Consideration of rupture kinematics increases tsunami amplitudes in far-field hazards assessments
DOI:
https://doi.org/10.26443/seismica.v2i4.1668Keywords:
seismic hazard, tsunami modelingAbstract
Tsunami hazard assessments often assume that co-seismic crustal deformation occurs instantaneously, particularly in probabilistic tsunami hazard analyses (PTHA). However, this simplification neglects the kinematics of rupture propagation, which may influence tsunami amplitudes at distant sites. Building on previous work, this study investigates the impact of rupture kinematics – specifically rupture directivity and duration – on far-field tsunami amplitudes. Using 2600 synthetic megathrust earthquake scenarios along a 1500 km segment of the Alaskan subduction zone, I model tsunami propagation with both instantaneous and time-dependent rupture assumptions. Simulations reveal that source kinematics can significantly rotate the tsunami radiation pattern and increase peak amplitudes by over 30% at far-field sites for large (Mw>9.0) events. When incorporated into a full PTHA framework, the inclusion of rupture kinematics systematically increases hazard estimates at most coastal locations. These results suggest that neglecting rupture kinematics may lead to underestimation of far-field tsunami hazard, particularly for large, unilateral ruptures. I recommend the formal inclusion of rupture kinematics in both deterministic scenario design and probabilistic hazard frameworks to better capture the full range of potential tsunami impacts.
References
Allen, T. I., & Hayes, G. P. (2017). Alternative Rupture‐Scaling Relationships for Subduction Interface and Other Offshore Environments. Bulletin of the Seismological Society of America, 107(3), 1240–1253. https://doi.org/10.1785/0120160255 DOI: https://doi.org/10.1785/0120160255
Arcos, M. E. M., & LeVeque, R. J. (2014). Validating Velocities in the GeoClaw Tsunami Model Using Observations near Hawaii from the 2011 Tohoku Tsunami. Pure and Applied Geophysics, 172(3–4), 849–867. https://doi.org/10.1007/s00024-014-0980-y DOI: https://doi.org/10.1007/s00024-014-0980-y
Baba, T., Allgeyer, S., Hossen, J., Cummins, P. R., Tsushima, H., Imai, K., Yamashita, K., & Kato, T. (2017). Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Modelling, 111, 46–54. https://doi.org/10.1016/j.ocemod.2017.01.002 DOI: https://doi.org/10.1016/j.ocemod.2017.01.002
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., & Weatherall, P. (2009). Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371. https://doi.org/10.1080/01490410903297766 DOI: https://doi.org/10.1080/01490410903297766
Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 34(9), 1195–1206. https://doi.org/10.1016/j.advwatres.2011.02.016 DOI: https://doi.org/10.1016/j.advwatres.2011.02.016
Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400(6743), 443–446. https://doi.org/10.1038/22739 DOI: https://doi.org/10.1038/22739
Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926. https://doi.org/10.1785/0120100111 DOI: https://doi.org/10.1785/0120100111
Butler, R., Walsh, D., & Richards, K. (2016). Extreme tsunami inundation in Hawai‘i from Aleutian–Alaska subduction zone earthquakes. Natural Hazards, 85(3), 1591–1619. https://doi.org/10.1007/s11069-016-2650-0 DOI: https://doi.org/10.1007/s11069-016-2650-0
Clawpack Development Team. (2024). Clawpack v5.11.0 (5.11.0). Zenodo. https://doi.org/10.5281/zenodo.13376470
Crowell, B. W., & Melgar, D. (2020). Slipping the Shumagin Gap: A Kinematic Coseismic and Early Afterslip Model of the Mw 7.8 Simeonof Island, Alaska, Earthquake. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020gl090308 DOI: https://doi.org/10.1029/2020GL090308
Davies, G., & Griffin, J. (2018). The 2018 Australian probabilistic tsunami hazard assessment: hazard from earthquake generated tsunamis. Geoscience Australia. https://doi.org/10.11636/record.2018.041 DOI: https://doi.org/10.11636/Record.2018.041
Davies, G., Horspool, N., & Miller, V. (2015). Tsunami inundation from heterogeneous earthquake slip distributions: Evaluation of synthetic source models. Journal of Geophysical Research: Solid Earth, 120(9), 6431–6451. https://doi.org/10.1002/2015jb012272 DOI: https://doi.org/10.1002/2015JB012272
Fujii, Y., & Satake, K. (2007). Tsunami Source of the 2004 Sumatra–Andaman Earthquake Inferred from Tide Gauge and Satellite Data. Bulletin of the Seismological Society of America, 97(1A), S192–S207. https://doi.org/10.1785/0120050613 DOI: https://doi.org/10.1785/0120050613
Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research: Solid Earth, 107(B5). https://doi.org/10.1029/2000jb000139 DOI: https://doi.org/10.1029/2000JB000139
Geist, E. L., & Parsons, T. (2006). Probabilistic Analysis of Tsunami Hazards*. Natural Hazards, 37(3), 277–314. https://doi.org/10.1007/s11069-005-4646-z DOI: https://doi.org/10.1007/s11069-005-4646-z
Geist, E., & Lynett, P. (2014). Source Processes for the Probabilistic Assessment of Tsunami Hazards. Oceanography, 27(2), 86–93. https://doi.org/10.5670/oceanog.2014.43 DOI: https://doi.org/10.5670/oceanog.2014.43
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: does it really matter? Natural Hazards and Earth System Sciences, 13(6), 1507–1526. https://doi.org/10.5194/nhess-13-1507-2013 DOI: https://doi.org/10.5194/nhess-13-1507-2013
Goda, K., Mai, P. M., Yasuda, T., & Mori, N. (2014). Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth, Planets and Space, 66(1). https://doi.org/10.1186/1880-5981-66-105 DOI: https://doi.org/10.1186/1880-5981-66-105
Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308–3323. https://doi.org/10.1785/0220220047 DOI: https://doi.org/10.1785/0220220047
González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., … Yalciner, A. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources. Journal of Geophysical Research: Oceans, 114(C11). https://doi.org/10.1029/2008jc005132 DOI: https://doi.org/10.1029/2008JC005132
González, F. I., LeVeque, R. J., Chamberlain, P., Hirai, B., Varkovitzky, J., & George, D. L. (2011). Validation of the GeoClaw model. NTHMP MMS Tsunami Inundation Model Validation Workshop, 1–84. https://depts.washington.edu/clawpack/links/nthmp-benchmarks/geoclaw-results.pdf
González, J., González, G., Aránguiz, R., Melgar, D., Zamora, N., Shrivastava, M. N., Das, R., Catalán, P. A., & Cienfuegos, R. (2019). A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Natural Hazards, 100(1), 231–254. https://doi.org/10.1007/s11069-019-03809-8 DOI: https://doi.org/10.1007/s11069-019-03809-8
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., … Thio, H. K. (2017). Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics, 55(4), 1158–1198. https://doi.org/10.1002/2017rg000579 DOI: https://doi.org/10.1002/2017RG000579
Grilli, S. T., Harris, J. C., Tajalli Bakhsh, T. S., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., & Shi, F. (2012). Numerical Simulation of the 2011 Tohoku Tsunami Based on a New Transient FEM Co-seismic Source: Comparison to Far- and Near-Field Observations. Pure and Applied Geophysics, 170(6–8), 1333–1359. https://doi.org/10.1007/s00024-012-0528-y DOI: https://doi.org/10.1007/s00024-012-0528-y
Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth and Planetary Science Letters, 468, 94–100. https://doi.org/10.1016/j.epsl.2017.04.003 DOI: https://doi.org/10.1016/j.epsl.2017.04.003
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723
Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li, L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., & Sieh, K. (2012). The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near‐field GPS data. Journal of Geophysical Research: Solid Earth, 117(B6). https://doi.org/10.1029/2012jb009159 DOI: https://doi.org/10.1029/2012JB009159
Hirshorn, B., Weinstein, S., Wang, D., Koyanagi, K., Becker, N., & McCreery, C. (2020). Earthquake Source Parameters, Rapid Estimates for Tsunami Forecasts and Warnings. In Encyclopedia of Complexity and Systems Science (pp. 1–35). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_160-2 DOI: https://doi.org/10.1007/978-3-642-27737-5_160-2
Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustaman, B., Anugrah, S. D., & Thio, H. K. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences, 14(11), 3105–3122. https://doi.org/10.5194/nhess-14-3105-2014 DOI: https://doi.org/10.5194/nhess-14-3105-2014
Ichinose, G., Somerville, P., Thio, H. K., Graves, R., & O’Connell, D. (2007). Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data. Journal of Geophysical Research: Solid Earth, 112(B7). https://doi.org/10.1029/2006jb004728 DOI: https://doi.org/10.1029/2006JB004728
Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1 DOI: https://doi.org/10.1016/0031-9201(72)90058-1
LeVeque, R. J., George, D. L., & Berger, M. J. (2011). Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 20, 211–289. https://doi.org/10.1017/s0962492911000043 DOI: https://doi.org/10.1017/S0962492911000043
Li, L., Switzer, A. D., Chan, C., Wang, Y., Weiss, R., & Qiu, Q. (2016). How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8), 6250–6272. https://doi.org/10.1002/2016jb013111 DOI: https://doi.org/10.1002/2016JB013111
Mandli, K. T., Ahmadia, A. J., Berger, M., Calhoun, D., George, D. L., Hadjimichael, Y., Ketcheson, D. I., Lemoine, G. I., & LeVeque, R. J. (2016). Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Computer Science, 2, e68. https://doi.org/10.7717/peerj-cs.68 DOI: https://doi.org/10.7717/peerj-cs.68
Melgar, D. (2025). Model output data for Alaska far-field tsunami simulations. Zenodo. https://doi.org/10.5281/zenodo.15085678
Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324–3349. https://doi.org/10.1002/2014jb011832 DOI: https://doi.org/10.1002/2014JB011832
Melgar, D., & Hayes, G. P. (2017). Systematic Observations of the Slip Pulse Properties of Large Earthquake Ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017gl074916 DOI: https://doi.org/10.1002/2017GL074916
Melgar, D., Lin, T., Kong, Q., christineruhl, & Marfito, B. (2021). dmelgarm/MudPy: v1.3 (v1.3). Zenodo. https://doi.org/10.5281/zenodo.5397091
Melgar, D., Williamson, A. L., & Salazar-Monroy, E. F. (2019). Differences between heterogenous and homogenous slip in regional tsunami hazards modelling. Geophysical Journal International, 219(1), 553–562. https://doi.org/10.1093/gji/ggz299 DOI: https://doi.org/10.1093/gji/ggz299
Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310
Mori, N., Goda, K., & Cox, D. (2017). Recent Process in Probabilistic Tsunami Hazard Analysis (PTHA) for Mega Thrust Subduction Earthquakes. In The 2011 Japan Earthquake and Tsunami: Reconstruction and Restoration (pp. 469–485). Springer International Publishing. https://doi.org/10.1007/978-3-319-58691-5_27 DOI: https://doi.org/10.1007/978-3-319-58691-5_27
Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011gl049210 DOI: https://doi.org/10.1029/2011GL049210
Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes. Journal of Geophysical Research: Solid Earth, 103(B11), 26885–26898. https://doi.org/10.1029/98jb02236 DOI: https://doi.org/10.1029/98JB02236
NOAA National Geophysical Data Center. (2006). 2-minute gridded global relief data (ETOPO2) v2. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5J1012Q DOI: https://doi.org/10.7289/V5J1012Q
Nosov, M. A., Bolshakova, A. V., & Kolesov, S. V. (2013). Displaced Water Volume, Potential Energy of Initial Elevation, and Tsunami Intensity: Analysis of Recent Tsunami Events. Pure and Applied Geophysics, 171(12), 3515–3525. https://doi.org/10.1007/s00024-013-0730-6 DOI: https://doi.org/10.1007/s00024-013-0730-6
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. https://doi.org/10.1785/bssa0750041135 DOI: https://doi.org/10.1785/BSSA0750041135
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040. https://doi.org/10.1785/bssa0820021018 DOI: https://doi.org/10.1785/BSSA0820021018
Powers, P. M., Altekruse, J. M., Llenos, A. L., Michael, A. J., Haynie, K. L., Haeussler, P. J., Bender, A. M., Rezaeian, S., Moschetti, M. P., Smith, J. A., Briggs, R. W., Witter, R. C., Mueller, C. S., Zeng, Y., Girot, D. L., Herrick, J. A., Shumway, A. M., & Petersen, M. D. (2024). The 2023 Alaska National Seismic Hazard Model. Earthquake Spectra, 40(4), 2545–2597. https://doi.org/10.1177/87552930241266741 DOI: https://doi.org/10.1177/87552930241266741
Priest, G. R., Witter, R. C., Zhang, Y. J., Wang, K., Goldfinger, C., Stimely, L. L., English, J. T., Pickner, S. G., Hughes, K. L., Wille, T. E., & others. (2013). Tsunami inundation scenarios for Oregon. Oregon Department of Geology Mineral Industries Open-File Report O-13, 19. https://d3itl75cn7661p.cloudfront.net/dogami/ofr/O-19-04_report.pdf
Riquelme, S., & Fuentes, M. (2021). Tsunami Efficiency Due to Very Slow Earthquakes. Seismological Research Letters, 92(5), 2998–3006. https://doi.org/10.1785/0220200198 DOI: https://doi.org/10.1785/0220200198
Riquelme, S., Schwarze, H., Fuentes, M., & Campos, J. (2020). Near‐Field Effects of Earthquake Rupture Velocity Into Tsunami Runup Heights. Journal of Geophysical Research: Solid Earth, 125(6). https://doi.org/10.1029/2019jb018946 DOI: https://doi.org/10.1029/2019JB018946
Ruiz-Angulo, A., Melgar, D., de Marez, C., Deniau, A., Nencioli, F., & Hjörleifsdóttir, V. (2025). SWOT Satellite Altimetry Observations and Source Model for the Tsunami from the 2025 M8.8 Kamchatka Earthquake. The Seismic Record, 5(4), 341–351. https://doi.org/10.1785/0320250037 DOI: https://doi.org/10.1785/0320250037
Sahakian, V. J., Melgar, D., & Muzli, M. (2019). Weak Near‐Field Behavior of a Tsunami Earthquake: Toward Real‐Time Identification for Local Warning. Geophysical Research Letters, 46(16), 9519–9528. https://doi.org/10.1029/2019gl083989 DOI: https://doi.org/10.1029/2019GL083989
Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877–888. https://doi.org/10.1111/j.1365-246x.2009.04206.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04206.x
Salazar‐Monroy, E. F., Melgar, D., Jaimes, M. A., & Ramirez‐Guzman, L. (2021). Regional Probabilistic Tsunami Hazard Analysis for the Mexican Subduction Zone From Stochastic Slip Models. Journal of Geophysical Research: Solid Earth, 126(6). https://doi.org/10.1029/2020jb020781 DOI: https://doi.org/10.1029/2020JB020781
Satake, K. (1994). Mechanism of the 1992 Nicaragua Tsunami Earthquake. Geophysical Research Letters, 21(23), 2519–2522. https://doi.org/10.1029/94gl02338 DOI: https://doi.org/10.1029/94GL02338
Sementsov, K. A., Baba, T., Kolesov, S. V., Tanioka, Y., & Nosov, M. A. (2024). The effect of earthquake fault rupture kinematics on tsunami generation: a numerical study of real events. Geophysical Journal International, 240(2), 920–941. https://doi.org/10.1093/gji/ggae413 DOI: https://doi.org/10.1093/gji/ggae413
Sepúlveda, I., Liu, P. L. ‐F., & Grigoriu, M. (2019). Probabilistic Tsunami Hazard Assessment in South China Sea With Consideration of Uncertain Earthquake Characteristics. Journal of Geophysical Research: Solid Earth, 124(1), 658–688. https://doi.org/10.1029/2018jb016620 DOI: https://doi.org/10.1029/2018JB016620
Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2010jb008169 DOI: https://doi.org/10.1029/2010JB008169
Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude. Seismological Research Letters, 81(6), 941–950. https://doi.org/10.1785/gssrl.81.6.941 DOI: https://doi.org/10.1785/gssrl.81.6.941
Suppasri, A., Imamura, F., & Koshimura, S. (2010). Effects of the Rupture Velocity of Fault Motion, Ocean Current and Initial Sea Level on the Transoceanic Propagation of Tsunami. Coastal Engineering Journal, 52(2), 107–132. https://doi.org/10.1142/s0578563410002142 DOI: https://doi.org/10.1142/S0578563410002142
Taha, B. A., Addie, A. J., Haider, A. J., Osman, S. A., Ramli, M. Z., & Arsad, N. (2025). A review of seismic detection using fiber optic distributed acoustic sensing: from telecommunication cables to earthquake sensors. Natural Hazards, 121(12), 13927–13959. https://doi.org/10.1007/s11069-025-07370-5 DOI: https://doi.org/10.1007/s11069-025-07370-5
Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864. https://doi.org/10.1029/96gl00736 DOI: https://doi.org/10.1029/96GL00736
Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. (2005). The Global Reach of the 26 December 2004 Sumatra Tsunami. Science, 309(5743), 2045–2048. https://doi.org/10.1126/science.1114576 DOI: https://doi.org/10.1126/science.1114576
UNDRR, C. (2018). Economic losses, poverty & disasters: 1998-2017. United Nations Office for Disaster Risk Reduction. https://www.undrr.org/publication/economic-losses-poverty-disasters-1998-2017
University of Washington Working Group. (2017). Probabilistic Tsunami Design Maps for the ASCE 7-16 Standard. In ASCE 7-16 Tsunami Design Zone Maps for Selected Locations (pp. 1–17). American Society of Civil Engineers. https://doi.org/10.1061/9780784480748.001 DOI: https://doi.org/10.1061/9780784480748.001
Williamson, A., Melgar, D., & Rim, D. (2019). The Effect of Earthquake Kinematics on Tsunami Propagation. Journal of Geophysical Research: Solid Earth, 124(11), 11639–11650. https://doi.org/10.1029/2019jb017522 DOI: https://doi.org/10.1029/2019JB017522
Wilson, A., & Ma, S. (2021). Wedge Plasticity and Fully Coupled Simulations of Dynamic Rupture and Tsunami in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2020jb021627 DOI: https://doi.org/10.1029/2020JB021627
Witter, R. C., Zhang, Y., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L. L., English, J. T., & Ferro, P. A. (2011). Simulating tsunami inundation at Bandon, Coos County, Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. Oregon Department of Geology and Mineral Industries Special Paper 43, 57. https://digitalcollections.library.oregon.gov/nodes/view/162548
Ye, L., Bai, Y., Si, D., Lay, T., Cheung, K. F., & Kanamori, H. (2022). Rupture Model for the 29 July 2021 MW 8.2 Chignik, Alaska Earthquake Constrained by Seismic, Geodetic, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 127(7). https://doi.org/10.1029/2021jb023676 DOI: https://doi.org/10.1029/2021JB023676
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Diego Melgar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers 2225286 -
National Aeronautics and Space Administration
Grant numbers 80NSSC23K1326

