A multiple asymmetric bilateral rupture sequence derived from the peculiar tele-seismic P-waves of the 2025 Mandalay, Myanmar earthquake
DOI:
https://doi.org/10.26443/seismica.v4i1.1691Keywords:
Earthquake rupture processAbstract
A large strike-slip earthquake occurred in central Myanmar on March 28, 2025. The aftershock distribution suggests that the rupture of the mainshock propagated mainly to the south. However, a large-amplitude phase lasting 20 s, followed by a short-period pulse-like phase, were observed at the stations on the north side of the source, while on the south side, tremor-like phases with multiple peaks continued for 90 s. Using the potency density tensor inversion method, we explain the "unusual" waveform signature of the Myanmar earthquake by a multiple, asymmetric bilateral rupture, involving boomerang-like back-rupture propagation and supershear.
References
Akaike, H. (1980). Likelihood and the Bayes procedure. Trab. Estad. Y Investig. Oper., 31(1), 143–166. https://doi.org/10.1007/BF02888350
Albuquerque Seismological Laboratory (ASL)/USGS. (1992). New China Digital Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IC
Albuquerque Seismological Laboratory (ASL)/USGS. (1993). Global Telemetered Seismograph Network (USAF/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GT
Albuquerque Seismological Laboratory/USGS. (1988). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU
Bertrand, G., & Rangin, C. (2003). Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India–Indochina oblique convergence since the Oligocene. Journal of Asian Earth Sciences, 21(10), 1139–1157. https://doi.org/10.1016/S1367-9120(02)00183-9
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11(6), 2541–2562. https://doi.org/10.5194/gmd-11-2541-2018
Crameri, Fabio, Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in science communication. Nat. Commun., 11(1), 5444. https://doi.org/10.1038/s41467-020-19160-7
Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154
DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Fadil, W., Wei, S., Bradley, K., Wang, Y., He, Y., Sandvol, E., Huang, B.-S., Hubbard, J., Thant, M., & Htwe, Y. M. M. (2023). Active Faults Revealed and New Constraints on Their Seismogenic Depth from a High-Resolution Regional Focal Mechanism Catalog in Myanmar (2016–2021). Bulletin of the Seismological Society of America, 113(2), 613–635. https://doi.org/10.1785/0120220195
Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. J. Geophys. Res., 77(23), 4432–4460. https://doi.org/10.1029/JB077i023p04432
Gasperini, P., & Vannucci, G. (2003). FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci., 29(7), 893–901. https://doi.org/10.1016/S0098-3004(03)00096-7
GEOFON Data Centre. (1993). GEOFON Seismic Network. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/TR560404
Gomberg, J., & Johnson, P. (2005). Dynamic triggering of earthquakes. Nature, 437(7060), 830–830. https://doi.org/10.1038/437830a
Haskell, N. A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54(6A), 1811–1841. https://doi.org/10.1785/BSSA05406A1811
Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J.-M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience, 13(9), 647–653. https://doi.org/10.1038/s41561-020-0619-9
Hirasawa, T., & Stauder, W. (1965). On the seismic body waves from a finite moving source. Bulletin of the Seismological Society of America, 55(2), 237–262. https://doi.org/10.1785/BSSA0550020237
Holden, C., Kaneko, Y., D’Anastasio, E., Benites, R., Fry, B., & Hamling, I. J. (2017). The 2016 Kaikōura Earthquake Revealed by Kinematic Source Inversion and Seismic Wavefield Simulations: Slow Rupture Propagation on a Geometrically Complex Crustal Fault Network. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017GL075301
Hurukawa, N., & Maung Maung, P. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918. Geophysical Research Letters, 38(1), L01310. https://doi.org/10.1029/2010GL046099
Institut De Physique Du Globe De Paris (IPGP), & Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G
Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves-III. Bull. Seism. Soc. Am., 81(6), 2335–2350. https://doi.org/10.1785/BSSA0810062335
Knopoff, L., & Gilbert, F. (1959). Radiation from a strike-slip fault. Bulletin of the Seismological Society of America, 49(2), 163–178. https://doi.org/10.1785/BSSA0490020163
Laske, G., Masters, T. G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Https://Igppweb.Ucsd.Edu/ Gabi/Crust1.Html, Geophys. Res. Abstr. 15, Abstr. EGU2013-2658, 15, Abstract EGU2013-2658.
Lindsey, E. O., Wang, Y., Aung, L. T., Chong, J.-H., Qiu, Q., Mallick, R., Feng, L., Aung, P. S., Tin, T. Z. H., Min, S. M., Bradley, K., Than, O., Oo, K. M., Thant, M., Masson, F., Bürgmann, R., & Hill, E. M. (2023). Active subduction and strain partitioning in western Myanmar revealed by a dense survey GNSS network. Earth and Planetary Science Letters, 622, 118384. https://doi.org/10.1016/j.epsl.2023.118384
Mallick, R., Lindsey, E. O., Feng, L., Hubbard, J., Banerjee, P., & Hill, E. M. (2019). Active Convergence of the India‐Burma‐Sunda Plates Revealed by a New Continuous GPS Network. JGR Solid Earth, 124(3), 3155–3171. https://doi.org/10.1029/2018JB016480
Maurin, T., Masson, F., Rangin, C., Min, U. T., & Collard, P. (2010). First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault. Geology, 38(7), 591–594. https://doi.org/10.1130/G30872.1
McCaffrey, R. (1992a). Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research: Solid Earth, 97(B6), 8905–8915. https://doi.org/10.1029/92JB00483
McCaffrey, R. (1992b). Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res., 97(B6), 8905–8915. https://doi.org/10.1029/92JB00483
MedNet Project Partner Institutions. (1990). Mediterranean Very Broadband Seismographic Network (MedNet). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/SD/FBBBTDTD6Q
Mon, C. T., Gong, X., Wen, Y., Jiang, M., Chen, Q., Zhang, M., Hou, G., Thant, M., Sein, K., & He, Y. (2020). Insight Into Major Active Faults in Central Myanmar and the Related Geodynamic Sources. Geophysical Research Letters, 47(8), e2019GL086236. https://doi.org/10.1029/2019GL086236
Montagner, J.-P., & Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference earth models. Geophysical Journal International, 125(1), 229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x
Morishita, T., Soe, H. M., Htay, H., Lwin, T. H., Guotana, J. M., Tamura, A., Mizukami, T., & Zaw, K. (2023). Origin and Evolution of Ultramafic Rocks along the Sagaing Fault, Myanmar. J. Earth Sci., 34(1), 122–132. https://doi.org/10.1007/s12583-021-1435-x
Northern California Earthquake Data Center. (2014). Berkeley Digital Seismic Network (BDSN). Northern California Earthquake Data Center. https://doi.org/10.7932/BDSN
Ohara, K., Yagi, Y., Yamashita, S., Okuwaki, R., Hirano, S., & Fukahata, Y. (2023). Complex evolution of the 2016 Kaikoura earthquake revealed by teleseismic body waves. Progress in Earth and Planetary Science, 10(1), 35. https://doi.org/10.1186/s40645-023-00565-z
Okuwaki, R., Hirano, S., Yagi, Y., & Shimizu, K. (2020). Inchworm-like source evolution through a geometrically complex fault fueled persistent supershear rupture during the 2018 Palu Indonesia earthquake. Earth and Planetary Science Letters, 547, 116449. https://doi.org/10.1016/j.epsl.2020.116449
Panda, D., Kundu, B., Gahalaut, V. K., & Rangin, C. (2018). Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing Fault, Myanmar. Journal of Asian Earth Sciences, 166, 89–94. https://doi.org/10.1016/j.jseaes.2018.07.029
Sato, D., Fukahata, Y., & Nozue, Y. (2022). Appropriate reduction of the posterior distribution in fully Bayesian inversions. Geophys. J. Int., 231(2), 950–981. https://doi.org/10.1093/gji/ggac231
Scripps Institution of Oceanography. (1986). Global Seismograph Network - IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II
Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 220(2), 1055–1065. https://doi.org/10.1093/gji/ggz496
Sloan, R. A., Elliott, J. R., Searle, M. P., & Morley, C. K. (2017). Chapter 2 Active tectonics of Myanmar and the Andaman Sea. Memoirs, 48(1), 19–52. https://doi.org/10.1144/M48.2
Socquet, A., Vigny, C., Chamot‐Rooke, N., Simons, W., Rangin, C., & Ambrosius, B. (2006). India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J. Geophys. Res., 111(B5), 2005JB003877. https://doi.org/10.1029/2005JB003877
Styron, R., & Pagani, M. (2020). The GEM Global Active Faults Database. Earthquake Spectra, 36(1_suppl), 160–180. https://doi.org/10.1177/8755293020944182
Styron, R., Taylor, M., & Okoronkwo, K. (2010). Database of Active Structures From the Indo‐Asian Collision. Eos, Transactions American Geophysical Union, 91(20), 181–182. https://doi.org/10.1029/2010EO200001
Tha Zin Htet Tin, Nishimura, T., Hashimoto, M., Lindsey, E. O., Aung, L. T., Min, S. M., & Thant, M. (2022). Present-day crustal deformation and slip rate along the southern Sagaing fault in Myanmar by GNSS observation. Journal of Asian Earth Sciences, 228, 105125. https://doi.org/10.1016/j.jseaes.2022.105125
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10), 1847–1864. https://doi.org/10.1029/2019EA000658
U.S. Geological Survey Earthquake Hazards Program. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products. https://doi.org/10.5066/F7MS3QZH
USGS. (2025). M 7.7 - 2025 Mandalay, Burma (Myanmar) Earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/executive
Vigny, C., Socquet, A., Rangin, C., Chamot‐Rooke, N., Pubellier, M., Bouin, M., Bertrand, G., & Becker, M. (2003). Present‐day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res., 108(B11), 2002JB001999. https://doi.org/10.1029/2002JB001999
Wang, Y., Sieh, K., Tun, S. T., Lai, K., & Myint, T. (2014a). Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4), 3767–3822. https://doi.org/10.1002/2013JB010762
Wang, Y., Sieh, K., Tun, S. T., Lai, K., & Myint, T. (2014b). Active tectonics and earthquake potential of the Myanmar region. JGR Solid Earth, 119(4), 3767–3822. https://doi.org/10.1002/2013JB010762
Wessels, R. J. F., Ellouz-Zimmermann, N., Bellahsen, N., Hamon, Y., Rosenberg, C., Deschamps, R., Momplaisir, R., Boisson, D., & Leroy, S. (2019). Polyphase tectonic history of the Southern Peninsula, Haiti: from folding-and-thrusting to transpressive strike-slip. Tectonophysics, 751, 125–149. https://doi.org/10.1016/j.tecto.2018.12.011
Witze, A. (2025). Deadly Myanmar earthquake was probably a rare rupture, scientists say. Nature, 640(8058), 296–297. https://doi.org/10.1038/d41586-025-00997-1
Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017a). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017GL072770
Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017b). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017GL072770
Yagi, Y., & Fukahata, Y. (2011). Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186(2), 711–720. https://doi.org/10.1111/j.1365-246X.2011.05043.x
Yagi, Y., Okuwaki, R., Enescu, B., & Lu, J. (2023). Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence. Scientific Reports, 13(1), 1107. https://doi.org/10.1038/s41598-023-27384-y
Yamashita, S., Yagi, Y., & Okuwaki, R. (2022). Irregular rupture propagation and geometric fault complexities during the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Scientific Reports, 12(1), 4575. https://doi.org/10.1038/s41598-022-08671-6
Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y. (2021). Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Scientific Reports, 11(1), 5979. https://doi.org/10.1038/s41598-021-85522-w
Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y. (2022). Potency density tensor inversion of complex body waveforms with time-adaptive smoothing constraint. Geophysical Journal International, 231(1), 91–107. https://doi.org/10.1093/gji/ggac181
Yang, H.-B., Chang, Y.-K., Liu, W., Sung, G.-Y., Gao, J.-C., Thant, M., Maung Maung, P., & Chan, C.-H. (2023). Probabilistic seismic hazard assessments for Myanmar and its metropolitan areas. Geosci. Lett., 10(1), 48. https://doi.org/10.1186/s40562-023-00301-x
Yang, S., Xiao, Z., Wei, S., He, Y., Mon, C. T., Hou, G., Thant, M., Sein, K., & Jiang, M. (2024). New Insights Into Active Faults Revealed by a Deep‐Learning‐Based Earthquake Catalog in Central Myanmar. Geophysical Research Letters, 51(2), e2023GL105159. https://doi.org/10.1029/2023GL105159
Zhang, B., Gao, Y., Liu, T., Xu, X., Xu, G., Lu, Z., Feng, X., & Yu, Z. (2024). Shallow crustal deformation in the Yunnan-Myanmar and surrounding areas by regionally weighted interpolation of GPS measurements data. Advances in Space Research, 74(1), 211–222. https://doi.org/10.1016/j.asr.2024.03.075
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Naohiro Inoue, Ryo Yamaguchi, Yuji Yagi, Ryo Okuwaki, Enescu Bogdan, Tira Tadapansawut

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Japan Society for the Promotion of Science
Grant numbers 22K03751 -
Japan Society for the Promotion of Science
Grant numbers 25K01075 -
Japan Society for the Promotion of Science
Grant numbers 24H01020