Seismic characterization of the subsurface and anthropogenic noise at the LUNA Moon analog facility
DOI:
https://doi.org/10.26443/seismica.v5i1.1728Keywords:
urban seismology, site characterization, traffic noise, MoonAbstract
The increased interest in crewed and robotic lunar exploration results in a need for high-quality testbeds for instruments, experiments-including seismological ones-and procedures, and for operations training. The LUNA analog facility is a new large-scale testbed on the DLR campus in Cologne, Germany, i.e. located in an urban environment that includes traffic, heavy machinery, and a neighboring international airport. We perform the first characterization of the site and its ambient wavefield, with a focus on anthropogenic signals, as relevant background information for future users of LUNA. Combining active and passive seismic measurements, we derive velocity models for the site down to the bedrock at 152 ± 13 m depth. We provide a preliminary characterization of the ambient noise on campus and discuss and interpret examples of common anthropogenic signals in detail, demonstrating their use e.g. for traffic monitoring with a single station, or as a repeating seismic source.
This study showcases how relevant information for future seismological users of a planetary analog facility can be derived with comparatively limited means, the potential of single-station seismology for monitoring airborne and ground traffic, and hints at possible uses of the future permanent seismometer in LUNA.
References
Aboobaker, A., Panning, M., & Bugby, D. (2024). The Farside Seismic Suite: A novel approach for long-term lunar seismology. 2024 IEEE Aerospace Conference, 1–8. https://doi.org/10.1109/AERO58975.2024.10521223 DOI: https://doi.org/10.1109/AERO58975.2024.10521223
Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, 35, 415–456.
Amoo, L. M. (2013). On the design and structural analysis of jet engine fan blade structures. Progress in Aerospace Sciences, 60, 1–11. https://doi.org/10.1016/j.paerosci.2012.08.002 DOI: https://doi.org/10.1016/j.paerosci.2012.08.002
Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03154.x
Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P.-Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288–300. https://doi.org/10.1785/0120070063 DOI: https://doi.org/10.1785/0120070063
Boussinesq, M. J. (1885). Application des Potentiels. A l’Étude de l’Équilibre et du Mouvement des Solides Élastiques. Gauthier-Villars.
Budny, M. (1984). Seismische Bestimmung der bodendynamischen Kennwerte von oberflächennahen Schichten in Erdbebengebieten der Niederrheinischen Bucht und ihre ingenieurseismologische Anwendung [PhD thesis]. University of Cologne.
Carney, K., Pereira, J. M., Revilock, D., & Matheny, P. (2009). Jet engine fan blade containment using an alternate geometry. International Journal of Impact Engineering, 36(5), 720–728. https://doi.org/10.1016/j.ijimpeng.2008.10.002 DOI: https://doi.org/10.1016/j.ijimpeng.2008.10.002
Carrasco, S., Knapmeyer-Endrun, B., Margerin, L., Xu, Z., Joshi, R., Schimmel, M., Stutzmann, E., Charalambous, C., Lognonné, P., & Banerdt, W. B. (2023). Constraints for the martian crustal structure from Rayleigh waves ellipticity of large seismic events. Geophysical Research Letters, 50(16), e2023GL104816. https://doi.org/10.1029/2023GL104816 DOI: https://doi.org/10.1029/2023GL104816
Casini, A. E., Mittler, P., Cowley, A., Schlüter, L., Faber, M., Fischer, B., von der Wiesche, M., & Maurer, M. (2020). Lunar analogue facilities development at EAC: the LUNA project. Journal of Space Safety Engineering, 7(4), 510–518. https://doi.org/10.1016/j.jsse.2020.05.002 DOI: https://doi.org/10.1016/j.jsse.2020.05.002
Chai, C., Marcillo, O., Maceira, M., Kerekes, R., & Canion, B. (2025). Identifying Vehicle Signals in Continuous Seismic Data Using Unsupervised Machine-Learning Techniques. Seismological Research Letters. https://doi.org/10.1785/0220250202 DOI: https://doi.org/10.1785/0220250202
Charalambous, C., McClean, J. B., Baker, M., Pike, W. T., Golombek, M., Lemmon, M., Ansan, V., Perrin, C., Spiga, A., Lorenz, R. D., Banks, M. E., Murdoch, N., Rodriguez, S., Weitz, C. M., Grant, J. A., Warner, N. H., Garvin, J., Daubar, I. J., Hauber, E., … Banerdt, W. B. (2021). Vortex-Dominated Aeolian Activity at InSight’s Landing Site, Part 1: Multi-Instrument Observations, Analysis, and Implications. Journal of Geophysical Research: Planets, 126(6), e2020JE006757. https://doi.org/10.1029/2020JE006757 DOI: https://doi.org/10.1029/2020JE006757
Civilini, F., Weber, R., & Husker, A. (2023). Thermal moonquake characterization and cataloging using frequency-based algorithms and stochastic gradient descent. Journal of Geophysical Research: Planets, 128(9), e2022JE007704. https://doi.org/10.1029/2022JE007704 DOI: https://doi.org/10.1029/2022JE007704
Crameri, F. (2018). Scientific colour maps [Software]. Zenodo. https://doi.org/10.5281/zenodo.1243862
Crameri, F., Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in science communication. Nature Communications, 11, 5444. https://doi.org/10.1038/s41467-020-19160-7 DOI: https://doi.org/10.1038/s41467-020-19160-7
Czarny, R., Zhu, T., & Shen, J. (2023). Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.247 DOI: https://doi.org/10.26443/seismica.v2i2.247
de Paula, L. A. N., Norton, R. S., Paik, H. J., Schmerr, N. C., Williamson, P. R., Chui, T. C. P., & Hahn, I. (2023). High-sensitivity seismometer development for lunar applications. Sensors, 23(16). https://doi.org/10.3390/s23167245 DOI: https://doi.org/10.3390/s23167245
Department of Geosciences, Bensberg Observatory, University of Cologne. (2016). Bensberg Earthquake Network [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BQ
Dı́az, J., DeFelipe, I., Ruiz, M., Andrés, J., Ayarza, P., & Carbonell, R. (2022). Identification of natural and anthropogenic signals in controlled source seismic experiments. Scientific Reports, 12(1), 3171. https://doi.org/10.1038/s41598-022-07028-3 DOI: https://doi.org/10.1038/s41598-022-07028-3
Dı́az, J., Ruiz, M., Sánchez-Pastor, P. S., & Romero, P. (2017). Urban seismology: On the origin of Earth vibrations within a city. Scientific Reports, 7(1), 15296. https://doi.org/10.1038/s41598-017-15499-y DOI: https://doi.org/10.1038/s41598-017-15499-y
Eibl, E. P., Lokmer, I., Bean, C. J., & Akerlie, E. (2017). Helicopter location and tracking using seismometer recordings. Geophysical Journal International, 209(2), 901–908. https://doi.org/10.1093/gji/ggx048 DOI: https://doi.org/10.1093/gji/ggx048
Eibl, E. P., Lokmer, I., Bean, C. J., Akerlie, E., & Vogfjörd, K. S. (2015). Helicopter vs. volcanic tremor: Characteristic features of seismic harmonic tremor on volcanoes. Journal of Volcanology and Geothermal Research, 304, 108–117. https://doi.org/10.1016/j.jvolgeores.2015.08.002 DOI: https://doi.org/10.1016/j.jvolgeores.2015.08.002
Engelschiøn, V. S., Eriksson, S., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U., & Sperl, M. (2020). EAC-1A: A novel large-volume lunar regolith simulant. Scientific Reports, 10(1), 5473. https://doi.org/10.1038/s41598-020-62312-4 DOI: https://doi.org/10.1038/s41598-020-62312-4
Erwin, A., de Paula, L. A., Schmerr, N. C., Shelton, D., Hahn, I., Williamson, P. R., Paik, H. J., & Chui, T. C. (2021). Brownian noise and temperature sensitivity of long-period lunar seismometers. Bulletin of the Seismological Society of America, 111(6), 3065–3075. https://doi.org/10.1785/0120210072 DOI: https://doi.org/10.1785/0120210072
Essien, U., Akankpo, A., & Igboekwe, M. (2014). Poisson’s ratio of surface soils and shallow sediments determined from seismic compressional and shear wave velocities. International Journal of Geosciences, 5(12), 1540–1546. https://doi.org/10.4236/ijg.2014.512125 DOI: https://doi.org/10.4236/ijg.2014.512125
Fichtner, A., Hofstede, C., N. Kennett, B. L., Nymand, N. F., Lauritzen, M. L., Zigone, D., & Eisen, O. (2023). Fiber‐optic airplane seismology on the Northeast Greenland Ice Stream. The Seismic Record, 3(2), 125–133. https://doi.org/10.1785/0320230004 DOI: https://doi.org/10.1785/0320230004
Finger, C., Keil, S., Gotowik, A., Jüstel, A., & Brotzer, A. (2025). Mapping sediment depths using seismic arrays, rotational measurements, and spectral ratios. Acta Geophysica, 1–11. https://doi.org/10.1007/s11600-025-01552-2 DOI: https://doi.org/10.1007/s11600-025-01552-2
Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer-Schnidrig, R., Compaire, N., Orhand-Mainsant, G., Banfield, D., & others. (2020). Pressure effects on the SEIS-InSight instrument, improvement of seismic records, and characterization of long period atmospheric waves from ground displacements. Journal of Geophysical Research: Planets, 125(7), e2019JE006278. https://doi.org/10.1029/2019JE006278 DOI: https://doi.org/10.1029/2019JE006278
Garcia, R. F., Khan, A., Drilleau, M., Margerin, L., Kawamura, T., Sun, D., Wieczorek, M. A., Rivoldini, A., Nunn, C., Weber, R. C., & others. (2019). Lunar seismology: An update on interior structure models. Space Science Reviews, 215, 1–47. https://doi.org/10.1007/s11214-019-0613-y DOI: https://doi.org/10.1007/s11214-019-0613-y
Geologischer Dienst NRW. (2023). Bohrungen in NRW. https://www.bohrungen.nrw.de/
Green, D. N., Bastow, I. D., Dashwood, B., & Nippress, S. E. (2017). Characterizing broadband seismic noise in Central London. Seismological Research Letters, 88(1), 113–124. https://doi.org/10.1785/0220160128 DOI: https://doi.org/10.1785/0220160128
Groos, J., & Ritter, J. (2009). Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International, 179(2), 1213–1231. https://doi.org/10.1111/j.1365-246X.2009.04343.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04343.x
Harmon, N., Porter, R., Rychert, C., Schmerr, N., Smith, M. M., Shen, Z., Wu, W., Giles, J., McCall, N., Wang, J., Wike, L., West, J., Hoyle, A., & Deykes, N. (2024). Distributed acoustic sensing for future planetary applications: Initial results from the San Francisco volcanic field, a lunar analogue. Earth and Space Science, 11(12), e2024EA003640. https://doi.org/10.1029/2024EA003640 DOI: https://doi.org/10.1029/2024EA003640
Hashima, S., Saad, M. H., Ahmad, A. B., Tsuji, T., & Rizk, H. (2025). Effective deep learning aided vehicle classification approach using Seismic Data. Scientific Reports, 15(1), 22624. https://doi.org/10.1038/s41598-025-01684-x DOI: https://doi.org/10.1038/s41598-025-01684-x
Haviland, H. F., Weber, R. C., Neal, C. R., Lognonné, P., Garcia, R. F., Schmerr, N., Nagihara, S., Grimm, R., Currie, D. G., Dell’Agnello, S., & others. (2022). The lunar geophysical network landing sites science rationale. The Planetary Science Journal, 3(2), 40. https://doi.org/10.3847/PSJ/ac0f82 DOI: https://doi.org/10.3847/PSJ/ac0f82
Hinzen, K.-G., Weber, B., & Scherbaum, F. (2004). On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. Journal of Earthquake Engineering, 8(6), 909–926. https://doi.org/10.1142/S136324690400178X DOI: https://doi.org/10.1080/13632460409350514
Hobiger, M. (2021). RayDec 2.0 [Software]. Zenodo. https://doi.org/10.5281/zenodo.5534777
Hobiger, M., Bard, P.-Y., Cornou, C., & Le Bihan, N. (2009). Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophysical Research Letters, 36(14). https://doi.org/10.1029/2009GL038863 DOI: https://doi.org/10.1029/2009GL038863
Hobiger, M., Bergamo, P., Imperatori, W., Panzera, F., Marrios Lontsi, A., Perron, V., Michel, C., Burjánek, J., & Fäh, D. (2021). Site characterization of Swiss strong‐motion stations: The benefit of advanced processing algorithms. Bulletin of the Seismological Society of America, 111(4), 1713–1739. https://doi.org/10.1785/0120200316 DOI: https://doi.org/10.1785/0120200316
Hobiger, M., Cornou, C., Wathelet, M., Giulio, G. D., Knapmeyer-Endrun, B., Renalier, F., Bard, P.-Y., Savvaidis, A., Hailemikael, S., Le, B. N., Ohrnberger, M., & Theodoulidis, N. (2012). Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophysical Journal International, 192(1), 207–229. https://doi.org/10.1093/gji/ggs005 DOI: https://doi.org/10.1093/gji/ggs005
Ibs-von Seht, M., & Wohlenberg, J. (1999). Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1), 250–259. https://doi.org/10.1785/BSSA0890010250 DOI: https://doi.org/10.1785/BSSA0890010250
Imazato, H., Ikeda, T., & Tsuji, T. (2023). Shallow S wave velocity profile from active source seismic data at the Apollo 14 landing site based on virtual multichannel analysis of surface waves. Icarus, 406, 115724. https://doi.org/10.1016/j.icarus.2023.115724 DOI: https://doi.org/10.1016/j.icarus.2023.115724
John, J., Thamarai, V., Choudhary, T., Srinivasa, M., Jambhalikar, A., Giridhar, M., Mehra, M. M., Garg, M., Shila, K., Kummari, K., & others. (2024). Identification and preliminary characterisation of signals recorded by instrument for lunar seismic activity at the Chandrayaan 3 landing site. Icarus, 424, 116285. https://doi.org/10.1016/j.icarus.2024.116285 DOI: https://doi.org/10.1016/j.icarus.2024.116285
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509. https://doi.org/10.1038/s41467-018-04860-y DOI: https://doi.org/10.1038/s41467-018-04860-y
Kawamura, T., Grott, M., Garcia, R., Wieczorek, M., de Raucourt, S., Lognonné, P., Bernauer, F., Breuer, D., Clinton, J., Delage, P., & others. (2022). An autonomous lunar geophysical experiment package (ALGEP) for future space missions: In response to Call for White Papers for the Voyage 2050 long-term plan in the ESA Science Program. Experimental Astronomy, 54(2), 617–640. https://doi.org/10.1007/s10686-022-09857-6 DOI: https://doi.org/10.1007/s10686-022-09857-6
Keil, S., Igel, H., Schimmel, M., Lindner, F., & Bernauer, F. (2024). Investigating subsurface properties of the shallow lunar crust using seismic interferometry on synthetic and recorded data. Earth and Space Science, 11(10), e2024EA003742. https://doi.org/10.1029/2024EA003742 DOI: https://doi.org/10.1029/2024EA003742
Knapmeyer-Endrun, B., Golombek, M. P., & Ohrnberger, M. (2017). Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Science Reviews, 211(1), 339–382. https://doi.org/10.1007/s11214-016-0300-1 DOI: https://doi.org/10.1007/s11214-016-0300-1
Knapmeyer-Endrun, B., Knapmeyer, M., Cornelius, O., Fischer, H.-H., Hallinger, M., Fantinati, C., Küchemann, O., & Maibaum, M. (2025). Seismic characterization of the subsurface and anthropogenic noise sources at the ESA-DLR LUNA Moon analogue facility [Data set]. Zenodo. https://doi.org/10.5281/zenodo.15113128
Köhler, A., Ohrnberger, M., Scherbaum, F., Wathelet, M., & Cornou, C. (2007). Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophysical Journal International, 168(2), 779–796. https://doi.org/10.1111/j.1365-246X.2006.03253.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03253.x
Land NRW. (2023). ELWAS-WEB. https://www.elwasweb.nrw.de
Lecocq, T., Hicks, S. P., Van Noten, K., Van Wijk, K., Koelemeijer, P., De Plaen, R. S., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., & others. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509), 1338–1343. https://doi.org/10.1126/science.abd2438 DOI: https://doi.org/10.1126/science.abd2438
Lecocq, T., Massin, F., Satriano, C., Vanstone, M., & Megies, T. (2020). SeismoRMS - A simple python/jupyter notebook package for studying seismic noise changes (1.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.3820046
Li, J., Liu, F., Pan, Y., Wang, Z., Cao, M., Wang, M., Zhang, F., Zhang, J., & Zhu, Z.-H. (2023). Detecting gravitational wave with an interferometric seismometer array on lunar nearside. Science China Physics, Mechanics & Astronomy, 66(10), 109513. https://doi.org/10.1007/s11433-023-2179-9 DOI: https://doi.org/10.1007/s11433-023-2179-9
Lindsey, N. J., Yuan, S., Lellouch, A., Gualtieri, L., Lecocq, T., & Biondi, B. (2020). City-scale dark fiber DAS measurements of infrastructure use during the COVID-19 pandemic. Geophysical Research Letters, 47(16), e2020GL089931. https://doi.org/10.1029/2020GL089931 DOI: https://doi.org/10.1029/2020GL089931
Liu, X., Mi, B., Xia, J., Zhou, J., & Ma, Y. (2025). Deep clustering of traffic signals using a single seismic station. Journal of Applied Geophysics, 243, 105979. https://doi.org/10.1016/j.jappgeo.2025.105979 DOI: https://doi.org/10.1016/j.jappgeo.2025.105979
Lognonné, P., Banerdt, W. B., Pike, W. T., Giardini, D., Christensen, U., Garcia, R. F., Kawamura, T., Kedar, S., Knapmeyer-Endrun, B., Margerin, L., & others. (2020). Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 13(3), 213–220. https://doi.org/10.1038/s41561-020-0536-y DOI: https://doi.org/10.1038/s41561-020-0536-y
Lorenz, R. D., Kedar, S., Murdoch, N., Lognonné, P., Kawamura, T., Mimoun, D., & Bruce Banerdt, W. (2015). Seismometer detection of dust devil vortices by ground tilt. Bulletin of the Seismological Society of America, 105(6), 3015–3023. https://doi.org/10.1785/0120150133 DOI: https://doi.org/10.1785/0120150133
Maranò, S., Hobiger, M., Bergamo, P., & Fäh, D. (2017). Analysis of Rayleigh waves with circular wavefront: a maximum likelihood approach. Geophysical Journal International, 210(3), 1570–1580. https://doi.org/10.1093/gji/ggx225 DOI: https://doi.org/10.1093/gji/ggx225
Meng, H., & Ben-Zion, Y. (2018). Characteristics of airplanes and helicopters recorded by a dense seismic array near Anza California. Journal of Geophysical Research: Solid Earth, 123(6), 4783–4797. https://doi.org/10.1029/2017JB015240 DOI: https://doi.org/10.1029/2017JB015240
Meng, H., Ben‐Zion, Y., & Johnson, C. W. (2021). Analysis of seismic signals generated by vehicle traffic with application to derivation of subsurface Q‐values. Seismological Research Letters, 92(4), 2354–2363. https://doi.org/10.1785/0220200457 DOI: https://doi.org/10.1785/0220200457
Mohorovičić, A. (1915-1918). Die Bestimmung des Epizentrums eines Nahbebens. Gerlands Beiträge Zur Geophysik, 14, 199–205.
Murdoch, N., Mimoun, D., Garcia, R. F., Rapin, W., Kawamura, T., Lognonné, P., Banfield, D., & Banerdt, W. B. (2017). Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Science Reviews, 211, 429–455. https://doi.org/10.1007/s11214-016-0311-y DOI: https://doi.org/10.1007/s11214-016-0311-y
Murdoch, N., Spiga, A., Lorenz, R., Garcia, R. F., Perrin, C., Widmer-Schnidrig, R., Rodriguez, S., Compaire, N., Warner, N. H., Mimoun, D., Banfield, D., Lognonné, P., & Banerdt, W. B. (2021). Constraining martian regolith and vortex parameters from combined seismic and meteorological measurements. Journal of Geophysical Research: Planets, 126(2), e2020JE006410. https://doi.org/10.1029/2020JE006410 DOI: https://doi.org/10.1029/2020JE006410
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).
Nunn, C., Pike, W. T., Standley, I. M., Calcutt, S. B., Kedar, S., & Panning, M. P. (2021). Standing on Apollo’s shoulders: A microseismometer for the Moon. The Planetary Science Journal, 2(1), 36. https://doi.org/10.3847/PSJ/abd63b DOI: https://doi.org/10.3847/PSJ/abd63b
Olafsdottir, E. A., Erlingsson, S., & Bessason, B. (2018). Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217–233. https://doi.org/10.1139/cgj-2016-0302 DOI: https://doi.org/10.1139/cgj-2016-0302
Onodera, K. (2024). New views of lunar seismicity brought by analysis of newly discovered moonquakes in Apollo short-period seismic data. Journal of Geophysical Research: Planets, 129(7), e2023JE008153. https://doi.org/10.1029/2023JE008153 DOI: https://doi.org/10.1029/2023JE008153
Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590 DOI: https://doi.org/10.1190/1.1444590
Parolai, S., Bormann, P., & Milkereit, C. (2002). New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the Seismological Society of America, 92(6), 2521–2527. https://doi.org/10.1785/0120010248 DOI: https://doi.org/10.1785/0120010248
Parolai, S., Richwalski, S. M., Milkereit, C., & Bormann, P. (2004). Assessment of the stability of H/V spectral ratios from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics, 390(1–4), 57–73. https://doi.org/10.1016/j.tecto.2004.03.02 DOI: https://doi.org/10.1016/j.tecto.2004.03.024
Peterson, J. R. (1993). Observations and modeling of seismic background noise (Techreport Open-File Report 93-322). US Geological Survey. DOI: https://doi.org/10.3133/ofr93322
Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. https://doi.org/10.1002/2015GL063558 DOI: https://doi.org/10.1002/2015GL063558
Rienstra, S. W., & Hirschberg, A. (2004). Speed of Sound. In An introduction to acoustics. Technische Universiteit Eindhoven.
Salem, H. S. (2000). Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Geotechnique, 50, 461–463. https://doi.org/10.1680/geot.2000.50.4.461 DOI: https://doi.org/10.1680/geot.2000.50.4.461
Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, 138(2), 479–494. https://doi.org/10.1046/j.1365-246X.1999.00876.x DOI: https://doi.org/10.1046/j.1365-246X.1999.00876.x
Schäfer, A., Utescher, T., Klett, M., & Valdivia-Manchego, M. (2005). The Cenozoic Lower Rhine Basin–rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94, 621–639. https://doi.org/10.1007/s00531-005-0499-7 DOI: https://doi.org/10.1007/s00531-005-0499-7
Scherbaum, F., Hinzen, K.-G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152(3), 597–612. https://doi.org/10.1046/j.1365-246X.2003.01856.x DOI: https://doi.org/10.1046/j.1365-246X.2003.01856.x
Schippkus, S., Garden, M., & Bokelmann, G. (2020). Characteristics of the ambient seismic field on a large-N seismic array in the Vienna basin. Seismological Society of America, 91(5), 2803–2816. https://doi.org/10.1785/0220200153 DOI: https://doi.org/10.1785/0220200153
Seppi, I., Tape, C., & Fee, D. (2025). Classification of Aircraft Types Using Seismic Data in Alaska. The Seismic Record, 5(4), 330–340. https://doi.org/10.1785/0320250035 DOI: https://doi.org/10.1785/0320250035
Sheng, Y. (2023). Seismic stereometry: an alternative two-station algorithm to seismic interferometry for analysing car-generated seismic signals. Geophysical Journal International, 235(1), 853–861. https://doi.org/10.1093/gji/ggad287 DOI: https://doi.org/10.1093/gji/ggad287
Stammler, K., Bischoff, M., Brüstle, A., Ceranna, L., Donner, S., Fischer, K., Gaebler, P., Friederich, W., Funke, S., Hartmann, G., Homuth, B., Knapmeyer-Endrun, B., Korn, M., Megies, T., Pilger, C., Plenefisch, T., Pustal, I., Rappsilber, I., Schmidt, B., … Wegler, U. (2021). German seismic and infrasound networks contributing to the European integrated data archive (EIDA). Seismological Research Letters, 92(3), 1854–1875. https://doi.org/10.1785/0220200401 DOI: https://doi.org/10.1785/0220200401
The ObsPy Development Team. (2022). ObsPy 1.4.0 (1.4.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.6645832
Topsonic Systemhaus GmbH. (2022). TraVis Version 4.1.37. https://travis.koeln-bonn-airport.de
Tsuji, T., Kobayashi, T., Kinoshita, J., Ikeda, T., Uchigaki, T., Nagata, Y., Kawamura, T., Ogawa, K., Tanaka, S., & Araya, A. (2023). Lunar active seismic profiler for investigating shallow substrates of the Moon and other extraterrestrial environments. Icarus, 404, 115666. https://doi.org/10.1016/j.icarus.2023.115666 DOI: https://doi.org/10.1016/j.icarus.2023.115666
Turner, A. R., Hawthorne, J. C., & Gaddes, M. (2022). Stresses in the lunar interior: insights from slip directions in the A01 deep moonquake nest. Journal of Geophysical Research: Planets, 127(12), e2022JE007364. https://doi.org/10.1029/2022JE007364 DOI: https://doi.org/10.1029/2022JE007364
Tyagunov, S., Hollnack, D., & Wenzel, F. (2006). Engineering-seismological analysis of site effects in the area of Cologne. Natural Hazards, 38, 199–214. https://doi.org/10.1007/s11069-005-8613-5 DOI: https://doi.org/10.1007/s11069-005-8613-5
van Heijningen, J. V., ter Brake, H. J. M., Gerberding, O., Chalathadka Subrahmanya, S., Harms, J., Bian, X., Gatti, A., Zeoli, M., Bertolini, A., Collette, C., Perali, A., Pinto, N., Sharma, M., Tavernier, F., & Rezvani, J. (2023). The payload of the Lunar Gravitational-wave Antenna. Journal of Applied Physics, 133(24), 244501. https://doi.org/10.1063/5.0144687 DOI: https://doi.org/10.1063/5.0144687
Vrettos, C., Hardenberg, M., Becker, A., Knapmeyer-Endrun, B., Schlutz, J., & Uhlig, T. (2026). Dynamic properties of the EAC-1A lunar regolith simulant from resonant column tests. Manuscript Submitted to Planetary and Space Science.
Wang, C., Jia, Y., Xue, C., Lin, Y., Liu, J., Fu, X., Xu, L., Huang, Y., Zhao, Y., Xu, Y., Gao, R., Wei, Y., Tang, Y., Yu, D., & Zou, Y. (2023). Scientific objectives and payload configuration of the Chang’E-7 mission. National Science Review, 11(2), nwad329. https://doi.org/10.1093/nsr/nwad329 DOI: https://doi.org/10.1093/nsr/nwad329
Wang, H., Chen, Y., Min, R., & Chen, Y. (2022). Urban DAS data processing and its preliminary application to city traffic monitoring. Sensors, 22(24), 9976. https://doi.org/10.3390/s22249976 DOI: https://doi.org/10.3390/s22249976
Wang, X., Williams, E. F., Karrenbach, M., Herráez, M. G., Martins, H. F., & Zhan, Z. (2020). Rose Parade seismology: Signatures of floats and bands on optical fiber. Seismological Research Letters, 91(4), 2395–2398. https://doi.org/10.1785/0220200091 DOI: https://doi.org/10.1785/0220200091
Wathelet, M. (2008). An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters, 35(9), L09301. https://doi.org/10.1029/2008GL033256 DOI: https://doi.org/10.1029/2008GL033256
Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. D., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360 DOI: https://doi.org/10.1785/0220190360
Wathelet, M., Guillier, B., Roux, P., Cornou, C., & Ohrnberger, M. (2018). Rayleigh wave three-component beamforming: signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays. Geophysical Journal International, 215(1), 507–523. https://doi.org/10.1093/gji/ggy286 DOI: https://doi.org/10.1093/gji/ggy286
Wu, W., Zhan, Z., Panning, M., & Klesh, A. (2024). Fiber seismic network on the Moon. Seismological Research Letters, 95(4), 2153–2163. https://doi.org/10.1785/0220230067 DOI: https://doi.org/10.1785/0220230067
Yuan, S., Lellouch, A., Clapp, R. G., & Biondi, B. (2020). Near-surface characterization using a roadside distributed acoustic sensing array. The Leading Edge, 39(9), 646–653. https://doi.org/10.1190/tle39090646.1 DOI: https://doi.org/10.1190/tle39090646.1
Zemeny, A., Sardisco, L., Quinteros, S., Mikesell, T. D., Pirrie, D., Rose, L., Cowley, A., & Manick, K. (2024). The Luna Analog Facility testbeds (ESA, EAC): contemporary characterization work of highland (lunar) and mare (EAC-1) lunar regolith simulants. Frontiers in Space Technologies, 5, 1510635. https://doi.org/10.3389/frspt.2024.1510635 DOI: https://doi.org/10.3389/frspt.2024.1510635
Zhai, Q., Husker, A., Zhan, Z., Biondi, E., Yin, J., Civilini, F., & Costa, L. (2024). Assessing the feasibility of Distributed Acoustic Sensing (DAS) for moonquake detection. Earth and Planetary Science Letters, 635, 118695. https://doi.org/10.1016/j.epsl.2024.118695 DOI: https://doi.org/10.1016/j.epsl.2024.118695
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Brigitte Knapmeyer-Endrun, Martin Knapmeyer, Olav Cornelius, Hans-Herbert Fischer, Maria Hallinger, Cinzia Fantinati, Oliver Küchemann, Michael Maibaum

This work is licensed under a Creative Commons Attribution 4.0 International License.

