Submarine seismicity monitoring with distributed acoustic sensing near Santorini and Kolumbo Volcano
DOI:
https://doi.org/10.26443/seismica.v5i1.1845Keywords:
distributed acoustic sensing, submarine monitoring, fiber-optic seismology, volcano seismologyAbstract
Submarine volcanoes and faults pose hazards to nearby populated islands, yet their inaccessibility limits monitoring efforts. The Christiana-Santorini-Kolumbo volcanic field is capable of generating devastating eruptions, earthquakes and tsunamis. The 2025 earthquake swarm near Kolumbo, causing the evacuation of thousands from their homes, underlines the need for accurate and real-time monitoring. We interrogate a 45 km dark fibre that extended from Santorini past the submarine volcano Kolumbo for two months in 2021, comparing the performance of the fibre with the existing monitoring network for earthquake detection and location. The detected quakes originated all over Greece, coming from any azimuth. We can reliably identify events, doubling the number of detections in the vicinity of the fibre and Kolumbo. For event location, the azimuthal coverage of the existing seismometer network outperforms the fibre, emphasising the importance of a nonlinear fibre layout. Our findings suggest that while the higher detection sensitivity of DAS leads to an information gain, the data analysis remains challenging. The data quality may be insufficient for automated workflows. The need for human input limits the potential of DAS for real-time monitoring, although the enhanced detection sensitivity in remote areas justifies the continued research of DAS for submarine volcano monitoring.
References
Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., Knepley, M. G., & Fichtner, A. (2019). Modular and flexible spectral-element waveform modelling in two and three dimensions. Geophysical Journal International, 216(3), 1675–1692. https://doi.org/10.1093/gji/ggy469 DOI: https://doi.org/10.1093/gji/ggy469
Aki, K., & Richards, P. G. (2002). Quantitative seismology.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521 DOI: https://doi.org/10.1785/BSSA0680051521
Aristotle University of Thessaloniki. (1981). Aristotle University of Thessaloniki Seismological Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HT
Azzola, J., Thiemann, K., & Gaucher, E. (2023). Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field. Geothermal Energy, 11(1), 30. https://doi.org/10.1186/s40517-023-00272-4 DOI: https://doi.org/10.1186/s40517-023-00272-4
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 DOI: https://doi.org/10.1785/gssrl.81.3.530
Biagioli, F., Métaxian, J.-P., Stutzmann, E., Ripepe, M., Bernard, P., Trabattoni, A., Longo, R., & Bouin, M.-P. (2024). Array analysis of seismo-volcanic activity with distributed acoustic sensing. Geophysical Journal International, 236(1), 607–620. DOI: https://doi.org/10.1093/gji/ggad427
Brüstle, A., Friederich, W., Meier, T., & Gross, C. (2014). Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth, 5(2), 1027–1044. https://doi.org/10.5194/se-5-1027-2014 DOI: https://doi.org/10.5194/se-5-1027-2014
Cantner, K., Carey, S., & Nomikou, P. (2014). Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece. Journal of Volcanology and Geothermal Research, 269, 28–43. https://doi.org/10.1016/j.jvolgeores.2013.10.004 DOI: https://doi.org/10.1016/j.jvolgeores.2013.10.004
Capdeville, Y., & Sladen, A. (2024). DAS sensitivity to heterogeneity scales much smaller than the minimum wavelength. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1007 DOI: https://doi.org/10.26443/seismica.v3i1.1007
Cheng, F., Ajo-Franklin, J. B., Nayak, A., Tribaldos, V. R., Mellors, R., Dobson, P., & Team, I. V. D. F. (2023). Using dark fiber and distributed acoustic sensing to characterize a geothermal system in the Imperial Valley, Southern California. Journal of Geophysical Research: Solid Earth, 128(3), e2022JB025240. https://doi.org/10.1029/2022JB025240 DOI: https://doi.org/10.1029/2022JB025240
Cheng, F., Chi, B., Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. (2021). Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Scientific Reports, 11(1), 5613. https://doi.org/10.1038/s41598-021-84845-y DOI: https://doi.org/10.1038/s41598-021-84845-y
Crameri, F. (2018). Scientific colour maps. Zenodo, 10, 5281. https://doi.org/10.5281/zenodo.1243862
Currenti, G., Jousset, P., Napoli, R., Krawczyk, C., & Weber, M. (2021). On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy). Solid Earth, 12(4), 993–1003. https://doi.org/10.5194/se-12-993-2021 DOI: https://doi.org/10.5194/se-12-993-2021
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., & Freifeld, B. M. (2016). Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prosp., 64, 1318–1334. https://doi.org/10.1111/1365-2478.12324 DOI: https://doi.org/10.1111/1365-2478.12324
Evangelidis, C., & Melis, N. (2012). Ambient noise levels in Greece as recorded at the Hellenic Unified Seismic Network. Bulletin of the Seismological Society of America, 102(6), 2507–2517. https://doi.org/10.1785/0120110319 DOI: https://doi.org/10.1785/0120110319
Gou, Y., Allen, R. M., Zhu, W., Taira, T., & Chen, L. (2025). Leveraging Submarine DAS Arrays for Offshore Earthquake Early Warning: A Case Study in Monterey Bay, California. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120240234 DOI: https://doi.org/10.1785/0120240234
Grandi, S., Dean, M., & Tucker, O. (2017). Efficient containment monitoring with distributed acoustic sensing: feasibility studies for the former Peterhead CCS Project. Energy Procedia, 114, 3889–3904. https://doi.org/10.1016/j.egypro.2017.03.1521 DOI: https://doi.org/10.1016/j.egypro.2017.03.1521
Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. CRC press. https://doi.org/10.1201/9781315119014 DOI: https://doi.org/10.1201/9781315119014
Heath, B., Hooft, E., Toomey, D., Papazachos, C., Nomikou, P., Paulatto, M., Morgan, J., & Warner, M. (2019). Tectonism and its relation to magmatism around Santorini Volcano from upper crustal P wave velocity. Journal of Geophysical Research: Solid Earth, 124(10), 10610–10629. https://doi.org/10.1029/2019JB017699 DOI: https://doi.org/10.1029/2019JB017699
Heath, B., Hooft, E., Toomey, D., Paulatto, M., Papazachos, C., Nomikou, P., & Morgan, J. (2021). Relationship between active faulting/fracturing and magmatism around Santorini: Seismic anisotropy from an active source tomography experiment. Journal of Geophysical Research: Solid Earth, 126(8), e2021JB021898. https://doi.org/10.1029/2021JB021898 DOI: https://doi.org/10.1029/2021JB021898
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47
Hudson, T. S., Klaasen, S., Fontaine, O., Bacon, C., Jonsdottir, K., & Fichtner, A. (2025). Towards a widely applicable earthquake detection algorithm for fibreoptic and hybrid fibreoptic-seismometer networks. Geophysical Journal International, 240(3), 1965–1985. https://doi.org/10.1093/gji/ggae459 DOI: https://doi.org/10.1093/gji/ggae459
Igel, J. K., Klaasen, S., Noe, S., Nomikou, P., Karantzalos, K., & Fichtner, A. (2024). Challenges in submarine fiber-optic earthquake monitoring. Journal of Geophysical Research: Solid Earth, 129(12), e2024JB029556. https://doi.org/10.1029/2024JB029556 DOI: https://doi.org/10.1029/2024JB029556
(ITSAK) Institute of Engineering Seimology Earthquake Engineering. (1981). ITSAK Strong Motion Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HI
Joe, H.-E., Zhou, F., Yun, S.-T., & Jun, M. B. (2020). Detection and quantification of underground CO2 leakage into the soil using a fiber-optic sensor. Optical Fiber Technology, 60, 102375. https://doi.org/10.1016/j.yofte.2020.102375 DOI: https://doi.org/10.1016/j.yofte.2020.102375
Jousset, P., Currenti, G., Murphy, S., Eibl, E., Caudron, C., Retailleau, L., Wollin, C., Klaasen, S., Nishimura, T., Fichtner, A., Spica, Z., Lemarchand, A., & Krawczyk, C. (2024). Fiber optic sensing for volcano monitoring and imaging volcanic processes. https://doi.org/10.31223/X5HM6J DOI: https://doi.org/10.31223/X5HM6J
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., & Krawczyk, C. M. (2022). Fibre optic distributed acoustic sensing of volcanic events. Nature Communications, 13(1), 1–16. https://doi.org/10.1038/s41467-022-29184-w DOI: https://doi.org/10.1038/s41467-022-29184-w
Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., & Fichtner, A. (2021). Distributed acoustic sensing in volcano-glacial environments—Mount Meager, British Columbia. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021JB022358 DOI: https://doi.org/10.1029/2021JB022358
Klaasen, S., Thrastarson, S., Çubuk Sabuncu, Y., Jónsdóttir, K., Gebraad, L., Paitz, P., & Fichtner, A. (2023). Subglacial volcano monitoring with fibre-optic sensing: Grı́msvötn, Iceland. Volcanica, 6(2), 301–311. https://doi.org/10.30909/vol.06.02.301311 DOI: https://doi.org/10.30909/vol.06.02.301311
Klaasen, S., Thrastarson, S., Fichtner, A., Cubuk-Sabuncu, Y., & Jónsdóttir, K. (2022). Sensing Iceland’s Most Active Volcano with a “Buried Hair.” Eos, 103. https://doi.org/10.1029/2022EO220007 DOI: https://doi.org/10.1029/2022EO220007
Lellouch, A., Lindsey, N. J., Ellsworth, W. L., & Biondi, B. L. (2020). Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment. Bulletin of the Seismological Society of America, 91(6), 3256–3268. https://doi.org/10.1785/0220200149 DOI: https://doi.org/10.1785/0220200149
Li, J., Zhu, W., Biondi, E., & Zhan, Z. (2023). Earthquake focal mechanisms with distributed acoustic sensing. Nature Communications, 14(1), 4181. https://doi.org/10.1038/s41467-023-39639-3 DOI: https://doi.org/10.1038/s41467-023-39639-3
Li, Z., & Zhan, Z. (2018). Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the Brady geothermal field. Geophysical Journal International, 215(3), 1583–1593. https://doi.org/10.1093/gji/ggy359 DOI: https://doi.org/10.1093/gji/ggy359
Lindsey, N. J., & Martin, E. (2021). Fiber-optic seismology. Ann. Rev. Earth Plant. Sci., 49, 309–336. https://doi.org/10.1146/annurev-earth-072420-065213 DOI: https://doi.org/10.1146/annurev-earth-072420-065213
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., & Markou, C. (2021). On the detection capabilities of underwater distributed acoustic sensing. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020925. https://doi.org/10.1029/2020JB020925 DOI: https://doi.org/10.1029/2020JB020925
Martuganova, E., Stiller, M., Norden, B., Henninges, J., & Krawczyk, C. M. (2022). 3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes. Solid Earth, 13(8), 1291–1307. https://doi.org/10.5194/se-13-1291-2022 DOI: https://doi.org/10.5194/se-13-1291-2022
Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Grandi, S., Hornman, K., Kuvshinov, B., Berlang, W., Yang, Z., & Detomo, R. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692. https://doi.org/10.1111/1365-2478.12116 DOI: https://doi.org/10.1111/1365-2478.12116
Miller, M. S., Townend, J., & Lai, V.-H. (2024). The South Island Seismology at the Speed of Light Experiment (SISSLE): Distributed Acoustic Sensing Across and Along the Alpine Fault, South Westland, New Zealand. Seismological Research Letters. https://doi.org/10.1785/0220240322 DOI: https://doi.org/10.1785/0220240322
National Observatory of Athens, Institute of Geodynamics. (1975). National observatory of Athens seismic network [Dataset]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL
Nayak, A., Ajo-Franklin, J., & the Imperial Valley Dark Fiber Team. (2021). Distributed acoustic sensing using dark fiber for array detection of regional earthquakes. Seismological Research Letters, 92(4), 2441–2452. https://doi.org/10.1785/0220200416 DOI: https://doi.org/10.1785/0220200416
Nishimura, T., Emoto, K., Nakahara, H., Miura, S., Yamamoto, M., Sugimura, S., Ishikawa, A., & Kimura, T. (2021). Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Scientific Reports, 11(1), 6319. https://doi.org/10.1038/s41598-021-85621-8 DOI: https://doi.org/10.1038/s41598-021-85621-8
Nomikou, P., Hübscher, C., & Carey, S. (2019). The Christiana–Santorini–Kolumbo volcanic field. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 15(3), 171–176. https://doi.org/10.2138/gselements.15.3.171 DOI: https://doi.org/10.2138/gselements.15.3.171
Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N., & Voukouvalas, E. (2009). The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 178(3), 1533–1554. https://doi.org/10.1111/j.1365-246X.2009.04237.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04237.x
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. DOI: https://doi.org/10.1109/TSMC.1979.4310076
Ouellet, S. M., Dettmer, J., Lato, M. J., Cole, S., Hutchinson, D. J., Karrenbach, M., Dashwood, B., Chambers, J. E., & Crickmore, R. (2024). Previously hidden landslide processes revealed using distributed acoustic sensing with nanostrain-rate sensitivity. Nature Communications, 15(1), 6239. https://doi.org/10.1038/s41467-024-50604-6 DOI: https://doi.org/10.1038/s41467-024-50604-6
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., & Fichtner, A. (2021). Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves. Bulletin of the Seismological Society of America, 111(1), 1–10. https://doi.org/10.1785/0120200185 DOI: https://doi.org/10.1785/0120200185
Pevzner, R., Isaenkov, R., Yavuz, S., Yurikov, A., Tertyshnikov, K., Shashkin, P., Gurevich, B., Correa, J., Glubokovskikh, S., Wood, T., Freifeld, B., & Barraclough, P. (2021). Seismic monitoring of a small CO2 injection using a multi-well DAS array: Operations and initial results of Stage 3 of the CO2CRC Otway project. International Journal of Greenhouse Gas Control, 110, 103437. https://doi.org/10.1016/j.ijggc.2021.103437 DOI: https://doi.org/10.1016/j.ijggc.2021.103437
Ryan, W. B., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowksi, J., & Zemsky, R. (2009). Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008GC002332 DOI: https://doi.org/10.1029/2008GC002332
Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. (2020). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophysical Research Letters, 47(16), e2020GL088360. https://doi.org/10.1029/2020GL088360 DOI: https://doi.org/10.1029/2020GL088360
Technological Educational Institute of Crete. (2006). Seismological Network of Crete. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HC
Thrastarson, S., Torfason, R., Klaasen, S., Paitz, P., Cubuk-Sabuncu, Y., Jónsdóttir, K., & Fichtner, A. (2021). Detecting Seismic Events with Computer Vision: Applications for Fiber-Optic Sensing. ESS Open Archive. https://doi.org/10.1002/essoar.10509693.1 DOI: https://doi.org/10.1002/essoar.10509693.1
Trafford, A., Ellwood, R., Wacquier, L., Godfrey, A., Minto, C., Coughlan, M., & Donohue, S. (2022). Distributed acoustic sensing for active offshore shear wave profiling. Scientific Reports, 12(1), 9691. https://doi.org/10.1038/s41598-022-13962-z DOI: https://doi.org/10.1038/s41598-022-13962-z
Tuinstra, K., Grigoli, F., Lanza, F., Rinaldi, A. P., Fichtner, A., & Wiemer, S. (2024). Locating clustered seismicity using Distance Geometry Solvers: applications for sparse and single-borehole DAS networks. Geophysical Journal International, 238(2), 661–680. https://doi.org/10.1093/gji/ggae168 DOI: https://doi.org/10.1093/gji/ggae168
Ulvrova, M., Paris, R., Nomikou, P., Kelfoun, K., Leibrandt, S., Tappin, D., & McCoy, F. (2016). Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece). Journal of Volcanology and Geothermal Research, 321, 125–139. https://doi.org/10.1016/j.jvolgeores.2016.04.034 DOI: https://doi.org/10.1016/j.jvolgeores.2016.04.034
University of Athens. (2008). Hellenic Seismological Network, University of Athens, Seismological Laboratory. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HA
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. (2018). Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 213(3), 2020–2036. https://doi.org/10.1093/gji/ggy102 DOI: https://doi.org/10.1093/gji/ggy102
Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. (2019). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10(1), 5778. https://doi.org/10.1038/s41467-019-13262-7 DOI: https://doi.org/10.1038/s41467-019-13262-7
Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection. Bulletin of the Seismological Society of America, 88(1), 95–106. https://doi.org/10.1785/BSSA0880010095 DOI: https://doi.org/10.1785/BSSA0880010095
Xie, T., Zhang, C.-C., Shi, B., Chen, Z., & Zhang, Y. (2024). Integrating distributed acoustic sensing and computer vision for real-time seismic location of landslides and rockfalls along linear infrastructure. Landslides, 1–19. https://doi.org/10.1007/s10346-024-02268-y DOI: https://doi.org/10.1007/s10346-024-02268-y
Zhu, W., Biondi, E., Li, J., Yin, J., Ross, Z. E., & Zhan, Z. (2023). Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning. Nature Communications, 14(1), 8192. https://doi.org/10.1038/s41467-023-43355-3 DOI: https://doi.org/10.1038/s41467-023-43355-3
Zunino, A., Gebraad, L., Ghirotto, A., & Fichtner, A. (2023). HMCLab: a framework for solving diverse geophysical inverse problems using the Hamiltonian Monte Carlo method. Geophysical Journal International, 235(3), 2979–2991. https://doi.org/10.1093/gji/ggad403 DOI: https://doi.org/10.1093/gji/ggad403
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Sara Klaasen, Thomas Hudson, Sanchit Sachdeva, Paraskevi Nomikou, Andreas Fichtner

This work is licensed under a Creative Commons Attribution 4.0 International License.

