Shoreline crossing Moho geometry of the Cascadia slab: CascadiaMoho1.0

Authors

DOI:

https://doi.org/10.26443/seismica.v2i4.1674

Abstract

Accurate characterization of subducting slab geometry is fundamental to understanding the distribution of earthquakes, the dynamics of arc volcanism, and the assessment of seismic hazards. Well-constrained slab structures also serve as critical inputs for geophysical imaging and geodynamic modeling efforts that aim to resolve key processes in subduction zones. In this study, we present a comprehensive, margin-wide model of the Moho associated with the subducting oceanic plate beneath the Cascadia subduction zone, developed through the integration of publicly available offshore and onshore datasets. We integrate high-resolution seismic reflection data from the offshore CASIE21 expedition with three previously published, lower-resolution onshore slab models (McCrory et al., 2012; Hayes et al., 2018; Bloch et al., 2023) to construct a unified Moho surface. This synthesis produces six alternative Moho geometries, enabling flexibility for studies that require varying structural assumptions. The accompanying open-source workflow offers a transparent and adaptable approach for combining heterogeneous datasets. In areas lacking direct constraints, Moho depths were estimated through interpolation from adjacent regions. The resulting models provide a valuable foundation for analyzing along-strike variations in slab structure and their implications for Cascadia geodynamics.

References

Acharya, H. (1992). Comparison of seismicity parameters in different subduction zones and its implications for the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 97(B6), 8831–8842. https://doi.org/10.1029/92JB00069 DOI: https://doi.org/10.1029/92JB00069

Ars, J.-M., Tarits, P., Hautot, S., & Bellanger, M. (2024). Geophysical models integration using principal component analysis: application to unconventional geothermal exploration. Geophysical Journal International, 239(3), 1789–1798. https://doi.org/10.1093/gji/ggae357 DOI: https://doi.org/10.1093/gji/ggae357

Ashraf, A., & Filina, I. (2023a). New 2.75-D gravity modeling reveals the low-density nature of propagator wakes in the Juan de Fuca plate. Tectonophysics, 869, 230127. https://doi.org/10.1016/j.tecto.2023.230127 DOI: https://doi.org/10.1016/j.tecto.2023.230127

Ashraf, A., & Filina, I. (2023b). Zones of Weakness Within the Juan de Fuca Plate Mapped From the Integration of Multiple Geophysical Data and Their Relation to Observed Seismicity. Geochemistry, Geophysics, Geosystems, 24(10), e2023GC010943. https://doi.org/10.1029/2023GC010943 DOI: https://doi.org/10.1029/2023GC010943

Ashraf, A., Hooft, E. E. E., Toomey, D. R., Tréhu, A. M., Nolan, S., Wirth, E. A., & Ward, K. M. (2025). A High‐Resolution 3‐D P‐Wave Velocity Structure of the South‐Central Cascadia Subduction Zone From Wide‐Angle Shore‐Crossing Seismic Refraction Data. Journal of Geophysical Research: Solid Earth, 130(2), e2024JB029525. https://doi.org/10.1029/2024JB029525 DOI: https://doi.org/10.1029/2024JB029525

Ashraf, A., Hooft, E. E., & Toomey, D. R. (2024). High-resolution shore-crossing 3-D seismic tomographic model in Southern Oregon. AGU Fall Meeting Abstracts, 2024, T43D-02.

Baes, M., Govers, R., & Wortel, R. (2011). Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from numerical models. Geophysical Journal International, 184(3), 991–1008. https://doi.org/10.1111/j.1365-246X.2010.04896.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04896.x

Biemiller, J., Gabriel, A.-A., May, D., & Staisch, L. (2024). Subduction zone geometry modulates the megathrust earthquake cycle: Magnitude, recurrence, and variability. Journal of Geophysical Research: Solid Earth, 129(8), e2024JB029191. https://doi.org/10.1029/2024JB029191 DOI: https://doi.org/10.1029/2024JB029191

Bloch, W., Bostock, M. G., & Audet, P. (2023). A Cascadia Slab Model From Receiver Functions. Geochemistry, Geophysics, Geosystems, 24(10), e2023GC011088. https://doi.org/10.1029/2023GC011088 DOI: https://doi.org/10.1029/2023GC011088

Boston, B., Carbotte, S. M., Han, S., Shuck, B., Beeson, J. W., Canales, J. P., Nedimovic, M. R., & Tobin, H. J. (2024). Megathrust Step-down into Igneous Oceanic Crust at the Cascadia Subduction Zone and its Implications for Seismogenesis. AGU Fall Meeting Abstracts, 2024(3187), T53A-3187.

Carbotte, S. M., Boston, B., Han, S., Shuck, B., Beeson, J., Canales, J. P., Tobin, H., Miller, N., Nedimovic, M., Tréhu, A., & others. (2024). Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia. Science Advances, 10(23), eadl3198. https://doi.org/10.1126/sciadv.adl3198 DOI: https://doi.org/10.1126/sciadv.adl3198

Gao, D., Wang, K., Davis, E. E., Jiang, Y., Insua, T. L., & He, J. (2017). Thermal state of the E xplorer segment of the C ascadia subduction zone: Implications for seismic and tsunami hazards. Geochemistry, Geophysics, Geosystems, 18(4), 1569–1579. https://doi.org/10.1002/2017GC006838 DOI: https://doi.org/10.1002/2017GC006838

Gao, H., & Long, M. D. (2022). Tectonics and Geodynamics of the Cascadia Subduction Zone. Elements, 18(4), 226–231. https://doi.org/10.2138/gselements.18.4.226 DOI: https://doi.org/10.2138/gselements.18.4.226

Gardner, J. V., Cacchione, D., Drake, D., Edwards, B., Field, M., Hampton, M., Karl, H. A., Kenyon, N. H., Masson, D., McCulloch, D., & others. (1993). Map showing sediment isopachs in the deep-sea basins of the Pacific continental margin, Strait of Juan de Fuca to Cape Mendocino [Techreport]. US Geological Survey. https://doi.org/10.3133/i2091A DOI: https://doi.org/10.3133/i2091A

Gerya, T. V., & Meilick, F. (2011). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29(1), 7–31. https://doi.org/10.1111/j.1525-1314.2010.00904.x DOI: https://doi.org/10.1111/j.1525-1314.2010.00904.x

Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., Carton, H., Gibson, J. C., & Horning, G. W. (2016). Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research: Solid Earth, 121(3), 1849–1872. https://doi.org/10.1002/2015JB012416 DOI: https://doi.org/10.1002/2015JB012416

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723 DOI: https://doi.org/10.1126/science.aat4723

Kincaid, C. (1995). Subduction dynamics: From the trench to the core-mantle boundary. Reviews of Geophysics, 33(S1), 401–412. https://doi.org/10.1029/95RG00437 DOI: https://doi.org/10.1029/95RG00437

Laurencin, M., Graindorge, D., Klingelhoefer, F., Marcaillou, B., & Evain, M. (2018). Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone. Earth and Planetary Science Letters, 492, 59–72. https://doi.org/10.1016/j.epsl.2018.03.048 DOI: https://doi.org/10.1016/j.epsl.2018.03.048

Magni, V., Allen, M. B., van Hunen, J., & Bouilhol, P. (2017). Continental underplating after slab break-off. Earth and Planetary Science Letters, 474, 59–67. https://doi.org/10.1016/j.epsl.2017.06.017 DOI: https://doi.org/10.1016/j.epsl.2017.06.017

Marjanović, M., Carbotte, S. M., Nedimović, M. R., & Canales, J. P. (2011). Gravity and seismic study of crustal structure along the Juan de Fuca Ridge axis and across pseudofaults on the ridge flanks. Geochemistry, Geophysics, Geosystems, 12(5). https://doi.org/10.1029/2010GC003439 DOI: https://doi.org/10.1029/2010GC003439

McCrory, P. A., Blair, J. L., Waldhauser, F., & Oppenheimer, D. H. (2012). Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity: JDF SLAB GEOMETRY AND WBZ SEISMICITY. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2012JB009407 DOI: https://doi.org/10.1029/2012JB009407

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310 DOI: https://doi.org/10.1080/01621459.1949.10483310

Nolan, S., Trehu, A. M., Hooft, E. E., Ashraf, A., Wirth, E., Ward, K. M., & Stone, I. (2022). Cascadia 2021: Developing a 3-D Seismic Velocity Model Across the Central Cascadia Subduction Margin. AGU Fall Meeting Abstracts, 2022, T32E-0189.

Parsons, T., Trehu, A. M., Luetgert, J. H., Miller, K., Kilbride, F., Wells, R. E., Fisher, M. A., Flueh, E., ten Brink, U. S., & Christensen, N. I. (1998). A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin. Geology, 26(3), 199–202. https://doi.org/10.1130/0091-7613(1998)026<0199:ANVITC>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1998)026<0199:ANVITC>2.3.CO;2

Schellart, W. P., & Rawlinson, N. (2010). Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483(1–2), 4–19. https://doi.org/10.1016/j.tecto.2009.08.030 DOI: https://doi.org/10.1016/j.tecto.2009.08.030

Shuck, B., Gulick, S. P., Carbotte, S. M., Miller, N. C., Watt, J. T., Patton, J. R., Trehu, A. M., Greiner, K., Hagemeier, D., Briggs, R. W., & others. (2024). Filling in the Gap: Reprocessing Legacy Active-Source Seismic Data from the Southern Cascadia Subduction Zone to Assess Hazards. American Geophysical Union, Annual Fall Meeting.

Toomey, D. R., Allen, R. M., Barclay, A. H., Bell, S. W., Bromirski, P. D., Carlson, R. L., Chen, X., Collins, J. A., Dziak, R. P., Evers, B., & others. (2014). The Cascadia Initiative: A sea change in seismological studies of subduction zones. Oceanography, 27(2), 138–150. https://doi.org/10.1029/92JB00069 DOI: https://doi.org/10.5670/oceanog.2014.49

Wang, K., & Tréhu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. Journal of Geodynamics, 98, 1–18. https://doi.org/10.1016/j.jog.2016.03.010 DOI: https://doi.org/10.1016/j.jog.2016.03.010

Yepes, H., Audin, L., Alvarado, A., Beauval, C., Aguilar, J., Font, Y., & Cotton, F. (2016). A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment. Tectonics, 35(5), 1249–1279. https://doi.org/10.1002/2015TC003941 DOI: https://doi.org/10.1002/2015TC003941

Downloads

Additional Files

Published

2026-02-02

How to Cite

Ashraf, A., & Hooft, E. E. E. (2026). Shoreline crossing Moho geometry of the Cascadia slab: CascadiaMoho1.0. Seismica, 2(4). https://doi.org/10.26443/seismica.v2i4.1674

Issue

Section

Special Issue: the Cascadia Subduction Zone