vidale, J. E., Creager, K. C., & Wech, A. G. (2008). Tidal Modulation of Nonvolcanic Tremor. Science, 319(5860), 186–189. https://doi.org/10.1126/science.1150558

Ruelle, D. (1989). Chaotic Evolution and Strange Attractors. Cambridge University Press. https://doi.org/10.1017/cbo9780511608773

Salditch, L., Stein, S., Neely, J., Spencer, B. D., Brooks, E. M., Agnon, A., & Liu, M. (2020). Earthquake supercycles and Long-Term Fault Memory. Tectonophysics, 774, 228289. https://doi.org/10.1016/j.tecto.2019.228289

Scholz, C. H. (1990). Earthquakes as chaos. Nature, 348(6298), 197–198. https://doi.org/10.1038/348197a0

Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. https://doi.org/10.1002/2014gl062863

Schurr, B., Moreno, M., Tréhu, A. M., Bedford, J., Kummerow, J., Li, S., & Oncken, O. (2020). Forming a Mogi Doughnut in the Years Prior to and Immediately Before the 2014 M8.1 Iquique, Northern Chile, Earthquake. Geophysical Research Letters, 47(16). https://doi.org/10.1029/2020gl088351

Sharon, M., Kurzon, I., Wetzler, N., Sagy, A., Marco, S., & Ben-Avraham, Z. (2022). Variations of the seismic b-value along the Dead Sea transform. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1074729

Silverio-Murillo, A., Balmori-de-la Miyar, J., Sobrino, F., & Prudencio, D. (2024). Do earthquakes increase or decrease crime? World Development, 182, 106711. https://doi.org/10.1016/j.worlddev.2024.106711

Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., & Kowada, A. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 59–80. https://doi.org/10.1785/gssrl.70.1.59

Sornette, D. (2009). Dragon-Kings, Black Swans and the Prediction of Crises. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1596032

Sornette, D., & Ouillon, G. (2012). Dragon-Kings: Mechanisms, Statistical Methods and Empirical Evidence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2191590

Tabor, M. (1989). Chaos and Integrability in Nonlinear Dynamics. Wiley.

Tormann, T., Wiemer, S., & Mignan, A. (2014). Systematic survey of high‐resolution b value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research: Solid Earth, 119(3), 2029–2054. https://doi.org/10.1002/2013jb010867

van der Elst, N. J. (2021). B‐Positive: A Robust Estimator of Aftershock Magnitude Distribution in Transiently Incomplete Catalogs. Journal of Geophysical Research: Solid Earth, 126(2). https://doi.org/10.1029/2020jb021027

Vassiliou, M. S., & Kanamori, H. (1982). The energy release in earthquakes. Bulletin of the Seismological Society of America, 72(2), 371–387. https://doi.org/10.1785/BSSA0720020371

Venegas-Aravena, P. (2023a). Geological earthquake simulations generated by kinematic heterogeneous energy-based method: Self-arrested ruptures and asperity criterion. Open Geosciences, 15(1). https://doi.org/10.1515/geo-2022-0522

Venegas-Aravena, P. (2023b). Heterogeneous self-arrested ruptures leading to spatial variability of radiated energy and Doppler effect of the observed corner frequency. Journal of Seismology, 28(1), 187–208. https://doi.org/10.1007/s10950-023-10183-3

Venegas-Aravena, P. (2024). Past large earthquakes influence future strong ground motion: Example of the Chilean subduction zone. Natural Hazards, 120(12), 10669–10685. https://doi.org/10.1007/s11069-024-06651-9

Venegas-Aravena, P., & Cordaro, E. G. (2023a). Analytical Relation between b-Value and Electromagnetic Signals in Pre-Macroscopic Failure of Rocks: Insights into the Microdynamics’ Physics Prior to Earthquakes. Geosciences, 13(6), 169. https://doi.org/10.3390/geosciences13060169

Venegas-Aravena, P., & Cordaro, E. G. (2023b). Subduction as a Smoothing Machine: How Multiscale Dissipation Relates Precursor Signals to Fault Geometry. Geosciences, 13(8), 243. https://doi.org/10.3390/geosciences13080243

Venegas-Aravena, P., & Cordaro, E. G. (2024). The Multiscale Principle in Nature (Principium luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems. Fractal and Fractional, 8(1), 35. https://doi.org/10.3390/fractalfract8010035

Venegas-Aravena, P., Cordaro, E., & Laroze, D. (2022). Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension. Fractal and Fractional, 6(11), 624. https://doi.org/10.3390/fractalfract6110624

Venegas-Aravena, P., Crempien, J. G. F., & Archuleta, R. J. (2024). Fractal Spatial Distributions of Initial Shear Stress and Frictional Properties on Faults and Their Impact on Dynamic Earthquake Rupture. Bulletin of the Seismological Society of America, 114(3), 1444–1465. https://doi.org/10.1785/0120230123

Vidale, J. E., Agnew, D. C., Johnston, M. J. S., & Oppenheimer, D. H. (1998). Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate. Journal of Geophysical Research: Solid Earth, 103(B10), 24567–24572. https://doi.org/10.1029/98jb00594

Wallace, L. M., Fagereng, A., & Ellis, S. (2012). Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology, 40(10), 895–898. https://doi.org/10.1130/g33373.1

Wang, Z., Zhang, W., Taymaz, T., He, Z., Xu, T., & Zhang, Z. (2023). Dynamic Rupture Process of the 2023 Mw 7.8 Kahramanmaraş Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard. Geophysical Research Letters, 50(15). https://doi.org/10.1029/2023gl104787

Wetzler, N., Lay, T., & Brodsky, E. E. (2023). Global Characteristics of Observable Foreshocks for Large Earthquakes. Seismological Research Letters, 94(5), 2313–2325. https://doi.org/10.1785/0220220397

Wiemer, S., & Wyss, M. (1997). Mapping the frequency‐magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth, 102(B7), 15115–15128. https://doi.org/10.1029/97jb00726

Woessner, J., & Wiemer, S. (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007

Wu, G.-C., & Baleanu, D. (2015). Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Communications in Nonlinear Science and Numerical Simulation, 22(1–3), 95–100. https://doi.org/10.1016/j.cnsns.2014.06.042

Wyss, M., Sammis, C. G., Nadeau, R. M., & Wiemer, S. (2004). Fractal Dimension and b-Value on Creeping and Locked Patches of the San Andreas Fault near Parkfield, California. Bulletin of the Seismological Society of America, 94(2), 410–421. https://doi.org/10.1785/0120030054

Wyss, Max. (1997). Cannot Earthquakes Be Predicted? Science, 278(5337), 487–490. https://doi.org/10.1126/science.278.5337.487

Xie, H. (1993). Fractals in Rock Mechanics (1st ed.). CRC Press.

Yılmaz, N., Akıllı, M., & Ak, M. (2023). Temporal evolution of entropy and chaos in low amplitude seismic wave prior to an earthquake. Chaos, Solitons & Fractals, 173, 113585. https://doi.org/10.1016/j.chaos.2023.113585

Zaccagnino, D., & Doglioni, C. (2022). The impact of faulting complexity and type on earthquake rupture dynamics. Communications Earth & Environment, 3(1). https://doi.org/10.1038/s43247-022-00593-5

Zaccagnino, D., Vallianatos, F., Michas, G., Telesca, L., & Doglioni, C. (2024). Are Foreshocks Fore‐Shocks? Journal of Geophysical Research: Solid Earth, 129(2). https://doi.org/10.1029/2023jb027337

Zou, X., & Fialko, Y. (2024). Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised. Earth and Space Science, 11(11). https://doi.org/10.1029/2024ea003824

Downloads

Additional Files

Published

2025-06-21

How to Cite

Venegas-Aravena, P., & Zaccagnino, D. (2025). Large earthquakes are more predictable than smaller ones. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1568

Issue

Section

Articles