Focal mechanisms in the southeastern South Island of Aotearoa New Zealand indicate scale-dependent partitioning of transpressional strain
DOI:
https://doi.org/10.26443/seismica.v5i1.1839Keywords:
Focal mechanisms, regional stress tensor, New Zealand, transpressionAbstract
The classic Andersonian model of faulting is difficult to apply to plate boundaries with oblique motion, as displacement is accommodated across oblique-slip faults, or it is partitioned into distinct strike-slip and dip-slip faults. Here, we investigate how faults accommodate oblique plate motion by using the focal mechanism solutions of 126 MLV 1.3-4.3 earthquakes in the transpressional southeastern South Island of Aotearoa New Zealand. Focal mechanisms were assigned an A-D quality, and of the 91 C or better quality solutions, 57 are strike-slip. In addition, when incorporated into a stress inversion, these focal mechanisms indicate a strike-slip stress state with an WNW-trending maximum principal compressive stress. By contrast, constraints on active crustal-scale faulting from the New Zealand Community Fault Model indicate reverse faulting in this region. A high stress shape ratio can partly account for the coexistence of reverse and strike-slip faults. However, we also propose that the focal mechanisms are typically sampling slip on optimally-oriented small-scale faults in intact crust, while the larger magnitude reverse faulting reflects local stress rotations within pre-existing faults and shear zones in the southeastern South Island. Our study therefore demonstrates how inherited structures influence the scale and orientation of faults onto which transpressional strain is partitioned.
References
Abercrombie, R. E. (1995). Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5‐km depth. Journal of Geophysical Research: Solid Earth, 100(B12), 24015–24036. https://doi.org/10.1029/95jb02397 DOI: https://doi.org/10.1029/95JB02397
Abercrombie, R. E. (1996). The magnitude-frequency distribution of earthquakes recorded with deep seismometers at Cajon Pass, southern California. Tectonophysics, 261(1–3), 1–7. https://doi.org/10.1016/0040-1951(96)00052-2 DOI: https://doi.org/10.1016/0040-1951(96)00052-2
Abercrombie, R. E., Webb, T. H., Robinson, R., McGinty, P. J., Mori, J. J., & Beavan, R. J. (2000). The enigma of the Arthur’s Pass, New Zealand, earthquake: 1. Reconciling a variety of data for an unusual earthquake sequence. Journal of Geophysical Research: Solid Earth, 105(B7), 16119–16137. https://doi.org/10.1029/2000jb900008 DOI: https://doi.org/10.1029/2000JB900008
Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. DOI: https://doi.org/10.1144/transed.8.3.387
Balfour, N. J., Savage, M. K., & Townend, J. (2005). Stress and crustal anisotropy in Marlborough, New Zealand: evidence for low fault strength and structure-controlled anisotropy. Geophysical Journal International, 163(3), 1073–1086. https://doi.org/10.1111/j.1365-246x.2005.02783.x DOI: https://doi.org/10.1111/j.1365-246X.2005.02783.x
Barnes, P. M. (2009). Postglacial (after 20 ka) dextral slip rate of the offshore Alpine fault, New Zealand. Geology, 37(1), 3–6. https://doi.org/10.1130/g24764a.1 DOI: https://doi.org/10.1130/G24764A.1
Barrell, D. J. A. (2016). General distribution and characteristics of active faults and folds in the Waimate District and Waitaki Distict, South Canterbury and North Otago,. GNS Science Consultancy Report 2015/166, 1–124. https://www.orc.govt.nz/media/3965/general-distribution-and-characteristics-of-active-faults-and-folds-in-the-waimate-district-and-waitaki-district-south-canterbury-and-north-otago.pdf
Barrell, D. J. A. (2019). General distribution and characteristics of active faults and folds in the Queenstown Lakes and Central Otago districts, Otago. GNS Science, Consultancy Report 2018/207, 1–99. https://www.orc.govt.nz/media/6621/gns_cr2018-207_queenstown-lakes-and-central-otago_active-faults.pdf
Barrell, D. J. A. (2021). General distributions and characteristics of active faults and folds in the Clutha and Dunedin City districts, Otago. GNS Science, Consultancy Report 2020/88, 1–71. https://www.orc.govt.nz/media/10002/active-faults-folds-in-the-clutha-and-dunedin-city-districts-otago-2021.pdf
Barrell, D. J. A., Read, S. A. L., Van Dissen, R. J., Macfarlane, D. F., Walker, J., & Rieser, U. (2009). Aviemore: A dam of two halves. Joint Annual Conference of the Geological Society of New Zealand and the New Zealand Geophysical Society: Field Trip Guides B, 128.
Barth, N. C., Kulhanek, D. K., Beu, A. G., Murray-Wallace, C. V., Hayward, B. W., Mildenhall, D. C., & Lee, D. E. (2014). New c. 270 kyr strike-slip and uplift rates for the southern Alpine Fault and implications for the New Zealand plate boundary. Journal of Structural Geology, 64, 39–52. https://doi.org/10.1016/j.jsg.2013.08.009 DOI: https://doi.org/10.1016/j.jsg.2013.08.009
Barton, C. A., & Zoback, M. D. (1992). Self‐similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole. Journal of Geophysical Research: Solid Earth, 97(B4), 5181–5200. https://doi.org/10.1029/91jb01674 DOI: https://doi.org/10.1029/91JB01674
Boese, C. M., Townend, J., Smith, E., & Stern, T. (2012). Microseismicity and stress in the vicinity of the Alpine Fault, central Southern Alps, New Zealand. Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/10.1029/2011jb008460 DOI: https://doi.org/10.1029/2011JB008460
Bott, M. H. P. (1959). The Mechanics of Oblique Slip Faulting. Geological Magazine, 96(2), 109–117. https://doi.org/10.1017/s0016756800059987 DOI: https://doi.org/10.1017/S0016756800059987
Browne, G., Field, B., Barrell, D., Jongens, R., Bassett, K., & Wood, R. (2012). The geological setting of the Darfield and Christchurch earthquakes. New Zealand Journal of Geology and Geophysics, 55(3), 193–197. https://doi.org/10.1080/00288306.2012.682654 DOI: https://doi.org/10.1080/00288306.2012.682654
Célérier, B. (2008). Seeking Anderson’s faulting in seismicity: A centennial celebration. Reviews of Geophysics, 46(4). https://doi.org/10.1029/2007rg000240 DOI: https://doi.org/10.1029/2007RG000240
Cox, S. C., Stirling, M. W., Herman, F., Gerstenberger, M., & Ristau, J. (2012). Potentially active faults in the rapidly eroding landscape adjacent to the Alpine Fault, central Southern Alps, New Zealand. Tectonics, 31(2). https://doi.org/10.1029/2011tc003038 DOI: https://doi.org/10.1029/2011TC003038
Cox, S. C., & Sutherland, R. (2007). Regional geological framework of South Island, New Zealand, and its significance for understanding the active plate boundary. In A Continental Plate Boundary: Tectonics at South Island, New Zealand (pp. 19–46). American Geophysical Union. https://doi.org/10.1029/175gm03 DOI: https://doi.org/10.1029/175GM03
Craw, D., Campbell, C., & Waters, J. M. (2022). Miocene-Holocene river drainage evolution in Southland, New Zealand, deduced from fish genetics, detrital gold and geology. New Zealand Journal of Geology and Geophysics, 67(1), 146–159. https://doi.org/10.1080/00288306.2022.2121289 DOI: https://doi.org/10.1080/00288306.2022.2121289
DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04491.x
Denys, P., Pearson, C., Norris, R., & Denham, M. (2016). A geodetic study of Otago: results of the central Otago deformation network 2004–2014. New Zealand Journal of Geology and Geophysics, 59(1), 147–156. https://doi.org/10.1080/00288306.2015.1134592 DOI: https://doi.org/10.1080/00288306.2015.1134592
Dewey, J. F., Holdsworth, R. E., & Strachan, R. A. (1998). Transpression and transtension zones. Geological Society, London, Special Publications, 135(1), 1–14. https://doi.org/10.1144/gsl.sp.1998.135.01.01 DOI: https://doi.org/10.1144/GSL.SP.1998.135.01.01
Eberhart-Phillips, D., Bannister, S., Reyners, M., & Bourguignon, S. (2022). New Zealand Wide model 2.3 seismic velocity model for New Zealand. Zenodo. https://doi.org/10.5281/ZENODO.6568301
Eberhart-Phillips, D., Bourguignon, S., & Salichon, J. (2023). Lithospheric structure of the Fiordland plutonic block controls deformation in the subduction transition along southwestern New Zealand,. AGU Fall Meeting Abstracts, S32c-06.
Eberhart-Phillips, D., & Reyners, M. (2023). Catalogue of 2001–2011 New Zealand earthquakes relocated with 3-D seismic velocity model and comparison to 2019–2020 auto-detected earthquakes in the sparsely instrumented southern South Island. New Zealand Journal of Geology and Geophysics, 66(4), 646–653. https://doi.org/10.1080/00288306.2022.2089171 DOI: https://doi.org/10.1080/00288306.2022.2089171
Eberhart-Phillips, D., Reyners, M., Upton, P., & Gubbins, D. (2018). Insights into the structure and tectonic history of the southern South Island, New Zealand, from the 3-D distribution of P- and S-wave attenuation. Geophysical Journal International, 214(2), 1479–1505. https://doi.org/10.1093/gji/ggy194 DOI: https://doi.org/10.1093/gji/ggy194
Eberhart-Phillips, D., Thurber, C., Rietbrock, A., Fry, B., Reyners, M., & Lanza, F. (2024). Simul2023: a flexible program for inversion of earthquake data for 3-D velocity and hypocenters or 3-D Q. Zenodo. https://doi.org/10.5281/ZENODO.10695070
Eberhart-Phillips, D., Upton, P., Reyners, M., Barrell, D. J. A., Fry, B., Bourguignon, S., & Warren-Smith, E. (2022). The Influence of Basement Terranes on Tectonic Deformation: Joint Earthquake Travel-Time and Ambient Noise Tomography of the Southern South Island, New Zealand. Tectonics, 41(4), e2021TC007006. https://doi.org/10.1029/2021TC007006
Eberhart‐Phillips, D., Upton, P., Reyners, M., Barrell, D. J. A., Fry, B., Bourguignon, S., & Warren‐Smith, E. (2022). The Influence of Basement Terranes on Tectonic Deformation: Joint Earthquake Travel‐Time and Ambient Noise Tomography of the Southern South Island, New Zealand. Tectonics, 41(4). https://doi.org/10.1029/2021tc007006 DOI: https://doi.org/10.1029/2021TC007006
Ellis, S., Williams, C., Ristau, J., Reyners, M., Eberhart-Phillips, D., & Wallace, L. (2016). Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake. New Zealand Journal of Geology and Geophysics, 59(1), 202–212. https://doi.org/10.1080/00288306.2015.1123740 DOI: https://doi.org/10.1080/00288306.2015.1123740
Enlow, R. L., & Koons, P. O. (1998). Critical wedges in three dimensions: Analytical expressions from Mohr‐Coulomb constrained perturbation analysis. Journal of Geophysical Research: Solid Earth, 103(B3), 4897–4914. https://doi.org/10.1029/97jb03209 DOI: https://doi.org/10.1029/97JB03209
Faulkner, D. R., Mitchell, T. M., Healy, D., & Heap, M. J. (2006). Slip on “weak” faults by the rotation of regional stress in the fracture damage zone. Nature, 444(7121), 922–925. https://doi.org/10.1038/nature05353 DOI: https://doi.org/10.1038/nature05353
Ferrill, D. A., Smart, K. J., & Morris, A. P. (2019). Fault failure modes, deformation mechanisms, dilation tendency, slip tendency, and conduits v. seals. Geological Society, London, Special Publications, 496(1), 75–98. https://doi.org/10.1144/sp496-2019-7 DOI: https://doi.org/10.1144/SP496-2019-7
Forsyth, P. J. (2002). Geology of the Waitaki area (p. 64 p. + 1 folded map) [Techreport]. Institute of Geological & Nuclear Sciences.
Fossen, H. (2020). Fault classification, fault growth and displacement. In Regional Geology and Tectonics: Principles of Geologic Analysis (pp. 119–147). Elsevier. https://doi.org/10.1016/b978-0-444-64134-2.00007-9 DOI: https://doi.org/10.1016/B978-0-444-64134-2.00007-9
Gorman, A., Hill, M., Orpin, A., Koons, P., Norris, R., Landis, C., Allan, T., Johnstone, T., Gray, F., Wilson, D., & Osterberg, E. (2013). Quaternary shelf structures SE of the South Island, imaged by high-resolution seismic profiling. New Zealand Journal of Geology and Geophysics, 56(2), 68–82. https://doi.org/10.1080/00288306.2013.772906 DOI: https://doi.org/10.1080/00288306.2013.772906
Griffin, J. D., Stirling, M. W., Wilcken, K. M., & Barrell, D. J. A. (2022). Late Quaternary Slip Rates for the Hyde and Dunstan Faults, Southern New Zealand: Implications for Strain Migration in a Slowly Deforming Continental Plate Margin. Tectonics, 41(9). https://doi.org/10.1029/2022tc007250 DOI: https://doi.org/10.1029/2022TC007250
Gudmundsson, A., Simmenes, T. H., Larsen, B., & Philipp, S. L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. https://doi.org/10.1016/j.jsg.2009.08.013 DOI: https://doi.org/10.1016/j.jsg.2009.08.013
Haines, A. J., & Wallace, L. M. (2020). New Zealand‐Wide Geodetic Strain Rates Using a Physics‐Based Approach. Geophysical Research Letters, 47(1). https://doi.org/10.1029/2019gl084606 DOI: https://doi.org/10.1029/2019GL084606
Hardebeck, J. L. (2003). Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444. https://doi.org/10.1785/0120020236 DOI: https://doi.org/10.1785/0120020236
Hardebeck, J. L., & Hauksson, E. (2001). Crustal stress field in southern California and its implications for fault mechanics. Journal of Geophysical Research: Solid Earth, 106(B10), 21859–21882. https://doi.org/10.1029/2001jb000292 DOI: https://doi.org/10.1029/2001JB000292
Hardebeck, J. L., & Shearer, P. M. (2002). A New Method for Determining First-Motion Focal Mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264–2276. https://doi.org/10.1785/0120010200 DOI: https://doi.org/10.1785/0120010200
Harding, T. P., & Wickham, J. S. (1988). State of stress near the San Andreas fault: Implications for wrench tectonics’. Geology, 16(12), 1151. https://doi.org/10.1130/0091-7613(1988)016<1151:cososn>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1988)016<1151:COSOSN>2.3.CO;2
Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28(1), 100. https://doi.org/10.2307/2346830 DOI: https://doi.org/10.2307/2346830
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., & Zoback, M. (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007 DOI: https://doi.org/10.1016/j.tecto.2018.07.007
Holbek, S. C., Frank, M., Scott, J. M., Smith, S. A. F., le Roux, P. J., Waight, T. E., Van Hale, R., Reid, M. R., & Stirling, C. H. (2020). Structural Controls on Shallow Cenozoic Fluid Flow in the Otago Schist, New Zealand. Geofluids, 2020, 1–25. https://doi.org/10.1155/2020/9647197 DOI: https://doi.org/10.1155/2020/9647197
Holt, R. A., Savage, M. K., Townend, J., Syracuse, E. M., & Thurber, C. H. (2013). Crustal stress and fault strength in the Canterbury Plains, New Zealand. Earth and Planetary Science Letters, 383, 173–181. https://doi.org/10.1016/j.epsl.2013.09.041 DOI: https://doi.org/10.1016/j.epsl.2013.09.041
Hull, A. G., & Stirling, M. W. (1992). Re‐evaluation of late Quaternary displacement along the Old Man Fault Zone at Gorge Creek, Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 35(2), 259–262. https://doi.org/10.1080/00288306.1992.9514519 DOI: https://doi.org/10.1080/00288306.1992.9514519
Jones, R. R., & Tanner, P. W. G. (1995). Strain partitioning in transpression zones. Journal of Structural Geology, 17(6). https://doi.org/10.1016/0191-8141(94)00102-6 DOI: https://doi.org/10.1016/0191-8141(94)00102-6
Kilb, D., & Hardebeck, J. L. (2006). Fault Parameter Constraints Using Relocated Earthquakes: A Validation of First-Motion Focal-Mechanism Data. Bulletin of the Seismological Society of America, 96(3), 1140–1158. https://doi.org/10.1785/0120040239 DOI: https://doi.org/10.1785/0120040239
Kim, N., Park, S.-I., Cho, C. S., Cheon, Y., & Peace, A. L. (2023). Neotectonic transpressional intraplate deformation in eastern Eurasia: Insights from active fault systems in the southeastern Korean Peninsula. Geoscience Frontiers, 14(4), 101559. https://doi.org/10.1016/j.gsf.2023.101559 DOI: https://doi.org/10.1016/j.gsf.2023.101559
Koons, P. O. (1994). Three‐dimensional critical wedges: Tectonics and topography in oblique collisional orogens. Journal of Geophysical Research: Solid Earth, 99(B6), 12301–12315. https://doi.org/10.1029/94jb00611 DOI: https://doi.org/10.1029/94JB00611
Lanari, R., Faccenna, C., Fellin, M. G., Essaifi, A., Nahid, A., Medina, F., & Youbi, N. (2020). Tectonic Evolution of the Western High Atlas of Morocco: Oblique Convergence, Reactivation, and Transpression. Tectonics, 39(3). https://doi.org/10.1029/2019tc005563 DOI: https://doi.org/10.1029/2019TC005563
Landis, C. A., Campbell, H. J., Aslund, T., Cawood, P. A., Douglas, A., Kimbrough, D. L., Pillai, D. D. L., Raine, J. I., & Willsman, A. (1999). Permian‐Jurassic strata at Productus Creek, Southland, New Zealand: Implications for terrane dynamics of the eastern Gondwanaland margin. New Zealand Journal of Geology and Geophysics, 42(2), 255–278. https://doi.org/10.1080/00288306.1999.9514844 DOI: https://doi.org/10.1080/00288306.1999.9514844
Leitner, B., Eberhart‐Phillips, D., Anderson, H., & Nabelek, J. L. (2001). A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms, and stress observations. Journal of Geophysical Research: Solid Earth, 106(B2), 2193–2220. https://doi.org/10.1029/2000JB900303 DOI: https://doi.org/10.1029/2000JB900303
Lettis, W. R., & Hanson, K. L. (1991). Crustal strain partitioning: Implications for seismic-hazard assessment in western California. Geology, 19(6), 559. https://doi.org/10.1130/0091-7613(1991)019<0559:cspifs>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1991)019<0559:CSPIFS>2.3.CO;2
Lisle, R. J., Orife, T. O., Arlegui, L., Liesa, C., & Srivastava, D. C. (2006). Favoured states of palaeostress in the Earth’s crust: evidence from fault-slip data. Journal of Structural Geology, 28(6), 1051–1066. https://doi.org/10.1016/j.jsg.2006.03.012 DOI: https://doi.org/10.1016/j.jsg.2006.03.012
Litchfield, N. J. (2001). The Titri Fault System: Quaternary‐active faults near the leading edge of the Otago reverse fault province. New Zealand Journal of Geology and Geophysics, 44(4), 517–534. https://doi.org/10.1080/00288306.2001.9514953 DOI: https://doi.org/10.1080/00288306.2001.9514953
López, A. (2012). Andersonian and Coulomb stresses in Central Costa Rica and its fault slip tendency potential: new insights into their associated seismic hazard. Geological Society, London, Special Publications, 367(1), 19–38. https://doi.org/10.1144/sp367.3 DOI: https://doi.org/10.1144/SP367.3
Lund, B., & Slunga, R. (1999). Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Ölfus in southwest Iceland. Journal of Geophysical Research: Solid Earth, 104(B7), 14947–14964. https://doi.org/10.1029/1999jb900111 DOI: https://doi.org/10.1029/1999JB900111
Martínez‐Garzón, P., Ben‐Zion, Y., Abolfathian, N., Kwiatek, G., & Bohnhoff, M. (2016). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 121(12), 8666–8687. https://doi.org/10.1002/2016jb013493 DOI: https://doi.org/10.1002/2016JB013493
Matsuno, M., Tagami, A., Okada, T., Matsumoto, S., Kawamura, Y., Iio, Y., Sato, T., Nakayama, T., Hirahara, S., Bannister, S., Ristau, J., Savage, M. K., Thurber, C. H., & Sibson, R. H. (2022). Spatial and temporal stress field changes in the focal area of the 2016 Kaikōura earthquake, New Zealand: A multi-fault process interpretation. Tectonophysics, 835, 229390. https://doi.org/10.1016/j.tecto.2022.229390 DOI: https://doi.org/10.1016/j.tecto.2022.229390
McCaffrey, R. (2009). The Tectonic Framework of the Sumatran Subduction Zone. Annual Review of Earth and Planetary Sciences, 37(1), 345–366. https://doi.org/10.1146/annurev.earth.031208.100212 DOI: https://doi.org/10.1146/annurev.earth.031208.100212
Mercier, J., Armijo, R., Tapponnier, P., Carey‐Gailhardis, E., & Lin, H. T. (1987). Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India‐Asia Collision. Tectonics, 6(3), 275–304. https://doi.org/10.1029/tc006i003p00275 DOI: https://doi.org/10.1029/TC006i003p00275
Meyer, A. F. T., Stirling, M. W., Griffin, J. D., Tarling, M. S., Stirling, T. W., & Thomsen, J. M. (2025). Paleoseismology of the Long Valley Fault, Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 68(4), 889–896. https://doi.org/10.1080/00288306.2025.2519711 DOI: https://doi.org/10.1080/00288306.2025.2519711
Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517–11526. https://doi.org/10.1029/jb089ib13p11517 DOI: https://doi.org/10.1029/JB089iB13p11517
Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research: Solid Earth, 92(B1), 357–368. https://doi.org/10.1029/jb092ib01p00357 DOI: https://doi.org/10.1029/JB092iB01p00357
Michailos, K., Warren-Smith, E., Savage, M. K., & Townend, J. (2020). Detailed spatiotemporal analysis of the tectonic stress regime near the central Alpine Fault, New Zealand. Tectonophysics, 775, 228205. https://doi.org/10.1016/j.tecto.2019.228205 DOI: https://doi.org/10.1016/j.tecto.2019.228205
Miller, D. D. (1998). Distributed shear, rotation, and partitioned strain along the San Andreas fault, central California. Geology, 26(10), 867. https://doi.org/10.1130/0091-7613(1998)026<0867:dsraps>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1998)026<0867:DSRAPS>2.3.CO;2
Morley, C. K. (2010). Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments? Earth and Planetary Science Letters, 297(3–4), 667–673. https://doi.org/10.1016/j.epsl.2010.07.022 DOI: https://doi.org/10.1016/j.epsl.2010.07.022
Morris, A., Ferrill, D. A., & Brent Henderson, D. B. (1996). Slip-tendency analysis and fault reactivation. Geology, 24(3), 275. https://doi.org/10.1130/0091-7613(1996)024<0275:staafr>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
Mortimer, N., Lee, J., & Stockli, D. F. (2023). Terrane and core complex architecture of the Otago Schist in the Dunstan and Cairnmuir Mountains, New Zealand, from U-Pb and (U-Th)/He zircon dating. New Zealand Journal of Geology and Geophysics, 67(2), 195–208. https://doi.org/10.1080/00288306.2023.2176892 DOI: https://doi.org/10.1080/00288306.2023.2176892
Mount, V. S., & Suppe, J. (1988). State of stress near the San Andreas fault: Implications for wrench tectonics’. Geology, 15, 1143–1146. https://doi.org/10.1130/0091-7613(1988)016<1151:COSOSN>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1987)15<1143:SOSNTS>2.0.CO;2
Norris, R. J. (2014). Strain localisation within ductile shear zones beneath active faults: The Alpine Fault contrasted with the adjacent Otago fault system, New Zealand. Earth, Planets and Space, 56(12), 1095–1101. https://doi.org/10.1186/bf03353328 DOI: https://doi.org/10.1186/BF03353328
Norris, R. J., & Cooper, A. F. (2001). Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology, 23(2–3), 507–520. https://doi.org/10.1016/s0191-8141(00)00122-x DOI: https://doi.org/10.1016/S0191-8141(00)00122-X
Norris, R. J., Koons, P. O., & Cooper, A. F. (1990). The obliquely-convergent plate boundary in the South Island of New Zealand: implications for ancient collision zones. Journal of Structural Geology, 12(5–6), 715–725. https://doi.org/10.1016/0191-8141(90)90084-c DOI: https://doi.org/10.1016/0191-8141(90)90084-C
Reyners, M. (2014). Otago temporary broadband network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/6K_2014
Reyners, M., Eberhart-Phillips, D., & Bannister, S. (2011). Tracking repeated subduction of the Hikurangi Plateau beneath New Zealand. Earth and Planetary Science Letters, 311(1–2), 165–171. https://doi.org/10.1016/j.epsl.2011.09.011 DOI: https://doi.org/10.1016/j.epsl.2011.09.011
Reyners, M., Eberhart-Phillips, D., Upton, P., & Gubbins, D. (2017). Three-dimensional imaging of impact of a large igneous province with a subduction zone. Earth and Planetary Science Letters, 460, 143–151. https://doi.org/10.1016/j.epsl.2016.12.025 DOI: https://doi.org/10.1016/j.epsl.2016.12.025
Ristau, J. (2013). Update of Regional Moment Tensor Analysis for Earthquakes in New Zealand and Adjacent Offshore Regions. Bulletin of the Seismological Society of America, 103(4), 2520–2533. https://doi.org/10.1785/0120120339 DOI: https://doi.org/10.1785/0120120339
Robinson, R., & McGinty, P. J. (2000). The enigma of the Arthur’s Pass, New Zealand, earthquake: 2. The aftershock distribution and its relation to regional and induced stress fields. Journal of Geophysical Research: Solid Earth, 105(B7), 16139–16150. https://doi.org/10.1029/2000jb900012 DOI: https://doi.org/10.1029/2000JB900012
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 DOI: https://doi.org/10.1016/0377-0427(87)90125-7
Sanderson, D. J., & Marchini, W. R. D. (1984). Transpression. Journal of Structural Geology, 6(5), 449–458. https://doi.org/10.1016/0191-8141(84)90058-0 DOI: https://doi.org/10.1016/0191-8141(84)90058-0
Scholz, C. H. (2019). The mechanics of earthquakes and faulting (Third Edit). Cambridge university press. DOI: https://doi.org/10.1017/9781316681473
Scholz, C. H., & Choi, E. (2022). What comes first: The fault or the ductile shear zone? Earth and Planetary Science Letters, 577, 117273. https://doi.org/10.1016/j.epsl.2021.117273 DOI: https://doi.org/10.1016/j.epsl.2021.117273
Schütt, J. M., & Whipp, D. M. (2020a). Controls on Continental Strain Partitioning Above an Oblique Subduction Zone, Northern Andes. Tectonics, 39(4), 1–21. https://doi.org/10.1029/2019TC005886
Schütt, J. M., & Whipp, D. M. (2020b). Controls on Continental Strain Partitioning Above an Oblique Subduction Zone, Northern Andes. Tectonics, 39(4). https://doi.org/10.1029/2019tc005886 DOI: https://doi.org/10.1029/2019TC005886
Seebeck, H., Dissen, R. V., Litchfield, N., Barnes, P. M., Nicol, A., Langridge, R., Barrell, D. J. A., Villamor, P., Ellis, S., Rattenbury, M., Bannister, S., Gerstenberger, M., Ghisetti, F., Sutherland, R., Hirschberg, H., Fraser, J., Nodder, S. D., Stirling, M., Humphrey, J., … Lee, J. (2024). The New Zealand Community Fault Model – version 1.0: an improved geological foundation for seismic hazard modelling. New Zealand Journal of Geology and Geophysics, 67(2), 209–229. https://doi.org/10.1080/00288306.2023.2181362 DOI: https://doi.org/10.1080/00288306.2023.2181362
Seebeck, H., Van Dissen, R. J., Litchfield, N. J., Barnes, P. M., Nicol, A., Langridge, R. M., Barrell, D. J. A., Villamor, P., Ellis, S. M., Rattenbury, M. S., Bannister, S., Gerstenberger, M. C., Ghisetti, F., Sutherland, R., Fraser, J., Nodder, S. D., Stirling, M. W., Humphrey, J., Bland, K. J., … Lee, J. M. (2022). New Zealand Community Fault Model - version 1.0 [Techreport]. Lower Hutt: GNS Science. https://doi.org/10.21420/GA7S-BS61
Sibson, R. H. (1994). Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78(1), 69–84. https://doi.org/10.1144/gsl.sp.1994.078.01.07 DOI: https://doi.org/10.1144/GSL.SP.1994.078.01.07
Sibson, R. H., Ghisetti, F. C., & Crookbain, R. A. (2012). Andersonian wrench faulting in a regional stress field during the 2010–2011 Canterbury, New Zealand, earthquake sequence. Geological Society, London, Special Publications, 367(1), 7–18. https://doi.org/10.1144/sp367.2 DOI: https://doi.org/10.1144/SP367.2
Smith, S. A. F., Tesei, T., Scott, J. M., & Collettini, C. (2017). Reactivation of normal faults as high-angle reverse faults due to low frictional strength: Experimental data from the Moonlight Fault Zone, New Zealand. Journal of Structural Geology, 105, 34–43. https://doi.org/10.1016/j.jsg.2017.10.009 DOI: https://doi.org/10.1016/j.jsg.2017.10.009
Tamas, A., Holdsworth, R. E., Underhill, J. R., Tamas, D. M., Dempsey, E. D., Hardman, K., Bird, A., McCarthy, D., McCaffrey, K. J. W., & Selby, D. (2021). New onshore insights into the role of structural inheritance during Mesozoic opening of the Inner Moray Firth Basin, Scotland. Journal of the Geological Society, 179(2). https://doi.org/10.1144/jgs2021-066 DOI: https://doi.org/10.1144/jgs2021-066
Taylor-Silva, B. I., Stirling, M. W., Litchfield, N. J., Griffin, J. D., van den Berg, E. J., & Wang, N. (2020). Paleoseismology of the Akatore Fault, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 63(2), 151–167. https://doi.org/10.1080/00288306.2019.1645706 DOI: https://doi.org/10.1080/00288306.2019.1645706
Teyssier, C., Tikoff, B., & Markley, M. (1995). Oblique plate motion and continental tectonics. Geology, 23(5), 447. https://doi.org/10.1130/0091-7613(1995)023<0447:opmact>2.3.co;2 DOI: https://doi.org/10.1130/0091-7613(1995)023<0447:OPMACT>2.3.CO;2
Thingbaijam, K. K. S., Rattenbury, M. S., Van Dissen, R. J., Gerstenberger, M. C., Ristau, J., & Fitzenz, D. D. (2023). Characterization of Focal Mechanisms for Upper Crustal Distributed Seismicity in Aotearoa New Zealand. Seismological Research Letters, 95(1), 150–158. https://doi.org/10.1785/0220230196 DOI: https://doi.org/10.1785/0220230196
Thurber, C., & Eberhart-Phillips, D. (1999). Local earthquake tomography with flexible gridding. Computers & Geosciences, 25(7), 809–818. https://doi.org/10.1016/s0098-3004(99)00007-2 DOI: https://doi.org/10.1016/S0098-3004(99)00007-2
Townend, J., Sherburn, S., Arnold, R., Boese, C., & Woods, L. (2012). Three-dimensional variations in present-day tectonic stress along the Australia–Pacific plate boundary in New Zealand. Earth and Planetary Science Letters, 353–354, 47–59. https://doi.org/10.1016/j.epsl.2012.08.003 DOI: https://doi.org/10.1016/j.epsl.2012.08.003
Turnbull, I. M. (2000). Geology of the Wakatipu area (p. 1 sheet + 72p.) [Techreport]. Institute of Geological.
Turnbull, I. M., & Allibone, A. H. (2003). Geology of the Murihiku area (p. 74 p. + 1 folded map) [Techreport]. Institute of Geological.
Turnbull, I. M., Craw, D., & Norris, R. J. (1993). Pre‐Miocene and post‐Miocene deformation in the Bannockburn basin, Central Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 36(1), 107–115. https://doi.org/10.1080/00288306.1993.9514558 DOI: https://doi.org/10.1080/00288306.1993.9514558
Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research: Solid Earth, 103(B6), 12205–12222. https://doi.org/10.1029/98jb00612 DOI: https://doi.org/10.1029/98JB00612
Upton, P., Craw, D., & Walcott, R. (2014). Far-Field Deformation Resulting from Rheologic Differences Interacting with Tectonic Stresses: An Example from the Pacific/Australian Plate Boundary in Southern New Zealand. Geosciences, 4(3), 93–113. https://doi.org/10.3390/geosciences4030093 DOI: https://doi.org/10.3390/geosciences4030093
Upton, P., Koons, P. O., Craw, D., Henderson, C. M., & Enlow, R. (2009). Along‐strike differences in the Southern Alps of New Zealand: Consequences of inherited variation in rheology. Tectonics, 28(2). https://doi.org/10.1029/2008tc002353 DOI: https://doi.org/10.1029/2008TC002353
van den Berg, E. J., Williams, J. N., Stirling, M. W., Barrell, D. J. A., Griffin, J. D., Litchfield, N. J., & Wang, N. (2024). Late Quaternary activity of the NW Cardrona Fault, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 68(1), 151–171. https://doi.org/10.1080/00288306.2023.2297962 DOI: https://doi.org/10.1080/00288306.2023.2297962
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224 DOI: https://doi.org/10.1093/gji/ggu224
Vollmer, F. W. (1995). C program for automatic contouring of spherical orientation data using a modified Kamb method. Computers & Geosciences, 21(1), 31–49. https://doi.org/10.1016/0098-3004(94)00058-3 DOI: https://doi.org/10.1016/0098-3004(94)00058-3
Waldien, T. S., Roeske, S. M., Chatterjee, R., O’Sullivan, P. B., & Stockli, D. F. (2023). Suture Reactivation, Slip Partitioning, and a Protracted Strike‐Slip Rate Gradient in the Denali Fault System, Southern Alaska, USA. Tectonics, 42(9). https://doi.org/10.1029/2022tc007654 DOI: https://doi.org/10.1029/2022TC007654
Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology, 59(2), 118–130. https://doi.org/10.1086/625831 DOI: https://doi.org/10.1086/625831
Warren-Smith, E., Jacobs, K., Rollins, C., Chamberlain, C. J., Eberhart-Phillips, D., & Williams, C. (2024). A quantitative assessment of GeoNet earthquake location quality in Aotearoa New Zealand. New Zealand Journal of Geology and Geophysics, 68(5), 941–954. https://doi.org/10.1080/00288306.2024.2421309 DOI: https://doi.org/10.1080/00288306.2024.2421309
Warren‐Smith, E., Lamb, S., & Stern, T. A. (2017). Stress field and kinematics for diffuse microseismicity in a zone of continental transpression, South Island, New Zealand. Journal of Geophysical Research: Solid Earth, 122(4), 2798–2811. https://doi.org/10.1002/2017jb013942 DOI: https://doi.org/10.1002/2017JB013942
Warren‐Smith, E., Lamb, S., Stern, T. A., & Smith, E. (2017). Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform. Journal of Geophysical Research: Solid Earth, 122(11), 9208–9227. https://doi.org/10.1002/2017jb014732 DOI: https://doi.org/10.1002/2017JB014732
Warren‐Smith, E., Townend, J., Chamberlain, C. J., Boulton, C., & Michailos, K. (2022). Heterogeneity in Microseismicity and Stress Near Rupture‐Limiting Section Boundaries Along the Late‐Interseismic Alpine Fault. Journal of Geophysical Research: Solid Earth, 127(10). https://doi.org/10.1029/2022jb025219 DOI: https://doi.org/10.1029/2022JB025219
Webb, T. H., & Anderson, H. (1998). Focal mechanisms of large earthquakes in the North Island of New Zealand: slip partitioning at an oblique active margin. Geophysical Journal International, 134(1), 40–86. https://doi.org/10.1046/j.1365-246x.1998.00531.x DOI: https://doi.org/10.1046/j.1365-246x.1998.00531.x
Williams, J., Eberhart-Phillips, D., Bourguignon, S., Stirling, M., Reyners, M., & Upton, P. (2025). Supplementary files to “Focal mechanisms in the southeastern South Island of Aotearoa New Zealand indicate scale-dependent partitioning of transpressional strain” [Techreport]. Zenodo. https://doi.org/10.5281/zenodo.17228270
Williams, J. N., Eberhart-Phillips, D., Bourguignon, S., & Stirling, M. (2022). Southland Otago Seismic Array. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/JR68-QQ17
Williams, J. N., Eberhart-Phillips, D., Bourguignon, S., Stirling, M. W., & Oliver, W. (2025). Deep and Clustered Microseismicity at the Edge of Southern New Zealand’s Transpressive Plate Boundary. Journal of Geophysical Research: Solid Earth, 130(5), e2024JB030371. https://doi.org/10.1029/2024JB030371 DOI: https://doi.org/10.1029/2024JB030371
Williams, J. N., Fagereng, A., Wedmore, L. N. J., Biggs, J., Mphepo, F., Dulanya, Z., Mdala, H., & Blenkinsop, T. (2019). How Do Variably Striking Faults Reactivate During Rifting? Insights From Southern Malawi. Geochemistry, Geophysics, Geosystems, 20(7), 3588–3607. https://doi.org/10.1029/2019gc008219 DOI: https://doi.org/10.1029/2019GC008219
Williams, J. N., Stirling, M. W., Howell, A., Niroula, G. P., DiCaprio, C. J., McGrath, J., Gerstenberger, M. C., Coffey, G. L., Griffin, J. D., Van Dissen, R., Penney, C., & Chamberlain, C. (2025a). Evaluating and Comparing Seismicity Rate Models in the Low-Strain-Rate Otago Region, Aotearoa, New Zealand. Bulletin of the Seismological Society of America, 115(5), 2237–2262. https://doi.org/10.1785/0120240277
Williams, J. N., Stirling, M. W., Howell, A., Niroula, G. P., DiCaprio, C. J., McGrath, J., Gerstenberger, M. C., Coffey, G. L., Griffin, J. D., Van Dissen, R., Penney, C., & Chamberlain, C. (2025b). Evaluating and Comparing Seismicity Rate Models in the Low‐Strain‐Rate Otago Region, Aotearoa, New Zealand. Bulletin of the Seismological Society of America, 115(5), 2237–2262. https://doi.org/10.1785/0120240277 DOI: https://doi.org/10.1785/0120240277
Williams, J., Stirling, M., Langridge, R., Niroula, G., Vause, A., Stewart, J., Nicol, A., & Wang, N. (2024). Along-strike extent of earthquakes on multi-segment reverse faults; insights from the Nevis-Cardrona Fault, Aotearoa New Zealand. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1310 DOI: https://doi.org/10.26443/seismica.v3i2.1310
Yang, W., Hauksson, E., & Shearer, P. M. (2012). Computing a Large Refined Catalog of Focal Mechanisms for Southern California (1981-2010): Temporal Stability of the Style of Faulting. Bulletin of the Seismological Society of America, 102(3), 1179–1194. https://doi.org/10.1785/0120110311 DOI: https://doi.org/10.1785/0120110311
Yukutake, Y., Takeda, T., & Yoshida, A. (2015). The applicability of frictional reactivation theory to active faults in Japan based on slip tendency analysis. Earth and Planetary Science Letters, 411, 188–198. https://doi.org/10.1016/j.epsl.2014.12.005 DOI: https://doi.org/10.1016/j.epsl.2014.12.005
Zhang, Y., Levandowski, W., Powell, C., & Langston, C. A. (2025). Transpressive Stress Throughout the New Madrid Seismic Zone, With Second‐Order Variations: Evidence From Focal Mechanism Inversions. Tectonics, 44(5). https://doi.org/10.1029/2024tc008447 DOI: https://doi.org/10.1029/2024TC008447
Ziegler, M. O., Seithel, R., Niederhuber, T., Heidbach, O., Kohl, T., Müller, B., Rajabi, M., Reiter, K., & Röckel, L. (2024). Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio. Solid Earth, 15(8), 1047–1063. https://doi.org/10.5194/se-15-1047-2024 DOI: https://doi.org/10.5194/se-15-1047-2024
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jack Williams, Donna Eberhart-Phillips, Sandra Bourguignon, Mark Stirling, Martin Reyners, Phaedra Upton

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Earthquake Commission
Grant numbers RCP023

