Designing small-aperture seismic arrays to enhance earthquake monitoring on ocean islands: Application to Antikythera island, Greece

Authors

  • Konstantinos Lentas Institute of Geodynamics, National Observatory of Athens https://orcid.org/0000-0003-1713-5377
  • Christos Evangelidis Institute of Geodynamics, National Observatory of Athens https://orcid.org/0000-0001-8733-8984
  • Vassilios Karastathis Institute of Geodynamics, National Observatory of Athens

DOI:

https://doi.org/10.26443/seismica.v5i1.1720

Keywords:

Body waves, Earthquake location, Seismic array, Optimization, Synthetic Waveforms, Hellenic Subduction Zone

Abstract

We present an optimisation strategy in order to design a seismic array at the Antikythera island (Greece), consisted of nine elements in total, namely, eight new and one permanent station. This new seismic array aims to improve the seismic event detection capability and location accuracy of the Hellenic Unified Seismic Network (HUSN) at the SW-end of Greece, for local and regional seismicity, which is constrained by the sparse station coverage between Peloponnese and Crete. Instead of simply being based on theoretical transfer function calculations, we set up a synthetic dataset of realistic seismic sources and we determine the backazimuth and slowness vectors based on array beamforming via a global optimisation scheme that takes into account several criteria, such as amplitude power, event mislocation, array shape and landscape restrictions. The result is a set of station coordinates whose positions shape different array configurations at each step of the optimisation process, affecting both the maximum amplitude beam of P and S wavefields, as well as the ability of each array configuration to successfully resolve the backazimuth of each seismic source. The optimal array is determined as the one associated with the minimum score of an objective function based on the above criteria, being an irregular shaped array with an aperture of ~4.0 km.

References

Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., & Li, X. (2019). Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-36675-8

Almendros, J., Abella, R., Mora, M. M., & Lesage, P. (2014). Array analysis of the seismic wavefield of long‐period events and volcanic tremor at Arenal volcano, Costa Rica. Journal of Geophysical Research: Solid Earth, 119(7), 5536–5559. https://doi.org/10.1002/2013jb010628

Álvarez-Gómez, J. A. (2019). FMC—Earthquake focal mechanisms data management, cluster and classification. SoftwareX, 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008

Beghein, C., Resovsky, J. S., & Trampert, J. (2002). P and S tomography using normal-mode and surface waves data with a neighbourhood algorithm: P and S tomography with a neighbourhood algorithm. Geophysical Journal International, 149(3), 646–658. https://doi.org/10.1046/j.1365-246x.2002.01684.x

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bocchini, G. M., Karastathis, V., Voulgaris, N., Mouzakiotis, A., Papadopoulos, G., Gika, F., Liakopoulos, S., Tselentis, A., & Lantzourakis, P. (2018). Enhancing routine seismicity monitoring by using a small aperture seismic array, results from the experimental stage of the Pylos array (Western Peloponnese, Greece). 36th ESC General Assembly, Valletta, Malta.

Bungum, H., Husebye, E. S., & Ringdal, F. (1971). The NORSAR Array and Preliminary Results of Data Analysis. Geophysical Journal International, 25(1–3), 115–126. https://doi.org/10.1111/j.1365-246x.1971.tb02334.x

Cabieces, R., Harris, K., Ferreira, A. M. G., Tsekhmistrenko, M., Hicks, S. P., Krüger, F., Geissler, W. H., Hannemann, K., & Schmidt-Aursch, M. C. (2024). Clock drift corrections for large aperture ocean bottom seismometer arrays: application to the UPFLOW array in the mid-Atlantic Ocean. Geophysical Journal International, 239(3), 1709–1728. https://doi.org/10.1093/gji/ggae354

Cabieces, R., Krüger, F., Garcia-Yeguas, A., Villaseñor, A., Buforn, E., Pazos, A., Olivar-Castaño, A., & Barco, J. (2020). Slowness vector estimation over large-aperture sparse arrays with the Continuous Wavelet Transform (CWT): application to Ocean Bottom Seismometers. Geophysical Journal International, 223(3), 1919–1934. https://doi.org/10.1093/gji/ggaa427

Capon, J. (1969). Investigation of long-period noise at the large aperture seismic array. Journal of Geophysical Research, 74(12), 3182–3194. https://doi.org/10.1029/jb074i012p03182

Capon, J., Greenfield, R. J., & Kolker, R. J. (1967). Multidimensional maximum-likelihood processing of a large aperture seismic array. Proceedings of the IEEE, 55(2), 192–211. https://doi.org/10.1109/proc.1967.5439

Cessaro, R. K., & Chan, W. W. (1989). Wide‐angle triangulation array study of simultaneous primary microseism sources. Journal of Geophysical Research: Solid Earth, 94(B11), 15555–15563. https://doi.org/10.1029/jb094ib11p15555

Cotton, F., & Coutant, O. (1997). Dynamic stress variations due to shear faults in a plane-layered medium. Geophysical Journal International, 128(3), 676–688. https://doi.org/10.1111/j.1365-246x.1997.tb05328.x

DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478. https://doi.org/10.1111/j.1365-246x.1990.tb06579.x

Douglas, A. (2007). Forensic seismology revisited. Surveys in Geophysics, 28(1), 1–31. https://doi.org/10.1007/s10712-007-9018-7

Dziewonski, A. M., Chou, T. ‐A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825

Eilon, Z. C., Gaherty, J. B., Zhang, L., Russell, J., McPeak, S., Phillips, J., Forsyth, D. W., & Ekström, G. (2021). The Pacific OBS Research into Convecting Asthenosphere (ORCA) Experiment. Seismological Research Letters, 93(1), 477–493. https://doi.org/10.1785/0220210173

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Frankel, A., Hough, S., Friberg, P., & Busby, R. (1991). Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California. Bulletin of the Seismological Society of America, 81(5), 1900–1922. https://doi.org/10.1785/bssa0810051900

Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J. H., Tselikas, A., Mangou, H., Zafeiropoulou, M., Hadland, R., Bate, D., Ramsey, A., Allen, M., Crawley, A., Hockley, P., Malzbender, T., Gelb, D., Ambrisco, W., & Edmunds, M. G. (2006). Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism. Nature, 444(7119), 587–591. https://doi.org/10.1038/nature05357

Friedrich, A., Krüger, F., & Klinge, K. (1998). Ocean-generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2(1), 47–64. https://doi.org/10.1023/a:1009788904007

Furumoto, M., Kunitomo, T., Inoue, H., Yamada, I., Yamaoka, K., Ikami, A., & Fukao, Y. (1990). Twin sources of high‐frequency volcanic tremor of Izu‐Oshima Volcano, Japan. Geophysical Research Letters, 17(1), 25–27. https://doi.org/10.1029/gl017i001p00025

Gibbons, S. J. (2012). The Applicability of Incoherent Array Processing to IMS Seismic Arrays. Pure and Applied Geophysics, 171(3–5), 377–394. https://doi.org/10.1007/s00024-012-0613-2

Gibbons, S. J., Kværna, T., & Mykkeltveit, S. (2015). Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays? Seismological Research Letters, 86(4), 1148–1159. https://doi.org/10.1785/0220150068

Gibbons, S. J., Näsholm, S. P., Ruigrok, E., & Kværna, T. (2017). Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays. Geophysical Journal International, 213(1), 447–460. https://doi.org/10.1093/gji/ggx550

Gibbons, S. J., & Ringdal, F. (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1), 149–166. https://doi.org/10.1111/j.1365-246x.2006.02865.x

Goldstein, P., & Chouet, B. (1994). Array measurements and modeling of sources of shallow volcanic tremor at Kilauea Volcano, Hawaii. Journal of Geophysical Research: Solid Earth, 99(B2), 2637–2652. https://doi.org/10.1029/93jb02639

Haak, H., Mykkeltveit, S., & Dahlman, O. (2009). Nuclear Test Ban. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6885-0

Hata, M., Nishimura, T., Matsushima, T., Kozono, T., Nagatsuma, T., Murata, K. T., Kikuta, K., Muramatsu, D., & Nakahara, H. (2024). Volcanic tremor associated with successive gas emission activity at a boiling pool: Analyses of seismic array and visible image data recorded at Iwo-Yama in Kirishima Volcanic complex, Japan. Journal of Volcanology and Geothermal Research, 455, 108212. https://doi.org/10.1016/j.jvolgeores.2024.108212

Hudson, T. S., Baird, A. F., Kendall, J. M., Kufner, S. K., Brisbourne, A. M., Smith, A. M., Butcher, A., Chalari, A., & Clarke, A. (2021). Distributed Acoustic Sensing (DAS) for Natural Microseismicity Studies: A Case Study From Antarctica. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2020jb021493

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Karamzadeh, N., Heimann, S., Dahm, T., & Krüger, F. (2018). Application based seismological array design by seismicity scenario modelling. Geophysical Journal International, 216(3), 1711–1727. https://doi.org/10.1093/gji/ggy523

Karastathis, V. K., Drakatos, G., Mouzakiotis, E., Sboras, S., Evangelides, Ch., Daskalaki, E., Lantzourakis, P., Boukouras, K., Fragouli, K., & Chalaris, Th. (2025). Daily monitoring and analysis of the seismicity in concession area BLOCK 10 [Techreport]. Institute of Geodynamics, National Observatory of Athens.

Kaverina, A. N., Lander, A. V., & Prozorov, A. G. (1996). Global Creepex Distribution and Its Relation to Earthquake-Source Geometry and Tectonic Origin. Geophysical Journal International, 125(1), 249–265. https://doi.org/10.1111/j.1365-246x.1996.tb06549.x

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x

Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., & Fichtner, A. (2021). Distributed Acoustic Sensing in Volcano‐Glacial Environments—Mount Meager, British Columbia. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022358

Kværna, T. (1989). On exploitation of small-aperture NORESS type arrays for enhanced P-wave detectability. Bulletin of the Seismological Society of America, 79(3), 888–900. https://doi.org/10.1785/BSSA0790030888

Kværna, T., Gibbons, S. J., & Näsholm, S. P. (2021). CTBT seismic monitoring using coherent and incoherent array processing. Journal of Seismology, 25(5), 1189–1207. https://doi.org/10.1007/s10950-021-10026-z

Kværna, T., & Ringdal, F. (1986). Stability of various f-k estimation techniques. https://doi.org/10.21348/P.1986.0001

Kværna, T., & Ringdal, F. (2013). Detection Capability of the Seismic Network of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty. Bulletin of the Seismological Society of America, 103(2A), 759–772. https://doi.org/10.1785/0120120248

Kværna, T., Ringdal, F., Schweitzer, J., & Taylor, L. (2002). Optimized Seismic Threshold Monitoring - Part 1: Regional Processing. Pure and Applied Geophysics, 159(5), 969–987. https://doi.org/10.1007/s00024-002-8668-0

La Rocca, M., Galluzzo, D., Malone, S., McCausland, W., Saccorotti, G., & Del Pezzo, E. (2008). Testing Small-Aperture Array Analysis on Well-Located Earthquakes, and Application to the Location of Deep Tremor. Bulletin of the Seismological Society of America, 98(2), 620–635. https://doi.org/10.1785/0120060185

Lentas, K., Bowden, D., Melis, N. S., Fichtner, A., Koroni, M., Smolinski, K., Bogris, A., Nikas, T., Simos, C., & Simos, I. (2023). Earthquake location based on Distributed Acoustic Sensing (DAS) as a seismic array. Physics of the Earth and Planetary Interiors, 344, 107109. https://doi.org/10.1016/j.pepi.2023.107109

Lentas, K., Ferreira, A. M. G., Clévédé, E., & Roch, J. (2014). Source models of great earthquakes from ultra low-frequency normal mode data. Physics of the Earth and Planetary Interiors, 233, 41–67. https://doi.org/10.1016/j.pepi.2014.05.011

Lentas, K., & Harris, J. (2019). Enhanced performance of ISC focal mechanism computations as a result of automatic first-motion polarity picking optimization. Journal of Seismology, 23(5), 1141–1159. https://doi.org/10.1007/s10950-019-09862-x

Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., Biondi, B. L., & Ajo‐Franklin, J. B. (2017). Fiber‐Optic Network Observations of Earthquake Wavefields. Geophysical Research Letters, 44(23). https://doi.org/10.1002/2017gl075722

Lindsey, N. J., Rademacher, H., & Ajo‐Franklin, J. B. (2020). On the Broadband Instrument Response of Fiber‐Optic DAS Arrays. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb018145

Lontsi, A. M., Shynkarenko, A., Kremer, K., Hobiger, M., Bergamo, P., Fabbri, S. C., Anselmetti, F. S., & Fäh, D. (2021). A Robust Workflow for Acquiring and Preprocessing Ambient Vibration Data from Small Aperture Ocean Bottom Seismometer Arrays to Extract Scholte and Love Waves Phase-Velocity Dispersion Curves. Pure and Applied Geophysics, 179(1), 105–123. https://doi.org/10.1007/s00024-021-02923-8

Lyberis, N., Angelier, J., Barrier, E., & Lallemant, S. (1982). Active deformation of a segment of arc: the strait of Kythira, Hellenic arc, Greece. Journal of Structural Geology, 4(3), 299–311. https://doi.org/10.1016/0191-8141(82)90016-5

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., … Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719. https://doi.org/10.1029/1999jb900351

Melis, N. S., Lentas, K., & Schorlemmer, D. (2023). Seismic monitoring in Greece, 1899–2014: catalogue completeness 1966–2014. Geophysical Journal International, 235(2), 1049–1063. https://doi.org/10.1093/gji/ggad285

Métaxian, J., Lesage, P., & Dorel, J. (1997). Permanent tremor of Masaya Volcano, Nicaragua: Wave field analysis and source location. Journal of Geophysical Research: Solid Earth, 102(B10), 22529–22545. https://doi.org/10.1029/97jb01141

Miao, Y., Salaree, A., Spica, Z. J., Nishida, K., Yamada, T., & Shinohara, M. (2024). Assessing the Earthquake Recording Capability of an Ocean-Bottom Distributed Acoustic Sensing Array in the Sanriku Region, Japan. Seismological Research Letters, 96(2A), 631–650. https://doi.org/10.1785/0220240120

Mykkeltveit, S. (1985). A new regional array in Norway: Design work and results from analysis of data from a provisional installation’, The VELA program: A twenty-five yaer review of basic research. Edited by U. A. Kerr (Defence Advanced Research Project Agency), 546–553.

Mykkeltveit, S., & Bungum, H. (1984). Processing of regional seismic events using data from small-aperture arrays. Bulletin of the Seismological Society of America, 74(6), 2313–2333. https://doi.org/10.1785/BSSA0740062313

Näsholm, S. P., Iranpour, K., Wuestefeld, A., Dando, B. D. E., Baird, A. F., & Oye, V. (2022). Array Signal Processing on Distributed Acoustic Sensing Data: Directivity Effects in Slowness Space. Journal of Geophysical Research: Solid Earth, 127(2). https://doi.org/10.1029/2021jb023587

National Observatory of Athens, Institute of Geodynamics, Athens. (1975). Hellenic Unified Seismological Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL

Ødegaard, E., Doornbos, D. J., & Kværna, T. (1990). Surface topographic effects at arrays and three-component stations. Bulletin of the Seismological Society of America, 80(6B), 2214–2226. https://doi.org/10.1785/BSSA08006B2214

Okabe, A., Boots, B., & Sugihara, K. (1995). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. The College Mathematics Journal, 26(1), 79. https://doi.org/10.2307/2687299

OpenTopography. (2013). Shuttle Radar Topography Mission (SRTM) Global. OpenTopography. https://doi.org/10.5069/G9445JDF

Pichon, X. L., & Angelier, J. (1979). The hellenic arc and trench system: A key to the neotectonic evolution of the eastern mediterranean area. Tectonophysics, 60(1–2), 1–42. https://doi.org/10.1016/0040-1951(79)90131-8

Pirli, M., Gibbons, S. J., & Schweitzer, J. (2010). Application of array-based waveform cross-correlation techniques to aftershock sequences: the 2003 Lefkada Island, Greece, case. Journal of Seismology, 15(3), 533–544. https://doi.org/10.1007/s10950-010-9216-5

Pirli, M., Schweitzer, J., & Paulsen, B. (2013). The Storfjorden, Svalbard, 2008–2012 aftershock sequence: Seismotectonics in a polar environment. Tectonophysics, 601, 192–205. https://doi.org/10.1016/j.tecto.2013.05.010

Pirli, M., Voulgaris, N., Chira, A., & Makropoulos, K. (2006). The March 2004 Kalamata seismic sequence: a case of efficient seismicity monitoring in the area of Peloponnese, southern Greece, by the Tripoli Seismic Array. Journal of Seismology, 11(1), 59–72. https://doi.org/10.1007/s10950-006-9037-8

Ringdal, F., & Husebye, E. S. (1982). Application of arrays in the detection, location, and identification of seismic events. Bulletin of the Seismological Society of America, 72(6B), S201–S224. https://doi.org/10.1785/BSSA07206B0201

Rost, S., & Thomas, C. (2002). ARRAY SEISMOLOGY: METHODS AND APPLICATIONS. Reviews of Geophysics, 40(3). https://doi.org/10.1029/2000rg000100

Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, 138(2), 479–494. https://doi.org/10.1046/j.1365-246x.1999.00876.x

Sambridge, M. S., & Kennett, B. L. N. (2001). Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm. Pure and Applied Geophysics, 158(1), 241–257. https://doi.org/10.1007/pl00001158

Scholz, J.-R., Barruol, G., Fontaine, F. R., Sigloch, K., Crawford, W. C., & Deen, M. (2016). Orienting ocean-bottom seismometers fromP-wave and Rayleigh wave polarizations. Geophysical Journal International, 208(3), 1277–1289. https://doi.org/10.1093/gji/ggw426

Schweitzer, J. (1998). Tuning the automatic data processing for the Spitsbergen array (SPITS). https://doi.org/10.21348/P.1998.0002

Schweitzer, J. (2001). Slowness Corrections — One Way to Improve IDC Products. Pure and Applied Geophysics, 158(1), 375–396. https://doi.org/10.1007/pl00001165

Schweitzer, J., Fyen, J., Mykkeltveit, S., & Kværna, T. (2009). Seismic Arrays. https://doi.org/10.2312/GFZ.NMSOP_r1_ch9

Schweitzer, J., & Kværna, T. (2002). Design Study for the Refurbishment of the SPITS Array (AS 72). https://doi.org/10.21348/P.2002.0015

Stachnik, J. C., Sheehan, A. F., Zietlow, D. W., Yang, Z., Collins, J., & Ferris, A. (2012). Determination of New Zealand Ocean Bottom Seismometer Orientation via Rayleigh-Wave Polarization. Seismological Research Letters, 83(4), 704–713. https://doi.org/10.1785/0220110128

Stump, B. (2004). Small-Aperture Seismo-Acoustic Arrays: Design, Implementation, and Utilization. Bulletin of the Seismological Society of America, 94(1), 220–236. https://doi.org/10.1785/0120020243

Styron, R., & Pagani, M. (2020). The GEM Global Active Faults Database. Earthquake Spectra, 36(1S), 160–180. https://doi.org/10.1177/8755293020944182

Trabattoni, A., Barruol, G., Dreo, R., Boudraa, A. O., & Fontaine, F. R. (2019). Orienting and locating ocean-bottom seismometers from ship noise analysis. Geophysical Journal International. https://doi.org/10.1093/gji/ggz519

Triantafyllis, N., Venetis, I. E., Fountoulakis, I., Pikoulis, E.-V., Sokos, E., & Evangelidis, C. P. (2021). Gisola: A High-Performance Computing Application for Real-Time Moment Tensor Inversion. Seismological Research Letters, 93(2A), 957–966. https://doi.org/10.1785/0220210153

Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., & Vergoz, J. (2010). SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution: Wave deconvolution and earthquake parameters. Geophysical Journal International, 184(1), 338–358. https://doi.org/10.1111/j.1365-246x.2010.04836.x

van den Ende, M. P. A., & Ampuero, J.-P. (2021). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12(4), 915–934. https://doi.org/10.5194/se-12-915-2021

Veliz-Borel, V., Mouslopoulou, V., Nicol, A., Begg, J., & Oncken, O. (2022). Normal Faulting Along the Kythira-Antikythira Strait, Southwest Hellenic Forearc, Greece. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.730806

Wei, X., Shen, Y., Caplan-Auerbach, J., & Morgan, J. K. (2020). An OBS Array to Investigate Offshore Seismicity during the 2018 Kīlauea Eruption. Seismological Research Letters, 92(1), 603–612. https://doi.org/10.1785/0220200206

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019gc008515

Zhu, G., Yang, H., Lin, J., & You, Q. (2020). Determining the Orientation of Ocean-Bottom Seismometers on the Seafloor and Correcting for Polarity Flipping via Polarization Analysis and Waveform Modeling. Seismological Research Letters, 91(2A), 814–825. https://doi.org/10.1785/0220190239

Downloads

Published

2026-02-11

How to Cite

Lentas, K., Evangelidis, C., & Karastathis, V. (2026). Designing small-aperture seismic arrays to enhance earthquake monitoring on ocean islands: Application to Antikythera island, Greece. Seismica, 5(1). https://doi.org/10.26443/seismica.v5i1.1720

Issue

Section

Articles