A quasi-real-time system for automatic local event monitoring in Germany

Authors

  • Catalina Ramos Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany https://orcid.org/0000-0002-5255-7500
  • Stefanie Donner Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany; Institute of Geophysics, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany https://orcid.org/0000-0001-7351-8079
  • Klaus Stammler Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany

DOI:

https://doi.org/10.26443/seismica.v5i1.1815

Abstract

We present TieBeNN, a wrapper that integrates open-source, state-of-the-art seismic monitoring tools, including advanced machine learning--based approaches, to enhance the German Federal Seismological Survey’s (EdB) automatic real-time earthquake monitoring system. TieBeNN extends the existing workflow by adding automatic, probabilistic focal depth estimation using NonLinLoc and introduces a Location Quality Score (LQS) to quantify location reliability with a single metric. In testing, TieBeNN’s automated locations approach the accuracy of human analyst solutions, demonstrating comparable performance in well-instrumented regions. By automating depth determination and providing immediate quality assessment, the system reduces analysts’ daily workload, allowing them to focus on events flagged as low-quality or complex. The LQS effectively distinguishes well-constrained event locations from those with large uncertainties or poor network geometry, enabling rapid identification of high-quality automatic results versus those requiring review. However, events below the Moho depth (i.e., deeper than apaproximately 30 km), which are rare in Germany, remain challenging: their uncertainties are larger, and LQS values tend to be lower, indicating limitations in the current calibration. Overall, these enhancements significantly advance real-time local seismic event monitoring in Germany by increasing both the speed and reliability of automatic event characterization.

References

AlpArray Seismic Network. (2015). AlpArray Seismic Network (AASN) temporary component. AlpArray Working Group. https://doi.org/10.12686/alparray/z3_2015

Armstrong, A. D., Claerhout, Z., Baker, B., & Koper, K. D. (2023). A deep-learning phase picker with calibrated Bayesian-derived uncertainties for earthquakes in the Yellowstone Volcanic Region. Bulletin of the Seismological Society of America, 113(6), 2323–2344. https://doi.org/10.1785/0120230068 DOI: https://doi.org/10.1785/0120230068

Arrowsmith, S. J., Trugman, D. T., MacCarthy, J., Bergen, K. J., Lumley, D., & Magnani, M. B. (2022). Big Data Seismology. Reviews of Geophysics, 60, e2021RG000769. https://doi.org/10.1029/2021RG000769 DOI: https://doi.org/10.1029/2021RG000769

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530

Bondár, I., & McLaughlin, K. L. (2009). A new ground truth data set for seismic studies. Seismological Research Letters, 80(3), 465–472. https://doi.org/10.1785/gssrl.80.3.465 DOI: https://doi.org/10.1785/gssrl.80.3.465

Bondár, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicenter accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. https://doi.org/10.1111/j.1365-246X.2004.02070.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02070.x

Braszus, B., Rietbrock, A., Haberland, C., & Ryberg, T. (2024). AI based 1-D P- and S-wave velocity models for the greater alpine region from local earthquake data. Geophysical Journal International, 237(2), 916–930. https://doi.org/10.1093/gji/ggae077 DOI: https://doi.org/10.1093/gji/ggae077

CERN. (2016). CERN Seismic Network. ETH Zurich. https://doi.org/10.12686/sed/networks/c4

Charles University in Prague (Czech), Institute of Geonics, Institute of Geophysics, Academy of Sciences of the Czech Republic, Institute of Physics of the Earth Masaryk University (Czech) & Institute of Rock Structure and Mechanics. (1973). Czech Regional Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CZ

Dahm, T., Ohrnberger, M., Vollmer, D., Woith, H., & Isken, M. (2024). Longterm monitoring of swarm earthquakes in the western Eger rift [Data set]. GFZ Data Services. https://doi.org/10.14470/6Q705117

Department of Earth and Environmental Sciences, Geophysical Observatory, University of Munchen. (2001). BayernNetz [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BW

Department of Geosciences, Bensberg Observatory, University of Cologne. (2016). Bensberg Earthquake Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BQ

Diehl, T., Kissling, E., Herwegh, M., & Schmid, S. M. (2021). Improving absolute hypocenter accuracy with 3D Pg and Sg body-wave inversion procedures and application to earthquakes in the Central Alps region. Journal of Geophysical Research: Solid Earth, 126(1), e2021JB022155. https://doi.org/10.1029/2021JB022155 DOI: https://doi.org/10.1029/2021JB022155

Epos-France. (1962). Epos-France Broad-band network (RLBP) [Data set]. Epos-France Seismological Data Centre. https://doi.org/10.15778/RESIF.FR

Epos-France Seismology. (2020). French Associated Seismological Network [Data set]. Epos-France Seismological Data Centre. https://doi.org/10.15778/resif.fo

Erdbebendienst Südwest Baden-Württemberg and Rheinland-Pfalz. (2009). Erdbebendienst Südwest [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/LE

Federal Institute for Geosciences and Natural Resources. (1976). German Regional Seismic Network (GRSN). Bundesanstalt für Geowissenschaften und Rohstoffe. https://doi.org/10.25928/mbx6-hr74

Finger, C., Harrington, R. M., & Reinsch, T. (2022). Seismological Characterization of the Geothermal Field Laboratory Rhineland [Data set]. GFZ Data Services. https://doi.org/10.14470/MO7576467356

Friederich, W., Fischer, K. D., Rische, M., Hilgers, C., & Ruhr University Bochum. (2020). FloodRisk Seismic Network [Data set]. Federal Institute for Geosciences. https://doi.org/10.7914/SN/YD_2020

Gallacher, R., Garth, T., Harris, J., Bondár, I., McLaughlin, K., & Storchak, D. A. (2025). Revising the Seismic Ground Truth Reference Event Identification Criteria. Seismica, 4(1), 1–13. https://doi.org/10.26443/seismica.v4i1.1536 DOI: https://doi.org/10.26443/seismica.v4i1.1536

GEOFON Data Centre. (1993). GEOFON Seismic Network [Data set]. GFZ Data Services. https://doi.org/10.14470/TR560404

Geological Survey-Provincia Autonoma di Trento. (1981). Trentino Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/ST

Grad, M., & Tiira, T. (2009). The Moho depth map of the European Plate. Geophysical Journal International, 176(1), 279–292. https://doi.org/10.1111/j.1365-246X.2008.03919.x DOI: https://doi.org/10.1111/j.1365-246X.2008.03919.x

Hara, S., Fukahata, Y., & Iio, Y. (2019). P wave first-motion polarity determination of waveform data in western Japan using deep learning. Earth Planets and Space, 71(1), 1–11. https://doi.org/10.1186/s40623-019-1111-x DOI: https://doi.org/10.1186/s40623-019-1111-x

Harrington, R. M., Roth, M. P., Fischer, K. D., & Finger, C. (2024). RUB Observational Geophysics Lab Deployment: Lower Rhine Embayment for project SIEGFRIED [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/brb1-cf34

Havskov, J., Bormann, P., & Schweitzer, J. (2012). Seismic source location. In P. Bormann (Ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2) (pp. 1–36). Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.NMSOP-2_IS_11.1

Hensch, M., Dahm, T., Ritter, J., Heimann, S., Schmidt, B., Stange, S., & Lehmann, K. (2019). Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophysical Journal International, 216(3), 2025–2036. https://doi.org/10.1093/gji/ggy532 DOI: https://doi.org/10.1093/gji/ggy532

Hessian Agency for Nature Conservation, Environment and Geology. (2012). Hessischer Erdbebendienst [Data set]. . International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HS

Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I., Crawford, W. C., Dessa, J. X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H., Korn, M., Margheriti, L., … AlpArray Working Group. (2018). The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen. Surveys in Geophysics, 39, 1009–1033. https://doi.org/10.1007/s10712-018-9472-4 DOI: https://doi.org/10.1007/s10712-018-9472-4

Hinzen, K. G., Reamer, S. K., & Fleischer, C. (2021). Seismicity in the Northern Rhine Area (1995-2018). Journal of Seismology, 25, 351–367. https://doi.org/10.1007/s10950-020-09976-7 DOI: https://doi.org/10.1007/s10950-020-09976-7

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 DOI: https://doi.org/10.1109/MCSE.2007.55

Husen, S., & Hardebeck, J. L. (2010). Earthquake location accuracy. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-55815573

Institut de physique du globe de Paris (IPGP), & École et Observatoire des Sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université’ de Paris. https://doi.org/10.18715/GEOSCOPE.G

Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena. (2009). Thüringer Seismologisches Netz [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TH

Institute of Geophysics, Academy of Sciences of the Czech Republic. (1991). West Bohemia Local Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/WB

Istituto Nazionale di Geofisica e Vulcanologia (INGV). (2005). Rete Sismica Nazionale (RSN) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.13127/sd/x0fxnh7qfy DOI: https://doi.org/10.13127/SD/X0FXNH7QFY

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS. (2016). North-East Italy Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OX

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, & University of Trieste. (2002). North-East Italy Broadband Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NI

KNMI. (1993). Netherlands Seismic and Acoustic Network. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/e970fd34-23b9-3411-b366-e4f72877d2c5

Kövesligethy Radó Seismological Observatory (Geodetic And Geophysical Institute, Research Centre For Astronomy And Earth Sciences, Hungarian Academy Of Sciences (MTA CSFK GGI KRSZO)). (1992). Hungarian National Seismological Network [Data set]. GFZ Data Services. https://doi.org/10.14470/UH028726

Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., & Wassermann, J. (2015). ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003 DOI: https://doi.org/10.1088/1749-4699/8/1/014003

Küperkoch, L., Olbert, K., & Meier, T. (2018). Long‐term monitoring of induced seismicity at the Insheim geothermal site, Germany. Bulletin of the Seismological Society of America, 108(6), 3668–3683. https://doi.org/10.1785/0120170365 DOI: https://doi.org/10.1785/0120170365

Lengliné, O., Schmittbuhl, J., Drif, K., Lambotte, S., Grunberg, M., Kinscher, J., Sira, C., Schlupp, A., Schaming, M., Jund, H., & Masson, F. (2023). The largest induced earthquakes during the GEOVEN deep geothermal project, Strasbourg, 2018-2022: from source parameters to intensity maps. Geophysical Journal International, 234(3), 2445–2457. https://doi.org/10.1093/gji/ggad255 DOI: https://doi.org/10.1093/gji/ggad255

Li, W., Chakraborty, M., Köhler, J., Quinteros-Cartaya, C., Rümpker, G., & Srivastava, N. (2024). Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence. Solid Earth, 15(2), 197–213. https://doi.org/10.5194/se-15-197-2024 DOI: https://doi.org/10.5194/se-15-197-2024

Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In R. Meyers (Ed.), Encyclopedia of Complexity and Systems Science. Springer. https://doi.org/10.1007/978-3-642-27737-5_150-2 DOI: https://doi.org/10.1007/978-3-642-27737-5_150-2

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic earthquake location in 3D and layered models. In C. H. Thurber & N. Rabinowitz (Eds.), Advances in Seismic Event Location. Modern Approaches in Geophysics (Vol. 18, pp. 101–134). Springer. https://doi.org/10.1007/978-94-015-9536-0_5 DOI: https://doi.org/10.1007/978-94-015-9536-0_5

Mader, S. M., Ritter, J. R. R., Reicherter, K., & the AlpArray Working Group. (2021). Seismicity and seismotectonics of the Albstadt Shear Zone in the northern Alpine foreland. Solid Earth, 12(6), 1389–1409. https://doi.org/10.5194/se-12-1389-2021 DOI: https://doi.org/10.5194/se-12-1389-2021

Málek, J., Brokešová, J., & Novotný, O. (2023). New velocity structure of the Nový Kostel earthquake-swarm region, West Bohemia, determined by the isometric inversion. Pure and Applied Geophysics, 180, 2111–2134. https://doi.org/10.1007/s00024-023-03250-w DOI: https://doi.org/10.1007/s00024-023-03250-w

Málek, J., Horálek, J., & Janský, J. ’. (2005). One-dimensional qP-wave velocity model of the upper crust for the West Bohemia/Vogtland earthquake swarm region. Studia Geophysica et Geodaetica, 49(4), 501–524. https://doi.org/10.1007/s11200-005-0024-2 DOI: https://doi.org/10.1007/s11200-005-0024-2

MedNet Project Partner Institutions. (1990). Mediterranean Very Broadband Seismographic Network (MedNet) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/sd/fbbbtdtd6q

Megies, T., Beyreuther, M., Barsch, R., Krischer, L., & Wassermann, J. (2011). ObsPy— What can it do for data centers and observatories? Annals of Geophysics, 54(1), 47–58. https://doi.org/10.4401/ag-4838 DOI: https://doi.org/10.4401/ag-4838

Michailos, K., Hetényi, G., Scarponi, M., Stipčević, J., Bianchi, I., Bonatto, L., Czuba, W., Di Bona, M., Govoni, A., Hannemann, K., Janik, T., Kalmár, D., Kind, R., Link, F., Lucente, F. P., Monna, S., Montuori, C., Mroczek, S., Paul, A., … the AlpArray-PACASE Working Group. (2023). Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database. Earth System Science Data, 15, 2117–2138. https://doi.org/10.5194/essd-15-2117-2023 DOI: https://doi.org/10.5194/essd-15-2117-2023

Mousavi, S. M., & Beroza, G. C. (2020). A machine‐learning approach for earthquake magnitude estimation. Geophysical Research Letters, 47(1), 1–7. https://doi.org/10.1029/2019GL085976 DOI: https://doi.org/10.1029/2019GL085976

Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377, 6607. https://doi.org/10.1126/science.abm4470 DOI: https://doi.org/10.1126/science.abm4470

Mousavi, S. M., & Beroza, G. C. (2023). Machine Learning in Earthquake Seismology. Annual Review of Earth and Planetary Sciences, 51, 105–129. https://doi.org/10.1146/annurev-earth-071822-100323 DOI: https://doi.org/10.1146/annurev-earth-071822-100323

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11, 3952. https://doi.org/10.1038/s41467-020-17591-w DOI: https://doi.org/10.1038/s41467-020-17591-w

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica, 3(1), 1–15. https://doi.org/10.26443/seismica.v3i1.1130 DOI: https://doi.org/10.26443/seismica.v3i1.1130

Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499. https://doi.org/10.1029/2021JB023499 DOI: https://doi.org/10.1029/2021JB023499

Myers, S. C., Begnaud, M. L., Ballard, S., Pasyanos, M. E., Phillips, W. E., Ramírez, A. L., Antolik, M. S., Hutchenson, K. D., Dwyer, J. J., Rowe, C. A., & Wagner, G. S. (2010). A Crust and Upper-Mantle Model of Eurasia and North Africa for Pₙ Travel-Time Calculation. Bulletin of the Seismological Society of America, 100(2), 640–656. https://doi.org/10.1785/0120090198 DOI: https://doi.org/10.1785/0120090198

Park, Y., Beroza, G. C., & Ellsworth, W. L. (2023). A mitigation strategy for the prediction inconsistency of neural phase pickers. Seismological Research Letters, 94(3), 1603–1612. https://doi.org/10.1785/0220230003 DOI: https://doi.org/10.1785/0220230003

Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., & Pedersen, H. A. (2021). Exploring approaches for large data in seismology: user and data repository perspectives. Seismological Research Letters, 92(3), 1531–1540. https://doi.org/10.1785/0220200390 DOI: https://doi.org/10.1785/0220200390

Quinteros-Cartaya, C., Köhler, J., Li, W., Faber, J., & Srivastava, N. (2024). Exploring a CNN model for earthquake magnitude estimation using HR-GNSS data. Journal of South American Earth Sciences, 136, 104815. https://doi.org/10.1016/j.jsames.2024.104815 DOI: https://doi.org/10.1016/j.jsames.2024.104815

Raspberry Shake, S.A. (2016). Raspberry Shake [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AM

Reamer, S. K., & Hinzen, K. G. (2004). An earthquake catalog for the Northern Rhine area, Central Europe (1975-2002). Seismological Research Letters, 75(6), 713–725. https://doi.org/10.1785/gssrl.75.6.713 DOI: https://doi.org/10.1785/gssrl.75.6.713

Renouard, A., Maggi, A., Grunberg, M., Doubre, C., & Hibert, C. (2021). Toward false event detection and quarry blast versus earthquake discrimination in an operational setting using semiautomated machine learning. Seismological Research Letters, 92(6), 3725–3742. https://doi.org/10.1785/0220200305 DOI: https://doi.org/10.1785/0220200305

RESIF. (2018). CEA/DASE broad-band permanent network in metropolitan France [Data set]. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.RD

Retailleau, L., Saurel, J.-M., Zhu, W., Satriano, C., Beroza, G. C., Issartel, S., Boissier, P., OVPF Team, & OVSM Team. (2022). A wrapper to use a machine‐learning‐based algorithm for earthquake monitoring. Seismological Research Letters, 93(3), 1673–1682. https://doi.org/10.1785/0220210279 DOI: https://doi.org/10.1785/0220210279

Ritter, J., & Gassner, L. (2022). Inter-Wind [Data set]. GFZ Data Services. https://doi.org/10.14470/6Q705117

Ritter, J. R. R., Koushesh, K., Schmidt, B., Föst, J. P., Bühler, J., Hensch, M., & Mader, S. M. (2024). Seismological monitoring of magmatic and tectonic earthquakes in the East Eifel Volcanic Field, Germany. Journal of Seismology, 28, 1325–1350. https://doi.org/10.1007/s10950-024-10257-w DOI: https://doi.org/10.1007/s10950-024-10257-w

Ross, Z. E., Meier, M. A., & Hauksson, E. (2018b). P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123(6), 5120–5129. https://doi.org/10.1029/2017JB015251 DOI: https://doi.org/10.1029/2017JB015251

Ross, Z. E., Meier, M.-A., Hauksson, E., & Heaton, T. H. (2018a). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894–2901. https://doi.org/10.1785/0120180080 DOI: https://doi.org/10.1785/0120180080

Royal Observatory of Belgium. (1985). Belgian Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BE

Ruhr University Bochum. (2007). RuhrNet - Seismic Network of the Ruhr-University Bochum [Data set]. Federal Institute for Geosciences. https://doi.org/10.7914/SN/RN

Růžek, B., & Horálek, J. (2013). Three-dimensional seismic velocity model of the West Bohemia/Vogtland seismoactive region. Geophysical Journal International, 195(2), 1251–1266. https://doi.org/10.1093/gji/ggt295 DOI: https://doi.org/10.1093/gji/ggt295

Schlittenhardt, J. (1999). Regional velocity models for Germany: a contribution to the systematic travel-time calibration of the International Monitoring System. Proceedings of the 21st DoD/DOE Seismic Research Symposium: Technologies for Monitoring the Comprehensive Nuclear-Test-Ban Treaty, 1, 263–273.

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864 DOI: https://doi.org/10.1213/ANE.0000000000002864

Shi, P., Grigoli, F., Lanza, F., Beroza, G. C., Scarabello, L., & Wiemer, S. (2022). MALMI: An automated earthquake detection and location workflow based on machine learning and waveform migration. Seismological Research Letters, 93(5), 2467–2483. https://doi.org/10.1785/0220220071 DOI: https://doi.org/10.1785/0220220071

Slovenian Environment Agency. (1990). Seismic Network of the Republic of Slovenia [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SL

Soto, H., & Schurr, B. (2021). DeepPhasePick: a method for detecting and picking seismic phases from local earthquakes based on highly optimized convolutional and recurrent deep neural networks. Geophysical Journal International, 227(2), 1268–1294. https://doi.org/10.1093/gji/ggab266 DOI: https://doi.org/10.1093/gji/ggab266

Stammler, K. (1993). SeismicHandler—Programmable multichannel data handler for interactive and automatic processing of seismological analyses. Geophysical Journal International, 19(2), 135–140. https://doi.org/10.1016/0098-3004(93)90110-Q DOI: https://doi.org/10.1016/0098-3004(93)90110-Q

Stammler, K., Bischoff, M., Brüstle, A., Ceranna, L., Donner, S., Fischer, K., Gaebler, P., Friederich, W., Funke, S., Hartmann, G., Homuth, B., Knapmeyer‐Endrun, B., Korn, M., Megies, T., Pilger, C., Plenefisch, T., Pustal, I., Rappsilber, I., Schmidt, B., … Wegler, U. (2021). German seismic and infrasound networks contributing to the European Integrated Data Archive (EIDA). Seismological Research Letters, 92(3), 1854–1875. https://doi.org/10.1785/0220200401 DOI: https://doi.org/10.1785/0220200401

Steinberg, A., Vasyura-Bathke, H., Gaebler, P., Ohrnberger, M., & Ceranna, L. (2021). Estimation of seismic moment tensors using variational inference machine learning. Journal of Geophysical Research: Solid Earth, 126, e2021JB022685. https://doi.org/10.1029/2021JB022685 DOI: https://doi.org/10.1029/2021JB022685

Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu, A., Ottemøller, L., Pedersen, H., Sleeman, R., Stammler, K., Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M., Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., … Triantafyllis, N. (2021). EIDA–The European Integrated Data Archive and service infrastructure within ORFEUS. Seismological Research Letters, 92(3), 1788–1795. https://doi.org/10.1785/0220200413 DOI: https://doi.org/10.1785/0220200413

Swiss Seismological Service (SED) At ETH Zurich. (1983). National Seismic Networks of Switzerland. ETH Zurich. https://doi.org/10.12686/sed/networks/ch

Swiss Seismological Service (SED) At ETH Zurich. (2005). Temporary deployments in Switzerland associated with aftershocks and other seismic sequences. ETH Zurich. https://doi.org/10.12686/sed/networks/8d

Swiss Seismological Service (SED) At ETH Zurich. (2006). GEOBEST Baseline Seismic Monitoring Networks for Deep Geothermal Energy Projects in Switzerland. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/G2

Swiss Seismological Service (SED) At ETH Zurich. (2008). Seismology at School Program, ETH Zurich. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/S

Swiss Seismological Service (SED) At ETH Zurich. (2012). Temporary deployments in Switzerland associated with landslides. ETH Zurich. https://doi.org/10.12686/SED/NETWORKS/XP

Swiss Seismological Service (SED) At ETH Zurich. (2014). Temporary deployments in Switzerland associated with building monitoring. ETH Zurich. https://doi.org/10.12686/sed/networks/9e

Theunissen, T., Chevrot, S., Sylvander, M., Monteiller, V., Calvet, M., Villaseñor, A., Benahmed, S., Pauchet, H., & Grimaud, F. (2018). Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees. Geophysical Journal International, 212(3), 1806–1828. https://doi.org/10.1093/gji/ggx472 DOI: https://doi.org/10.1093/gji/ggx472

Tian, D., Uieda, L., Leong, W. J., Fröhlich, Y., Schlitzer, W., Grund, M., Jones, M., Toney, L., Yao, J., Magen, Y., Jing-Hui, T., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2024). PyGMT: A Python interface for the Generic Mapping Tools (v0.13.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.13679420

Tiira, T., Uski, M., Kortström, J., Kaisko, O., & Korja, A. (2016). Local seismic network for monitoring of a potential nuclear power plant area. Journal of Seismology, 20, 397–417. https://doi.org/10.1007/s10950-015-9534-8 DOI: https://doi.org/10.1007/s10950-015-9534-8

University of Leipzig. (2001). SXNET Saxon Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SX

University of Trieste. (1993). Friuli Venezia Giulia Accelerometric Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/RF

Uta, P. (2017). Recent intraplate earthquakes in Northwest Germany: glacial isostatic adjustment and/or a consequence of hydrocarbon production? [Phdthesis, Gottfried Wilhelm Leibniz Universität Hannover]. https://www.repo.uni-hannover.de/bitstream/123456789/9141/1/895461218.pdf

Wang, T., Bian, Y., Zhang, Y., & Hou, X. (2023). Classification of earthquakes, explosions and mining-induced earthquakes based on XGBoost algorithm. Computers & Geosciences, 170, 105242. https://doi.org/10.1016/j.cageo.2022.105242 DOI: https://doi.org/10.1016/j.cageo.2022.105242

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021 DOI: https://doi.org/10.21105/joss.03021

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515 DOI: https://doi.org/10.1029/2019GC008515

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A toolbox for machine learning in seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324 DOI: https://doi.org/10.1785/0220210324

Yin, J., Denolle, M. A., & He, B. (2022). A multitask encoder-decoder to separate earthquake and ambient noise signal in seismograms. Geophysical Journal International, 231(3), 1806–1822. https://doi.org/10.1093/gji/ggac290 DOI: https://doi.org/10.1093/gji/ggac290

Yuan, C., Ni, Y., Lin, Y., & Denolle, M. A. (2023). Better together: ensemble learning for earthquake detection and phase picking. IEEE Transactions on Geoscience and Remote Sensing, 61, 5920217. https://doi.org/10.1109/TGRS.2023.3320148 DOI: https://doi.org/10.1109/TGRS.2023.3320148

ZAMG - Zentralanstalt für Meterologie und Geodynamik. (1987). Austrian Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OE

Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC‐FLOW: An end‐to‐end machine learning‐based high‐precision earthquake location workflow . Seismological Research Letters, 93(5), 2426–2438. https://doi.org/10.1785/0220220019 DOI: https://doi.org/10.1785/0220220019

Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423 DOI: https://doi.org/10.1093/gji/ggy423

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127, e2021JB023249. https://doi.org/10.1029/2021JB023249 DOI: https://doi.org/10.1029/2021JB023249

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2019). Seismic signal denoising and decomposition using deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9476–9488. https://doi.org/10.1109/TGRS.2019.2926772 DOI: https://doi.org/10.1109/TGRS.2019.2926772

Zhu, W., Mousavi, S. M., & Beroza, G. C. (2020). Seismic signal augmentation to improve generalization of deep neural networks. In M. Moseley & L. Krischer (Eds.), Machine Learning in Geosciences (Vol. 61, pp. 151–177). Elsevier. https://doi.org/10.1016/bs.agph.2020.07.003 DOI: https://doi.org/10.1016/bs.agph.2020.07.003

Downloads

Published

2026-02-10

How to Cite

Ramos, C., Donner, S., & Stammler, K. (2026). A quasi-real-time system for automatic local event monitoring in Germany. Seismica, 5(1). https://doi.org/10.26443/seismica.v5i1.1815

Issue

Section

Reports (excl. Fast Reports)