Tectonic tremor: The chatter of mafic underplating

Authors

  • Geena Littel The University of British Columbia
  • Michael Bostock University of British Columbia
  • Charles Sammis The University of British Columbia
  • Simon Peacock The University of British Columbia
  • Andrew Calvert

DOI:

https://doi.org/10.26443/seismica.v2i4.1599

Keywords:

tectonic tremor, slow slip, episodic tremor and slip, low frequency earthquakes, Cascadia subduction zone, underplating, oceanic crust

Abstract

Tremor is a weak seismic signal accompanying slow fault slip at plate boundaries. The relationship between tremor and slow slip and the tremor source mechanism have been widely debated, owing largely to the challenge of accurately locating tremor in depth. We assemble a tremor hypocenter catalog of 4,851 events in a 10 x 20 km2 area beneath Vancouver Island during three slow slip episodes between 2003 and 2005 using a cross-station detection method adapted from previous studies to recover accurate depths. Improved tremor locations provide key constraints on i) thickness of the tremorgenic zone, ii) the relative location of tremor to key structural features in the subduction complex, and iii) the geologic context and mechanism of tremor. Tremor occurs in quasi-planar clusters < 500 m thick at a depth near 39 km, beneath a high reflectivity layer and within a zone of elevated Poisson's ratio with P-wave velocities of ~7 km/s. We interpret tremor as originating in the fragmentation of the upper few hundred meters of basaltic oceanic crust. Comminuted and overpressured basalt with increasingly anisotropic fabric is underplated onto overriding lithosphere to generate high reflectivity. Tremor thus manifests areas of material transfer across the plate boundary during slow slip.

References

Angiboust, S., Kirsch, J., Oncken, O., Glodny, J., Monié, P., & Rybacki, E. (2015). Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochemistry, Geophysics, Geosystems, 16(6), 1905–1922. https://doi.org/10.1002/2015gc005776

Angiboust, S., Menant, A., Gerya, T., & Oncken, O. (2021). The rise and demise of deep accretionary wedges: A long-term field and numerical modeling perspective. Geosphere, 18(1), 69–103. https://doi.org/10.1130/ges02392.1

Armbruster, J. G., Kim, W., & Rubin, A. M. (2014). Accurate tremor locations from coherent S and P waves. Journal of Geophysical Research: Solid Earth, 119(6), 5000–5013. https://doi.org/10.1002/2014jb011133

Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R., & Allen, R. M. (2010). Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip. Journal of Geophysical Research: Solid Earth, 115(B4). https://doi.org/10.1029/2008jb006053

Audet, P., Bostock, M. G., Christensen, N. I., & Peacock, S. M. (2009). Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457(7225), 76–78. https://doi.org/10.1038/nature07650

Bassett, D., & Watts, A. B. (2015). Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore‐arc structure and seismogenic behavior. Geochemistry, Geophysics, Geosystems, 16(5), 1541–1576. https://doi.org/10.1002/2014gc005685

Beall, A., Fagereng, Å., & Ellis, S. (2019). Strength of Strained Two‐Phase Mixtures: Application to Rapid Creep and Stress Amplification in Subduction Zone Mélange. Geophysical Research Letters, 46(1), 169–178. https://doi.org/10.1029/2018gl081252

Behr, W. M., & Bürgmann, R. (2021). What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20200218. https://doi.org/10.1098/rsta.2020.0218

Beroza, G. C., & Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. Annual Review of Earth and Planetary Sciences, 39(1), 271–296. https://doi.org/10.1146/annurev-earth-040809-152531

Bloch, W., Bostock, M. G., & Audet, P. (2023). A Cascadia Slab Model From Receiver Functions. Geochemistry, Geophysics, Geosystems, 24(10). https://doi.org/10.1029/2023gc011088

Bombardier, M., Dosso, S. E., Cassidy, J. F., & Kao, H. (2023). Tackling the challenges of tectonic tremor localization using differential traveltimes and Bayesian inversion. Geophysical Journal International, 234(1), 479–493. https://doi.org/10.1093/gji/ggad086

Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., & Rubin, A. M. (2015). Magnitudes and moment‐duration scaling of low‐frequency earthquakes beneath southern Vancouver Island. Journal of Geophysical Research: Solid Earth, 120(9), 6329–6350. https://doi.org/10.1002/2015jb012195

Bostock, M., Plourde, A., Drolet, D., & Littel, G. (2021). Multichannel Alignment of S Waves. Bulletin of the Seismological Society of America, 112(1), 133–142. https://doi.org/10.1785/0120210076

Brandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985–1009. https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2

Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz, S. Y., Rabbel, W., Thorwart, M., & Kao, H. (2009). Deep low‐frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophysical Research Letters, 36(19). https://doi.org/10.1029/2009gl040027

Brudzinski, M. R., & Allen, R. M. (2007). Segmentation in episodic tremor and slip all along Cascadia. Geology, 35(10), 907. https://doi.org/10.1130/g23740a.1

Calvert, A., & Clowes, R. (1990). Deep, high-amplitude reflections from a major shear zone above the subducting Juan de Fuca plate. Geology, 18(11), 1091–1094. https://doi.org/0.1130/0091-7613(1990)018<1091:DHARFA>2.3.CO;2

Calvert, A. J. (2004). Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone. Nature, 428(6979), 163–167. https://doi.org/10.1038/nature02372

Calvert, A. J., Bostock, M. G., Savard, G., & Unsworth, M. J. (2020). Cascadia low frequency earthquakes at the base of an overpressured subduction shear zone. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17609-3

Calvert, A. J., Fisher, M. A., Ramachandran, K., & Tréhu, A. M. (2003). Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone. Geophysical Research Letters, 30(23). https://doi.org/10.1029/2003gl018541

Calvert, A. J., Preston, L. A., & Farahbod, A. M. (2011). Sedimentary underplating at the Cascadia mantle-wedge corner revealed by seismic imaging. Nature Geoscience, 4(8), 545–548. https://doi.org/10.1038/ngeo1195

Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139–3156. https://doi.org/10.1029/95jb03446

Clowes, R. M., Brandon, M. T., Green, A. G., Yorath, C. J., Brown, A. S., Kanasewich, E. R., & Spencer, C. (1987). LITHOPROBE—southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections. Canadian Journal of Earth Sciences, 24(1), 31–51. https://doi.org/10.1139/e87-004

Cruz-Atienza, V. M., Villafuerte, C., & Bhat, H. S. (2018). Rapid tremor migration and pore-pressure waves in subduction zones. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05150-3

Dehler, S. A., & Clowes, R. M. (1992). Integrated geophysical modelling of terranes and other structural features along the western Canadian margin. Canadian Journal of Earth Sciences, 29(7), 1492–1508. https://doi.org/10.1139/e92-119

Fisher, A. T., & Becker, K. (2000). Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature, 403(6765), 71–74. https://doi.org/10.1038/47463

Fyfe, W. S., Price, N. J., & Thompson, A. B. (1978). Fluids in the Earth’s Crust: Their Significance in Metamorphic, Tectonic, and Chemical Transport Processes (Vol. 1). Elsevier Scientific Publishing Company. https://books.google.fr/books?id=b-cJAQAAIAAJ

Gallego, A., Russo, R. M., Comte, D., Mocanu, V., Murdie, R. E., & VanDecar, J. C. (2013). Tidal modulation of continuous nonvolcanic seismic tremor in the Chile triple junction region. Geochemistry, Geophysics, Geosystems, 14(4), 851–863. https://doi.org/10.1002/ggge.20091

Gao, X., & Wang, K. (2014). Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345(6200), 1038–1041. https://doi.org/10.1126/science.1255487

Gerya, T. V., & Meilick, F. I. (2010). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29(1), 7–31. https://doi.org/10.1111/j.1525-1314.2010.00904.x

Ghosh, A., Vidale, J. E., & Creager, K. C. (2012). Tremor asperities in the transition zone control evolution of slow earthquakes. Journal of Geophysical Research: Solid Earth, 117(B10). https://doi.org/10.1029/2012jb009249

Ghosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., Wech, A. G., Houston, H., & Brodsky, E. E. (2010). Rapid, continuous streaking of tremor in Cascadia. Geochemistry, Geophysics, Geosystems, 11(12). https://doi.org/10.1029/2010gc003305

Hawthorne, J. C., & Rubin, A. M. (2010). Tidal modulation of slow slip in Cascadia. Journal of Geophysical Research: Solid Earth, 115(B9). https://doi.org/10.1029/2010jb007502

Houtz, R. E. (1976). Seismic properties of layer 2A in the Pacific. Journal of Geophysical Research, 81(35), 6321–6331. https://doi.org/10.1029/jb081i035p06321

Houtz, R., & Ewing, J. (1976). Upper crustal structure as a function of plate age. Journal of Geophysical Research, 81(14), 2490–2498. https://doi.org/10.1029/jb081i014p02490

Hull, J. (1988). Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10(4), 431–435. https://doi.org/10.1016/0191-8141(88)90020-x

Hyndman, R. D. (1988). Dipping Seismic Reflectors, Electrically Conductive Zones, and Trapped Water in the Crust Over a Subducting Plate. Journal of Geophysical Research: Solid Earth, 93(B11), 13391–13405. https://doi.org/10.1029/jb093ib11p13391

Ide, S., Shelly, D. R., & Beroza, G. C. (2007). Mechanism of deep low frequency earthquakes: Further evidence that deep non‐volcanic tremor is generated by shear slip on the plate interface. Geophysical Research Letters, 34(3). https://doi.org/10.1029/2006gl028890

Kao, H., Shan, S., Dragert, H., & Rogers, G. (2009). Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007. Journal of Geophysical Research: Solid Earth, 114(B11). https://doi.org/10.1029/2008jb006046

Kao, H., Shan, S.-J., Dragert, H., Rogers, G., Cassidy, J. F., & Ramachandran, K. (2005). A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature, 436(7052), 841–844. https://doi.org/10.1038/nature03903

Kao, H., Wang, K., Dragert, H., Kao, J. Y., & Rogers, G. (2010). Estimating seismic moment magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the “seismic efficiency” of episodic tremor and slip. Geophysical Research Letters, 37(19). https://doi.org/10.1029/2010gl044927

Katsumata, A., & Kamaya, N. (2003). Low‐frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan. Geophysical Research Letters, 30(1). https://doi.org/10.1029/2002gl015981

Kimura, G., & Ludden, J. (1995). Peeling oceanic crust in subduction zones. Geology, 23(3), 217–220. https://doi.org/10.1130/0091-7613(1995)023<0217:POCISZ>2.3.CO;2

Kimura, H., Takeda, T., Obara, K., & Kasahara, K. (2010). Seismic Evidence for Active Underplating Below the Megathrust Earthquake Zone in Japan. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115

Kirkpatrick, J. D., Fagereng, Å., & Shelly, D. R. (2021). Geological constraints on the mechanisms of slow earthquakes. Nature Reviews Earth & Environment, 2(4), 285–301. https://doi.org/10.1038/s43017-021-00148-w

Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr02171

La Rocca, M., Creager, K. C., Galluzzo, D., Malone, S., Vidale, J. E., Sweet, J. R., & Wech, A. G. (2009). Cascadia Tremor Located Near Plate Interface Constrained by S Minus P Wave Times. Science, 323(5914), 620–623. https://doi.org/10.1126/science.1167112

Luo, Y., & Ampuero, J. P. (2014). A model of spontaneous complex tremor migration patterns and background slow-slip events via interaction of brittle asperities and a ductile matrix. AGU Fall Meeting Abstracts, 2014, S52B-01.

Luo, Y., & Ampuero, J.-P. (2018). Stability of faults with heterogeneous friction properties and effective normal stress. Tectonophysics, 733, 257–272. https://doi.org/10.1016/j.tecto.2017.11.006

Luo, Y., & Liu, Z. (2019). Rate‐and‐State Model Casts New Insight into Episodic Tremor and Slow‐slip Variability in Cascadia. Geophysical Research Letters, 46(12), 6352–6362. https://doi.org/10.1029/2019gl082694

Luo, Y., & Liu, Z. (2021). Fault zone heterogeneities explain depth-dependent pattern and evolution of slow earthquakes in Cascadia. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22232-x

Matharu, G., Bostock, M. G., Christensen, N. I., & Tromp, J. (2014). Crustal anisotropy in a subduction zone forearc: Northern Cascadia. Journal of Geophysical Research: Solid Earth, 119(9), 7058–7078. https://doi.org/10.1002/2014jb011321

Menant, A., Angiboust, S., & Gerya, T. (2019). Stress-driven fluid flow controls long-term megathrust strength and deep accretionary dynamics. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46191-y

Menant, A., Angiboust, S., Gerya, T., Lacassin, R., Simoes, M., & Grandin, R. (2020). Transient stripping of subducting slabs controls periodic forearc uplift. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15580-7

Merrill, R., Bostock, M. G., Peacock, S. M., Calvert, A. J., & Christensen, N. I. (2020). A Double Difference Tomography Study of the Washington Forearc: Does Siletzia Control Crustal Seismicity? Journal of Geophysical Research: Solid Earth, 125(10). https://doi.org/10.1029/2020jb019750

Nadeau, R. M., & Dolenc, D. (2005). Nonvolcanic Tremors Deep Beneath the San Andreas Fault. Science, 307(5708), 389–389. https://doi.org/10.1126/science.1107142

Nedimović, M. R., Hyndman, R. D., Ramachandran, K., & Spence, G. D. (2003). Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature, 424(6947), 416–420. https://doi.org/10.1038/nature01840

Nicholson, T., Bostock, M., & Cassidy, J. F. (2005). New constraints on subduction zone structure in northern Cascadia. Geophysical Journal International, 161(3), 849–859. https://doi.org/10.1111/j.1365-246x.2005.02605.x

Obana, K., & Kodaira, S. (2009). Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth and Planetary Science Letters, 287(1–2), 168–174. https://doi.org/10.1016/j.epsl.2009.08.005

Obara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573), 1679–1681. https://doi.org/10.1126/science.1070378

Oncken, O., Angiboust, S., & Dresen, G. (2021). Slow slip in subduction zones: Reconciling deformation fabrics with instrumental observations and laboratory results. Geosphere, 18(1), 104–129. https://doi.org/10.1130/ges02382.1

Peacock, S. M., Christensen, N. I., Bostock, M. G., & Audet, P. (2011). High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology, 39(5), 471–474. https://doi.org/10.1130/g31649.1

Peacock, Simon M. (2009). Thermal and metamorphic environment of subduction zone episodic tremor and slip. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb005978

Peng, Y., & Rubin, A. M. (2016). High-resolution images of tremor migrations beneath the Olympic Peninsula from stacked array of arrays seismic data. Geochemistry, Geophysics, Geosystems, 17(2), 587–601. https://doi.org/10.1002/2015gc006141

Peng, Y., Rubin, A. M., Bostock, M. G., & Armbruster, J. G. (2015). High‐resolution imaging of rapid tremor migrations beneath southern Vancouver Island using cross‐station cross correlations. Journal of Geophysical Research: Solid Earth, 120(6), 4317–4332. https://doi.org/10.1002/2015jb011892

Plourde, A. P., Bostock, M. G., Audet, P., & Thomas, A. M. (2015). Low‐frequency earthquakes at the southern Cascadia margin. Geophysical Research Letters, 42(12), 4849–4855. https://doi.org/10.1002/2015gl064363

Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M., & Trehu, A. M. (2003). Intraslab Earthquakes: Dehydration of the Cascadia Slab. Science, 302(5648), 1197–1200. https://doi.org/10.1126/science.1090751

Rogers, G., & Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783

Roy, A., Roy, N., Saha, P., & Mandal, N. (2021). Factors Determining Shear‐Parallel Versus Low‐Angle Shear Band Localization in Shear Deformations: Laboratory Experiments and Numerical Simulations. Journal of Geophysical Research: Solid Earth, 126(10). https://doi.org/10.1029/2021jb022578

Royer, A. A., & Bostock, M. G. (2014). A comparative study of low frequency earthquake templates in northern Cascadia. Earth and Planetary Science Letters, 402, 247–256. https://doi.org/10.1016/j.epsl.2013.08.040

Royer, A. A., Thomas, A. M., & Bostock, M. G. (2015). Tidal modulation and triggering of low‐frequency earthquakes in northern Cascadia. Journal of Geophysical Research: Solid Earth, 120(1), 384–405. https://doi.org/10.1002/2014jb011430

Rubin, A. M., & Armbruster, J. G. (2013). Imaging slow slip fronts in Cascadia with high precision cross‐station tremor locations. Geochemistry, Geophysics, Geosystems, 14(12), 5371–5392. https://doi.org/10.1002/2013gc005031

Saffer, D. M., & Tobin, H. J. (2011). Hydrogeology and Mechanics of Subduction Zone Forearcs: Fluid Flow and Pore Pressure. Annual Review of Earth and Planetary Sciences, 39(1), 157–186. https://doi.org/10.1146/annurev-earth-040610-133408

Sammis, C. G., & Bostock, M. G. (2021). A Granular Jamming Model for Low‐Frequency Earthquakes. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb021963

Savard, G., & Bostock, M. G. (2015). Detection and Location of Low‐Frequency Earthquakes Using Cross‐Station Correlation. Bulletin of the Seismological Society of America, 105(4), 2128–2142. https://doi.org/10.1785/0120140301

Savard, G., Bostock, M. G., & Christensen, N. I. (2018). Seismicity, Metamorphism, and Fluid Evolution Across the Northern Cascadia Fore Arc. Geochemistry, Geophysics, Geosystems, 19(6), 1881–1897. https://doi.org/10.1029/2017gc007417

Scholz, C. H. (1987). Wear and gouge formation in brittle faulting. Geology, 15(6), 493–495. https://doi.org/0.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2

Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum‐Pacific subduction zones. Reviews of Geophysics, 45(3). https://doi.org/10.1029/2006rg000208

Shelly, D. R., Beroza, G. C., Ide, S., & Nakamula, S. (2006). Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature, 442(7099), 188–191. https://doi.org/10.1038/nature04931

Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of low-frequency earthquakes. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63584-6

Supino, Mariano, Shapiro, N. M., Vilotte, J.-P., Poiata, N., & Obara, K. (2021). Tectonic low-frequency earthquakes in Shikoku, Japan: source scaling, size distribution and observational limits. https://doi.org/10.1002/essoar.10506594.1

Sweet, J. R., Creager, K. C., Houston, H., & Chestler, S. R. (2019). Variations in Cascadia Low‐Frequency Earthquake Behavior With Downdip Distance. Geochemistry, Geophysics, Geosystems, 20(2), 1202–1217. https://doi.org/10.1029/2018gc007998

Thomas, A. M., Nadeau, R. M., & Bürgmann, R. (2009). Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault. Nature, 462(7276), 1048–1051. https://doi.org/10.1038/nature08654

VanDecar, J. C., & Crosson, R. S. (1990). Determination of teleseismic relative arrival times using multi-channel cross-correlation and least-squares. Bulletin of the Seismological Society of America, 80, 150–169.

Wech, A. G. (2010). Interactive Tremor Monitoring. Seismological Research Letters, 81(4), 664–669. https://doi.org/10.1785/gssrl.81.4.664

Wech, A. G., Boese, C. M., Stern, T. A., & Townend, J. (2012). Tectonic tremor and deep slow slip on the Alpine Fault. Geophysical Research Letters, 39(10). https://doi.org/10.1029/2012gl051751

Wech, Aaron G., & Bartlow, N. M. (2014). Slip rate and tremor genesis in Cascadia. Geophysical Research Letters, 41(2), 392–398. https://doi.org/10.1002/2013gl058607

Wells, R. E., Blakely, R. J., Wech, A. G., McCrory, P. A., & Michael, A. (2017). Cascadia subduction tremor muted by crustal faults. Geology, 45(6), 515–518. https://doi.org/10.1130/g38835.1

Zhang, H., & Thurber, C. H. (2003). Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93(5), 1875–1889. https://doi.org/10.1785/0120020190

Downloads

Published

2025-08-27

How to Cite

Littel, G., Bostock, M., Sammis, C., Peacock, S., & Calvert, A. (2025). Tectonic tremor: The chatter of mafic underplating. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1599

Issue

Section

Special Issue: the Cascadia Subduction Zone